
Resource Based Automatic Calibration System (RBACS) Using Kubernetes
Framework

Tahir Alyas1, Nadia Tabassum2, Muhammad Waseem Iqbal3,*, Abdullah S. Alshahrani4,
Ahmed Alghamdi5 and Syed Khuram Shahzad6

1Department of Computer Science, Lahore Garrison University, Lahore, 54000, Pakistan
2Department of Computer Science & IT, Virtual University of Pakistan, Lahore, 54000, Pakistan

3Department of Software Engineering, The Superior University, Lahore, 54000, Pakistan
4Department of Computer Science & Artificial Intelligence, College of Computer Science & Engineering, University of Jeddah,

21493, Saudi Arabia
5Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, 21493, Saudi Arabia

6Department of Informatics & Systems, University of Management & Technology, Lahore, 54000, Pakistan
*Corresponding Author: Muhammad Waseem Iqbal. Email: waseem.iqbal@superior.edu.pk

Received: 18 February 2022; Accepted: 24 March 2022

Abstract: Kubernetes, a container orchestrator for cloud-deployed applications,
allows the application provider to scale automatically to match the fluctuating
intensity of processing demand. Container cluster technology is used to encapsu-
late, isolate, and deploy applications, addressing the issue of low system reliabil-
ity due to interlocking failures. Cloud-based platforms usually entail users define
application resource supplies for eco container virtualization. There is a constant
problem of over-service in data centers for cloud service providers. Higher oper-
ating costs and incompetent resource utilization can occur in a waste of resources.
Kubernetes revolutionized the orchestration of the container in the cloud-native
age. It can adaptively manage resources and schedule containers, which provide
real-time status of the cluster at runtime without the user’s contribution. Kuber-
netes clusters face unpredictable traffic, and the cluster performs manual expan-
sion configuration by the controller. Due to operational delays, the system will
become unstable, and the service will be unavailable. This work proposed an
RBACS that vigorously amended the distribution of containers operating in the
entire Kubernetes cluster. RBACS allocation pattern is analyzed with the Kuber-
netes VPA. To estimate the overall cost of RBACS, we use several scientific
benchmarks comparing the accomplishment of container to remote node migra-
tion and on-site relocation. The experiments ran on the simulations to show the
method’s effectiveness yielded high precision in the real-time deployment of
resources in eco containers. Compared to the default baseline, Kubernetes results
in much fewer dropped requests with only slightly more supplied resources.

Keywords: Docker; container; virtualization; cloud resource; kubernetes

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.028815

Article

echT PressScience

mailto:waseem.iqbal@superior.edu.pk
http://dx.doi.org/10.32604/iasc.2023.028815
http://dx.doi.org/10.32604/iasc.2023.028815


1 Introduction

Public cloud is used for common personnel to allow services and systems comfortably [1]. The
development of the Internet has brought about huge changes in cloud computing and has developed into
an open collaborative business model that looks for services and further diversifies other energy sources.
The Business organization has distributed cloud computing service systems into three levels:
Infrastructure as a service, software as a service, and platform as a service.

Community cloud is a collective effort in computing where internal or third party management or
internal or external hosting is shared between many organizations in a given community, with a
fundamentally special interest in security, compliance, sovereignty [2]. A private cloud provides services
and systems that run within the organization. Alternatively, it can be controlled by third parties or
coalitions themselves. A hybrid cloud combines a fusion of public and private clouds. The private cloud
executes major accomplishments, and non-critical events are accomplished by the public cloud.

Infrastructure as a service is provided with buyers, systems, inventory, processing, and various other
computing resources. Consumers can check the operating system, inventory, and published applications.
Customers may also have partial rights to choose system administration components, such as owning a
firewall. Platform as a Service is a cloud computing model. A third-party provider provides hardware and
software tools, usually those needed for application development to users on the Internet. These apps can
be accessed from various gadgets through a light client interface like a web browser [3]. Software as a
service allows the consumer to use the experiences, for instance, requests put by the service provider that
continues to work on the infrastructure.

Regarding the dynamically evolving cloud services architecture, modular software development is a
powerful model for ensuring the quality, flexibility, and sustainability of personal services. Using modern
development frameworks, cloud services can be designed and developed into a set of small, poorly
coupled modules that can be quickly changed, shared, and reused in another instance. As a result,
software upgrade modules allow for faster deployment of cloud services by integrating existing public
modules. Combining a microservice style of external service architecture with a software development
module related to the internal architecture of cloud services is an effective way to address the growing
complexity of software-based programs and the need for rapid adjustment to ever-changing needs [4].

While the development of newly developed modules and public availability enables faster software
upgrades, satisfying unmet needs such as reliability, efficiency, and security in this situation is a daunting
task. Newly expanded modules may become unstable, weak, or unreliable. Indeed, we want to establish
an isolated context for these units to benefit from improved security, failure, and perfect resource
management, but without the need to create, manage, and deploy dedicated services. The development
and maintenance of disproportionate services have been defined as one of the key issues in the
construction style of micro-services and lead to performance problems. This led to the use of container
virtualization to isolate units in one cloud service from each other, following the definition of isolation
limitation. Our approach meets some inactive requirements by automatically changing cloud services
consisting of components in a container ecosystem [5].

Technology that enables microservice architecture for containerized applications. Virtualization and
container technology is the same, but containers can still deploy or integrate applications, such as
libraries, configuration files, and full package duplexing. This container is used to put each software
package in its normal configuration [6]. The method specified for operating system virtualization is called
containerization as shown in Fig. 1.

1166 IASC, 2023, vol.35, no.1



Serverless computing introduced large-scale parallelism and was created primarily for event-driven
applications that require light processing in response to a trigger (e.g., to do a minor image manipulation
when a file is uploaded to an Amazon S3 bucket or to access a NoSQL back-end to retrieve data upon
invocation of a REST API). However, the programming model imposed by these services, such as
Amazon web services (AWS) Lambda, makes it difficult to use this service for general application execution.

Kubernetes is a system that revolutionizes the distribution, expansion, and management of container
applications. Kubernetes collects application tools into logical units for easy management and discovery.
Kubernetes is an expanded, portable, and open-source platform for tracking workload and containerized
services that make it easy to configure entry and automation. There is a large and rapidly emerging
ecosystem [7].

In Fig. 2 the control plane is directly connected with worker node 1 and worker node 2. Kubectl is
connected through user interface through User interface/Command Line Interface(UI/CLI. Control Plane
is further divided into API Server, scheduler, controller manager and etcd. Worker node is responsible for
the managing Pods containing different containers through kubelet and kube-proxy.

Etcd stores the available position data for each hub in the group. It is a very accessible relationship store
that can extend between hubs. It can only be opened by the Kubernetes API server, as it may contain
confidential data. The application programming interface (API) server uses API to complete all tasks.
With the interface tool that programs the interface server, devices and libraries can immediately
communicate with the interface [8].

Kube-config is a software package next to the server-side device for communication. The scheduler
module is the section that is responsible for decentralizing the remaining tasks at hand, tracking the
workload usage on the group hub, and then setting up the remaining activities at hand to access and
identify the tasks at hand. It applies changes to make the current state of the server ideal by receiving the
related conditions of the groups [9]. Arguably, this is the component responsible for assigning cases to
accessible hubs. The dispatcher is responsible for special expenses and assigns points to the new hub.
The controller manager is liable for managing the status of collectors and performing most of the tasks
for the collectors. It is generally considered a daemon process as it runs in an endless loop and is
responsible for collecting data and sending it to the API server as shown in Fig. 2.

Figure 1: Virtualization and containerization

IASC, 2023, vol.35, no.1 1167



� Pod: It acts as the default server and assigns a virtual Internet protocol (IP) address to the main server.

� Kubelet: The Kubernetes node operator and running on each node of the System. It also has authority
for managing and reporting node events such as pod status and node resources that the main node
must use. It is an audit pod assignment through the main server to maintain these filters on nodes.

� cAdvisor: It is a monitoring tool for resource utilization of open-source containers that automatically
collect all information of containers in the node regarding resource usage.

The main contribution of the proposed work is to introduce a scalable and comprehensive controller for
kubernetes in the eco-container environment of cloud structure. The objective is to minimize resource
utilization with the goal of improving performance and proficiency for containerized virtualization and
optimizing scheduling or mapping of containers to available nodes in multi-constraint kubernetes orchestration.

2 Literature Review

Deployment of virtual machines in amazon Elastic computing cloud (EC2) to simulate in parallel. The
infrastructure design is comprised of EC2 and local computing resources with a central manager, condor
(middleware that runs simulation tasks), responsible for distributing tasks and scheduling. Using a cloud
in a pandemic scenario analysis performance must speed up and colleagues introduced the cloud sim and
container base cloud sim add-on to compare container planning and provisioning policies better. To give
sponsorship for modeling and simulating cloud computing environments in containers. They developed a
modeling architecture for container clouds and have implemented it as an extension of cloud sim [10].

Recent studies classify and systematically compare existing container technology research organizations
and their cloud applications as a service. And as a container-based middleware for packaging applications
and how distribution infrastructure works to understand the platform better. It is recommended to use a
lightweight container automatic scale to achieve flexible automatic measurement. Provide detailed
information about system architecture and automatic measurement, including monitoring mechanisms,
history recorder, decision mechanisms, and implementation mechanisms. There are no more experimental

Figure 2: Kubernetes architecture

1168 IASC, 2023, vol.35, no.1



standards for more comprehensive evaluation in the public cloud. This article does not classify workloads as
memory constraints and disk-attached Central processing units (CPUs). There is no preventive automatic
scaling tool that can combine the autoreactive scaler with some mature prediction methods to scale the
container according to the number and scale of the containers [11].

Provide automatic scalers that meet the needs of flexible container applications. This article focuses on
the deployment, configuration, and management of the Virtual, flexible computing group (VIC) to manage
scientific workloads. It has developed a mixed-scale strategy based on a resource demand forecasting model
that is matched with service level agreements to cope with rapidly changing workloads. The System is used
in a central cloud environment for private containers, and experimental results show that the volume is
automated [12]. The nodes of the scientific block are stored in a repository running on bare metal.
Introduce the Docker open-source elastic cluster (EC4Docker) integrated with Docker Swarm,
automatically creating a scalable virtual computer cluster in warehouses across distributed systems [13].

New improvement storage concept, introducing a new model for allocating storage resources in the
cloud system. A new hybrid algorithm is being implanted to obtain the best possible allocation of storage
resources. The Lion’s algorithm (LA) was introduced with the support of Whale random update (WR-
LA), and it is a hybrid form of the LA and the Whale Improvement Algorithm (WOA) [14].

Moreover, an optimal resource allocation solution has been developed, considering minimum, group
usage balance, system failure, total network distance. The scientific contributions reviewed include a
combination of technical use cases, analysis, and solution architecture (the implementation of Google
kubernetes engine, and the concept of threatening the storage environment in the transfer of application
repositories. Create Google Cloud Platform (GCP) resources from the local command line management
program, and then send, install, and configure the required Google software development kit (SDK)
command-line configuration gcloud [15].

A large number of studies have shown that compared with traditional cloud-based virtualization and
hypervisors, storage-based virtualization has many advantages and reduces the cost of creating new
solutions. Besides microsystem architecture assists [16] to construct scalable software that can be used in
cloud environments. The intelligent microservice monitoring used in kubernetes is an automated learning
engine for intelligent analysis and a core element of many cloud management solutions [17].

3 Proposed Methodology

The proposed kubernetes infrastructure model, which aims to consider the main factor of the cloud
framework, namely resource estimation. Kubernetes attempts to use Vertical pod auto-scaler (VPA) to
solve the resource estimation problem, which does not oblige users to input resource requirements. The
VPA creates estimates based on the application’s current resources and then improves the estimates by
reassessing the application with the new forecast resources. The correction method requires closing the
application and then reinstalling with the estimated resources. Although this method can be applied to
stateless services, it has serious shortcomings in the state- and performance-sensitive applications [18].

RBACSmodel is proposed used to solve the resource estimations problem in kubernetes settings. The model
includes several modules, which have been integrated into an effective operating model as shown in Fig. 3. All
modules work together to improve reliability. The main goal of this research is to explore new ways to enhance
the thorough management of kubernetes containers. The method evaluates the effective number of resources
required by the application, moves constantly, updates the allocation of resources, and carries on the
application’s execution. The proposed model of the kubernetes infrastructure includes the following modules:

� RBACS components include the kubernetes master and docker and RBACS with metrics servies.

� Elastic Compute Cloud (EC2) cluster of worker nodes with Network File System (NFS)

IASC, 2023, vol.35, no.1 1169



All applications queue will send to RBACS components where kubectl will check the worker node of
desired request. RBACS will also check the docker engine through metrices servers with EC2 cluster. Users
do not need to provide CPU and memory resources for pod in the currently enabled VPA implementation.
Initially, by default, kubernetes allocation is the smallest or smallest configurable allocation of guaranteed
resources in the pod. VPA will run a recommendation program to monitor the pod usage history and
suggest the latest boundaries as needed.

It is recommended that the program use the following default formula for new resources. Although these
equations can be modified, this resource correction method has its shortcomings. For instance, maximum
usage of memory may be a transient peak in an application, however, the goal of VPA is to distribute this
amount throughout the life of the application. Also, after changing the distribution the current VPA
implementation will restart pod. As a result of this destructive process, the condition of the container is
lost. Although docker has released docker updates, it cannot be applied directly to large distribution
systems (such as kubernetes) to update resources allocated to repositories.

RBACS contains two key modules: runtime analysis and approximation system. This is because several
units, such as schedulers, controllers, and kubelet, depend on the initial allocation to make decisions. If these
modules are incompatible with each other, it is currently difficult to use the latest update feature of docker for
VPA. Recent work has demonstrated the efficiency of related runtime analysis systems. A vertical auto-
scaling system can modify the allotment (if needed) without interruption during operation. Based on data
collected every 60 seconds, the following formula used to estimate: RBACS fully organizes applications
when it reaches the cluster and collects resource consumption statistics every single second.

Compiling and analyzing the data involves the use of CPU and memory provided by the matrix server. A
new estimate is made every 60 seconds built on this data. The following formula is used to make an estimate
based on the data collected every 60 seconds. Eq. (1) will buffer the required resources and calculate the
observations.

Figure 3: Proposed RBACS framework

1170 IASC, 2023, vol.35, no.1



Buffer ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

yi� �yð Þ2
s

(1)

Required Resource ¼ Median of Observationsþ Buffer (2)

In the formula, the total count of observations is symbolized by N, and Yi represents i. The observed
value, y is the arithmetic mean of the observed value. The buffer is the absolute deviation of the observed
value. n is the total number of observations, yi is the ith observation, and y is the arithmetic mean of the
observations in the formula. The buffer is the space between two points. Since the application was
primarily programmed apart from resource allocation, the following approach is used to fix or set the
limit (disruptive: the application is restored after debugging), as shown in Eq. (2). Use it when restarting
the application, it will not affect the results. Non-disruptive: scan the application and restart using the
checkpoint. This process may involve migrating containers [19].

It explores a new method of enhancing the containers orchestration in kubernetes, which can
dynamically estimate the number of resources required by an application, not just migration, update
resource allocation and continue execution of the application. If the approximated number of resources
are not accessible on the same node, the program is moved to an alternative available point. Even if there
is no backup on any node, the program will continue to run in its final state. The estimation and
correction procedure continues until the application is accomplished.

This study introduces the design and implementation of a new non-disruptive RBACS program for
kubernetes. The program includes: making trade-offs in various RBACS performance design choices,
including configuration intervals, application restart overhead, and storage migration. A flexible and
configurable framework, RBACS, is used to solve the problem of resource correction in Kubernetes
settings. RBACS uses user-space checkpoint restoration (CRIU) to create checkpoints and restore docker
execution, so there is no need to destroy and restart the application. Suppose the usage of the application
exceeds 10% of the allocated resources. In that case, RBACS will create another assessment, check the
container running the application, as well as use the new estimate to schedule it on the cluster. RBACS is
most suitable for target applications, requiring few resource changes, and its design can also adapt to
target applications that are frequently changed through multiple migrations.

Determining the right resources for end-users is challenging because program requirements can vary for
each run, depending on different configuration values, such as input file size, optimized components,
selection of input parameters, And kernel applications. Miscalculations in custom application resource
requirements are a well-known issue and are not limited to Kubernetes [20].

The Fig. 4, shows the detail of the proposed algorithm steps from start to end. In step 1 the application is
submitted to RBACS then monitoring resource usage will monitor the id from the kubernetes cluster in step 2.
RBACS creates the startup specification required to perform tasks on the kubernetes cluster. The specification
contains a unique identifier for monitoring application resource usage. The requirement description is sent to
kubectl in step 3, a component of kubernetes for cluster management. Kubectl dispatches the work to the
kubernetes master in step 4. Kubernetes schedules request to master working nodes. In step 5, the metric
server accumulates detailed information about the resource usage of all the clusters running containers.

In step 6, RBECS examines the use of each container contrary to resource distribution. If the allocation
and use are the same, RBACC allows the process to continue. If allocated and used do not go along with. In
step 7, RBACS dispatch two commands to docker, one instruction is used to test the container, and the other
instruction creates an image containing the data collected from the container. In step 8 creation of image
made by docker. In Step 9, images and checkpoints are saved on NFS so it may be available to the rest
of the cluster. In step 9a, the generated checkpoint and image information is referred to as RBACS.

IASC, 2023, vol.35, no.1 1171



In step 10, the RBACS prepares the launch description with the image and checkpoint icon and put
forward to kubectl. The kubectl sends the work to the kubernetes master, which performs the task
scheduling on the worker nodes. Then upload the image and checkpoint to the specific computer and
restore the container. The proposed algorithm includes 8 steps, as shown in the Fig. 4. The algorithm will
take input files, measure the required resources, and provide resource estimates, and schedule applications
on working nodes. The proposed framework uses the RBACS estimation method to provide the best
resource requirements for any application that installs bubernetes applications. Then use the container and
docker to install the System [21].

4 Experimental Results

The experimental cluster configuration consists of 1 kubernetes master node and 8 kubernetes worker
nodes, all in the AWS cloud. In Tab. 1 lists the descriptions of the settings.

Figure 4: Proposed algorithm steps

Table 1: Experimental details

Software/OS Version/Description

AWS EC2 Nodes (28) c5.2xlarge compute-optimized, 7 core 2.5 GHz processor, 32 GB

Operating System Ubuntu 18.04.1 LTS operating system

Docker 17.06.2

Kubernetes 1.12.4

1172 IASC, 2023, vol.35, no.1



Kubernetes linux manager node:

� Machine type: n1-standard-1

� OS: Ubuntu 18.04 LTS

� CPU: 1 vCPU

� Memory: 3.75 GB memory

Kubernetes windows worker node:

� Machine type: n1-standard-2

� OS: Windows server 2019 datacenter

� CPU: 2 vCPU

Docker swarm windows worker node:

� Machine type: n1-standard-2

� OS: Windows server 2019 datacenter

� CPU: 2 vCPU

� Memory: 7.5 GB memory

Simulations show differences in execution time or performance when the RBACS estimation method is
deployed. An observation interval of 60 seconds was used for the experiment. On linux, we reduced
execution time by 49.10%, and on windows by 23.65%. Using migrations can always improve runtime.
As seen in the application, the runtime decreases as the migration image increases.

Conversely, if the initial estimate is incorrect or the application changes the operating system requirements,
the benefits of the migration are more evident. For instance, on windows, applications slowly increase their
usage, which can lead to incorrect estimates and several migrations or reboots. Fig. 6 equates the migration
costs of RBACS when expanding locally on the same node and expanding on another node. The node
selector option is used in kubernetes pod-spec to manage in-place migration and remote node migration. By
connecting the pod to a specific node, In-place migration is performed, thus obtaining runtime benefits. It is
observed that the windows runtime decreased by 4.1% and that of linux by 2.09%.

At the same time, when creating evaluation resources and determining that the application should be
scaled, a checkpoint is created regardless of the available resources. The concept is designed to deal with
situations where claims are canceled due to a lack of improper resources and allowed to be executed
permanently.

The Fig. 5 depicts the average run times for default Kubernetes, kubernetes VPA, and RBACS. In both
settings have a similar set of applications with equivalent resource requirements, i.e., + 40% optimal
resources. In simulations work, it is noticed that the default kubernetes, which cannot modify resources,
takes much longer. On average, the default kubernetes took 21, 134 seconds.

Kubernetes with VPA worked much better than kubernetes by default, even restarting pods. By
comparison, the kubernetes VPA has a much better run time, averaging 12, 141 seconds. This reduces
execution time by approximately 47%. Restarting the packages were supposed to be a malicious move,
but because VPA can fix the distribution and make resources available, kubernetes will run more
applications, which will reduce runtime.

The proposed approach, RBACS, accomplishes upgrades by dropping the cost of reboots by
incorporating the migration of containers. It is observed that using RBACS further reduces the execution
time to 8993 seconds. It represents an improvement of approximately 25% over kubernetes VPA and
approximately 42% over the default setting of kubernetes.

IASC, 2023, vol.35, no.1 1173



In Fig. 6 shows the use of a processor that matches the distribution. By default, in kubernetes, it is noted
that only about 39% of the allocated processor is exhausted by programs. It shows that more than half of the
allocated CPU remains idle. In this way misappropriate resources increase the overall runtime cause many
applications waiting queue. Kubernetes with VPA was able to adjust the distribution and thus with much
better use about 72%.

Though, Kubernetes VPA has the disadvantage of restarting applications. Instead of immediately
restarting the program, we noticed that Kubernetes queued the task because this causes persistence in the
application implementation. In those circumstances in which the application provides a service, the wait
can be long until the application is restarted. The application waiting to be continued has the highest
priority in the RBACS queue. Using RBACS, with the help of container migration, better CPU utilization
of around 5.98% has been observed in Fig. 7 with no state of failure.

Figure 5: Cluster allocation vs. usage percentage

Figure 6: Cluster runtime results

1174 IASC, 2023, vol.35, no.1



In Fig. 8 shows the average cluster memory usage using the default Kubernetes, Kubernetes VPA, and
RBACS. The Kubernetes default average memory usage was 832 MB although the allotment was 90% and
192 MB is still available. We also evaluated memory performance, a simple program for measuring immortal
memory bandwidth. It uses a data set significantly bigger than the cache accessible in the processing
environment to perform four types of vector functions: add, copy, and unpack to reduce the latency of
limited caches and prevent memory reuse. Regardless of vector operations, all lightweight virtualization,
and native systems show similar performance. It’s because of lightweight virtualization that can revert
unused memory to other containers and the host, thereby improving memory utilization.

The result of default virtualization is the worst, with an average overhead of 4.1% compared with the
local system. This overhead is caused by the virtualization layer based on the hypervisor, which converts
memory access instructions, causing Performance drawbacks. The experiment is also used to estimate
stored virtual disks’ I/O performance. Create and measure various file operations and access patterns
(initial write, read, overwrite, etc.). The experiment was compared with a file size of 10 GB and a
recording size of 4 KB in Fig. 8.

The results for kubernetes and RBACS are similar because kubernetes and RBACS share the file system.
The results for docker and open virtualization are almost similar, but if you read it, docker averages 4.1%
compared to the local system, while open virtualization is 67%. The results show that they have an
individual file system and the cost of RBACS and kubernetes VPA systems is lower than that of disk

Figure 7: CPU usage

Figure 8: Disc performance

IASC, 2023, vol.35, no.1 1175



quotas and I/O scheduling. Because the hypervisor-based virtualization layer requires drivers to assist disk I/
O, the worst-case results are monitored for all I/O processes in the default Kubernetes.

Network performance was evaluated under various conditions to measure network performance. It
performs simple tests, such as ping pong, by sending step-by-step messages between two processes on a
network. Message sizes are regularly selected and sent to simulate errors and fully test the
communication system. Every Single data point contains several ping-pong assessments to provide an
exact time to calculate the delay. The max network performance in (bytes) is 180 k with minimum of
89.9 k where as the network performance remains in below 106 (bytes) thoright network out.

In Fig. 9 shows a comparison of network bandwidth in each lightweight container virtualization. In
simulations work, it is noticed that the default kubernetes, which cannot modify resources, takes much
longer. On average, the default kubernetes took 21, 134 seconds. By comparison, the kubernetes VPA has
a much better run time, averaging 12, 141 seconds. This reduces execution time by approximately 47%.
kubernetes with VPA worked much better than kubernetes by default, even restarting pods. Restarting the
packages were supposed to be a malicious move, but because VPA can fix the distribution and make
resources available, kubernetes will run more applications, which will reduce runtime.

Kubernetes achieved native-like performance, followed by docker and open virtualization. The ugliest
result was observed in the default VPA because the deterioration in the performance of the VPA network
causes additional complexity in the reception and transmission of packets. We did not configure a real
NIC in the open virtualization system because this would decrease scalability due to the limited number
of NICs that typically exist on the host.

It is noticed that RBACS can move ad-hoc tasks and continue running with the ability to scale them
vertically. The vertical scalability of service operations does not require migration, because services
usually do not need to maintain state after resuming. Also, service tasks often include replication tasks
that assist load balance, so restarting these tasks is not very important. Though state sensitive jobs must
maintain the status of implementation otherwise, they must restart execution from the beginning.

The container continues to move from one machine to another without affecting work cause a ripple effect
in the migration of the container. It occurs when the estimated time interval is short and the assessment is not
accurate. Sometimes, migrating the container is not the finest solution. On behalf of stateless applications, there
is no need to maintain a state. Therefore, restarting the application with appropriate resources is better than
migration. To balance the load, most stateless applications are usually reproduced. If one of the reproduced
applications is resumed, the service will be temporarily degraded until the new replication replaces it.
Reliability with multiple container migrations is more than four times during the simulations, it is observed
that the migration image is sometimes created flawlessly by the existing limitation.

Migration downtime container migration involves multiple time-consuming steps. Inappropriate
estimates can result in longer execution times in applications that generate large amounts of data takes a

Figure 9: Network performance

1176 IASC, 2023, vol.35, no.1



long time because the generated data must be wrapped in a docker image and then copied to the destination
computer, a significant increase in the implementation time of the transfer process by moving it to different
operating systems. The application’s execution time on windows exceeds 300 seconds at 15-second intervals
and is less than half at 60-second intervals. Smaller observation intervals will lead to erroneous estimates,
which leads to longer execution times. Create CRIU performs a control point-this process. Create a
checkpoint for the existing state of docker. Yet, it cannot control the changes made to the container by the
Docker image. Create Docker checkpoint images: CRIU does not create checkpoints for data generated
by the repository, so RBACS must manage them separately.

RBACS generates a new docker image from an operating container and copies all data created from that
container. Its time taking process and the total cost depends on the data generated size. Transfer a checkpoint
and a verified point docker image to the target computer: after Kubernetes reprogram the application on a
node, the selected point, and the verified point docker image must be transferred to the target node. This
can be expensive if the application is restarted on another node. In Fig. 8, this behavior is observed for
Windows and Linux systems, where the transmission time is approximately 15–20 seconds.

Accurate resource assessment is a test for end clients because the prerequisites for the application can
vary from time to time, as they are subject to various dependencies, such as information size, input
parameter selection, optimization labels and application core. The proposed system investigates a better
approach to expanding the container orchestra at kubernetes that dynamically estimates the size of the
resources required by the application, does not migrate with difficulty, speeds up resource allocation, and
proceeds with application implementation.

Since it provides abstraction at the infrastructure layer, kubernetes can run containers almost
everywhere. Operating containers across various networks and services from cloud to virtual computers
to bare metal increases scalability and simplifies sharing and decision-making. Instead of maintaining the
underlying systems, DevOps will concentrate on developing software. It also has built-in redundancy
mechanisms, such as high availability, automatic failover, and the ability to decommission, duplicate, and
spin up new containers and facilities to essentially self-heal.

5 Conclusion

With the development of cloud computing and big data, the conception of virtual machines has been
swapped by lightweight containers. It has a built-in job scheduler and synchronization function. However,
the Kubernetes community has not yet reviewed key factors, such as accurate estimates of performance
and resource disruption. RBACS offers an efficient solution for redistributing the source of applications
executing in the kubernetes cluster. We compared RBACS with the latest kubernetes VPA, designed to
allocate resources accurately. RBACS brings many benefits to kubernetes VPA by using an uninterrupted
method for automatic scaling. This is a more accurate estimation method that can increase memory and
cluster CPU usage by 9% and reduce the running time by 12%.

We determined the cost of container migration to RBACS at different stages of migration, established
experiments to determine the optimal size of the storage monitoring interval for the account, compared the
distribution method of RBACS and kubernetes VPA, and evaluated the value of RAC site measurement. We
can see that the overall cost of runtime for each application varies from 4% to 18%, but these applications
have an almost accurate distribution that allows the cluster to be used by other applications. RBACS also
reduces the number of reboots using kubernetes VPA.

Acknowledgement: Thanks to our families and colleagues, who provided moral support.

Funding Statement: The authors received no specific funding for this study.

IASC, 2023, vol.35, no.1 1177



Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding this study.

References
[1] F. Rossi, V. Cardellini, F. Presti and M. Nardelli, “Geo-distributed efficient deployment of containers with

Kubernetes,” Computer Communications, vol. 159, no. 3, pp. 161–174, 2020.

[2] G. Diouf, H. Elbiaze andW. Jaafar, “On byzantine fault tolerance in multi-master kubernertes clusters,” Arxiv, vol.
109, pp. 407–419, 2019.

[3] A. Nuovo, S. Varrasi, A. Lucas, D. Conti, J. McNamara et al., “Assessment of cognitive skills via human-robot
interaction and cloud computing,” Journal of Bionic Engineering, vol. 16, no. 3, pp. 526–539, 2019.

[4] H. Hamzeh, S. Meacham and K. Khan, “A new approach to calculate resource limits with fairness in kubernetes,”
in Proc. of 1st Int. Conf. Digital Data Processing, London, UK, pp. 51–58, 2019.

[5] M. Aly, F. Khomh and S. Yacout, “Kubernetes or openshift which technology best suits eclipse hono IoT
deployments,” Proc. of IEEE Int. Conf. Server Computing Applications SOCA, Kaohsiung, Taiwan, vol. 19,
pp. 113–120, 2019.

[6] S. Kho and A. Lin, “Auto-scaling a defence application across the cloud using docker and kubernetes,” Proc. of 11th
IEEE/ACM Int. Conf. Utility and Cloud Computing Companion, UCC Companion, Zurich, Switzerland, vol. 2018,
pp. 327–334, 2019.

[7] N. Parekh, S. Kurunji and A. Beck, “Monitoring resources of machine learning engine in microservices
architecture,” in Proc. of IEEE Annual Information Technology Electronics and Mobile Communication Conf.
IEMCON, Burnaby, Canada, vol. 2018, pp. 486–492, 2019.

[8] J. Shah and D. Dubaria, “Building modern clouds: Using docker, kubernetes google cloud platform,” in Proc.
of IEEE 9th Annual Computer Communication Workshop Conf. CCWC, Nevada, USA, vol. 2019, pp. 184–
189, 2019.

[9] P. Townend, “Improving data center efficiency through holistic scheduling in kubernetes,” in Proc. of 13th IEEE
Int. Conf. Server System Engnieering SOSE 2019, USA, vol. 23, pp. 156–166, 2019.

[10] F. Zhang, X. Tang, X. Li, S. Khan and Z. Li, “Quantifying cloud elasticity with container-based autoscaling,”
Future Generation Computer System, vol. 98, no. 1, pp. 672–681, 2019.

[11] A. Nadjaran, J. Son, Q. Chi and R. Buyya, “ElasticSFC: Auto-scaling techniques for elastic service function
chaining in network functions virtualization-based clouds,” Journal of System Software, vol. 152, no. 1, pp.
108–119, 2019.

[12] B. Ahmed, B. Seghir, M. Al-Osta and G. Abdelouahed, “Container based resource management for data
processing on IoT gateways,” Procedia Computer Science, vol. 155, no. 2018, pp. 234–241, 2019.

[13] A. Celesti, D. Mulfari, A. Galletta, M. Fazio, L. Carnevale et al., “A study on container virtualization for guarantee
quality of service in cloud-of-things,” Future Generation Computer System, vol. 99, no. 1, pp. 356–364, 2019.

[14] K. Vhatkar and G. Bhole, “Optimal container resource allocation in cloud architecture: A new hybrid model,”
Journal of King Saud University - Computer Information Science, vol. 19, no. 1, pp. 159–163, 2019.

[15] P. Pathirathna, V. Ayesha, W. Imihira, W. Wasala, D. Edirisinghe et al., “Security testing as a service with docker
containerization,” in Proc. of 17th Int. Conf. of Advance ICT Emerging Regions, Colombo, Sri Lanka, vol. 2018,
pp. 1–18, 2018.

[16] M. Chen, W. Li, Y. Hao, Y. Qian and I. Humar, “Edge cognitive computing based smart healthcare system,”
Future Generation Computer System, vol. 86, no. 1, pp. 403–411, 2018.

[17] M. Chen, Y. Zhang, M. Qiu, N. Guizani and Y. Hao, “SPHA: Smart personal health advisor based on deep
analytics,” IEEE Communication Magazine, vol. 56, no. 3, pp. 164–169, 2018.

[18] Z. Cai and R. Buyya, “Inverse queuing model-based feedback control for elastic container provisioning of web
systems in kubernetes,” IEEE Transactions on Computers, vol. 71, no. 2, pp. 337–348, 2022.

[19] M. Sebrechts, S. Borny, T. Wauters, B. Volckaert and F. De Turck, “Service relationship orchestration: lessons
learned from running large scale smart city platforms on kubernetes,” IEEE Access, vol. 9, no. 1, pp. 133387–
133401, 2021.

1178 IASC, 2023, vol.35, no.1



[20] L. Toka, G. Dobreff, B. Fodor and B. Sonkoly, “Machine learning-based scaling management for kubernetes edge
clusters,” IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[21] M. Sebrechts, S. Borny, T. Wauters, B. Volckaert and F. De Turck, “Service relationship orchestration: Lessons
learned from running large scale smart city platforms on kubernetes,” IEEE Access, vol. 9, pp. 133387–
133401, 2021.

IASC, 2023, vol.35, no.1 1179


	Resource Based Automatic Calibration System (RBACS) Using Kubernetes Framework
	Introduction
	Literature Review
	Proposed Methodology
	Experimental Results
	Conclusion
	flink6
	References


