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Abstract: In this paper, we consider the problem of minimizing the total tardiness
in a deterministic two-machine permutation flowshop scheduling problem subject
to release dates of jobs and known unavailability periods of machines. The theo-
retical and practical importance of minimizing tardiness in flowshop scheduling
environment has motivated us to investigate and solve this interested two-machine
scheduling problem. Methods that solve this important optimality criterion in
flowshop environment are mainly heuristics. In fact, despite the NP-hardness
in the strong sense of the studied problem, to the best of our knowledge there
are no approximate algorithms (constructive heuristics or metaheuristics) or an
algorithm with worst case behavior bounds proposed to solve this problem. Thus,
the design of new promising algorithms is desirable. We develop five metaheur-
istics for the problem under consideration. These metaheuristics are: the Particle
Swarm Optimization (PSO), the Differential Evolution (DE), the Genetic Algo-
rithm (GA), the Ant Colony Optimization (ACO) and the Imperialist Competitive
Algorithm (ICA). All the proposed metaheuristics are population-based
approaches. These metaheuristics have been improved by integrating different
local search procedures in order to provide more satisfactory, especially in term
of quality solutions. Computational experiments carried out on a large set of ran-
domly generated instances provide evidence that the Imperialist Competitive
Algorithm (ICA) records the best performances.
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Nomenclature
Mi machine
pij processing time
rj release date
dj due date
hi non-availability periods
Cj completion time
Tj tardiness
N population size (number of solutions)
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X t
i population member

V t
i velocity of particle

wt inertia weight
σ partial sequence of scheduled jobs
J job set
πk position of job
F mutant factor
β decrement factor
Ut trial population
τ matrix of the pheromone density
δ matrix of the distance
κ pheromone decay coefficient
Nimp number of imperialists
Ncol number of colonies Ψ normalized power
ϕ cost of the imperialist
TCimp total cost of the empire
f due date slack factor
T tardiness factor
R dispersion factor

1 Introduction

Scheduling has been often considered in the literature and has many practical issues in domains like
manufacturing, computer processing, transportation, production planning, etc., In these domains,
scheduling involves a decision-making process. It is concerned with allocating resources (machines) to
tasks (jobs) throughout certain time periods with the goal of optimizing one or more objectives [1]. The
resources can be machinery resources, human resources, CPU, Web server, etc. and referred to as
“machines”. The tasks to be scheduled can be production operations, CPU tasks, timetabling activities,
etc., and referred to as “jobs”. Basic scheduling problems consider that machines are available during the
scheduling, or in practice all machines may be unavailable during several periods of time due to machine
breakdown (known as stochastic) or a preventive maintenance (known as deterministic). In real-world
scheduling problems, the total tardiness criterion is highly crucial, especially in industry, since failure to
meet deadlines can harm company’s reputation and lead to a loss of confidence, increased costs, and
customer loss.

This paper deals with the two-machine flowshop scheduling problem where the machines are subject to
non-availability constraints and the jobs are subject to release dates. More precisely, we are given n jobs
j ¼ 1;…; nð Þ to be scheduled in the same processing sequence on two machines M1 and M2. Each job
must be processed on machine M1 and on machine M2 during p1j and p2j time units, respectively. There
exists a due date dj associated with the completion of each job and each job can not start before a release
date rj. The aim is minimizing the total tardiness of jobs.

Moreover, the following assumptions are considered. Each machine Mi i ¼ 1; 2ð Þ is unavailable during
hi periods of time (hole). The number of holes, their starting times and their finish times are known in
advance. No two holes overlap on the same machine. The two machines can have the same holes. Zero,
one or several holes can occur during the processing of one job. Job processing can be interrupted by a
machine unavailability and resumed after.

Let Cj be the completion time of job j on machine M2, the objective is to find a schedule which

minimizes the total tardiness of the jobs
Pn
j¼1

Tj where Tj ¼ max 0;Cj � dj
� �

. According to the notation
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specified by Pinedo 2012 [1] and Lee [2], this problem is denoted F2; hlojr � a; rjj
P

Tj. It’s an extension of
the F2jjPTj problem and known to be NP -hard in the strong sense [3].

The rest of this paper is organized as follows: A literature review is provided in Section 2. Section
3 discusses the five proposed metaheuristics. In Section 4, the experimental findings and the comparative
analysis are discussed. Finally, conclusions are set out in Section 5.

2 Literature Review

This problem has been studied only once before, despite its theoretical and practical importance. Indeed,
Berrais et al. [4] proposed a mixed-integer formulation as well as some constructive heuristics for the
problem under consideration.

The m-machine flowshop (FjjPTj) has been widely studied in the literature. Kim [5] developed a
branch-and-bound algorithm using some proposed lower bounds and a dominance rule. A tabu search
algorithm with diversification, intensification, and neighborhood restriction were proposed by Armentano
et al. [6] to solve the same problem. Hasija et al. [7] proposed a simulated annealing (SA) algorithm.
Chung et al. [8] proposed an exact method based on a branch-and-bound algorithm. Ghassemi Tari et al.
[9] proposed four heuristics based on cost over time and more after Ghassemi Tari et al. [10] proposed
seven heuristic algorithms, based on shortest processing time (SPT) and earliest due date (EDD) rules and
then modified and combined to develop others algorithms. Chung et al. [11] developed a genetic
algorithm. Liu et al. [12] proposed five dispatching rules, and a constructive heuristic for the m-machine
no-wait flowshop with total tardiness criterion (Fmjno� waitjPTj). Ghassemi Tari et al. [13] proposed
some heuristic procedures for tardiness problem with intermediate due dates. Fernandez-Viagas et al. [14]
as well as Karabulut [15] proposed some iterated-greedy-based algorithms for the FjjPTj.

Sen et al. [16] considered the two-machine problem (F2jjPTj) and developed a branch-and-bound
procedure in many presented cases. Koulamas [17] developed a heuristic denoted by guaranteed accuracy
shifting bottleneck algorithm. Schaller [18] treated the same problem and proposed three dominance
conditions to improve some previously proposed ones, and then proposed a new dominance rule as well
as a branch-and-bound algorithm. Kharbeche et al. [19] proposed an exact method based on mixed-
integer programming models.

Schmidt [20] and Ma et al. [21] proposed good descriptions and details about availability constraints.
Blazewicz et al. [22] proposed three heuristic methods as well as a simulated annealing algorithm for
minimizing the makespan in the resumable case (F2; hijjr � ajCmax). Ben Chihaoui et al. [23] proposed
several lower and upper bounds and used them in a branch-and-bound algorithm to solve the two-
machine no-wait problem subject to release dates under the non-resumable case (F2; h1jjnr � a; rjjCmax)
with only 1 hole considered on each machine. Under the assumption of the non-availability on the first
machine, Lee et al. [24] proposed a branch-and-bound algorithm with some dominance properties and
lower bounds as well as heuristic algorithm. For the parallel machine problem, Lee et al. [25] proposed
some dominance properties and lower bounds as well as a branch-and-bound algorithm for minimizing
the total tardiness where the machines need preventive maintenance.

3 Evolutionary Algorithms

In this section, five evolutionary algorithms are described. These algorithms are combined with several
local search procedures to take the advantages of rapid exploitation and global optimization.
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3.1 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm is an evolutionary meta-heuristic proposed by Kennedy
et al. [26]. PSO is similar to genetic algorithms but it hasn’t neither crossover nor mutation operators. Instead,
it uses randomness of real numbers and the global communication among the swarm particles. Since its
introduction, PSO algorithm has been improved with different techniques and proposed for various
problems [27–30].

A PSO algorithm consists of a population X t
1;X

t
2;…;X t

N

� �
of N particles. Each particle X t

i i ¼ 1;…;Nð Þ
at iteration t of the algorithm is denoted X t

i ¼ xti1; x
t
i2;…:; xtin

� �
corresponding to its position in the swarm.

The quality of position is represented by a fitness (objective function value). At each iteration t, the
velocity V t

i ¼ vti1; v
t
i2;…; vtin

� �
and the position of each particle X t

i ¼ xti1; x
t
i2;…:; xtin

� �
are updated toward

its current best position X �
i ¼ x�i1; x

�
i2;…:; x�in

� �� �
and the global best position G� ¼ g�1; g

�
2;…:; g�n

� �� �
in

the swarm. So, at each step and for each particle, a new velocity value is calculated based on its current
one. This new value is used to compute the next position of the particle in the swarm. This process is
repeated until a termination condition is reached.

The inertia weight wt determines the impact of a particle’s previous velocity to its current one. A large
weight directs the algorithm to a global search while a small weight implies a local search. According to
Bansal et al. [31], good results can be found when inertia weight is from 0:9 down to 0:4. This latter is
updated at each iteration as wt ¼ wt�1b, where b is a decrement factor b ¼ 0:975ð Þ.

The velocity V t
i ¼ vti1; v

t
i2;…; vtin

� �
of each particle is updated according to:

vtij ¼ wt�1vt�1
ij þ c1r1 x�ij � xt�1

ij

� �
þ c2r2 g�j � xt�1

ij

� �
; 8j ¼ 1; . . . ; n (1)

where c1; c2 are the acceleration coefficients and r1; r2 two randomly generated constant drawn on 0::1½ �:
Usually c1 þ c2 � 4: In this algorithm, c1 þ c2 ¼ 4 (empirically chosen values).

The position of each particle X t
i ¼ xti1; x

t
i2; . . . :; x

t
in

� �
is updated as follows:

xtij ¼ xt�1
ij þ vtij;8j ¼ 1; . . . ; n (2)

Since real numbers are used in the particle representation, real numbers are transformed to a feasible
solution (permutation). Two approaches are used in our algorithm:

The Smallest Position Value (SPV): It consists of transforming the real values X t
i ¼ xti1; x

t
i2;…:; xtin

� �
to a

permutation by sorting these values in ascending order. Example: X ¼ x1 ¼ 0:24; x2 ¼½
�0:12; x3 ¼ 1:21; x4 ¼ �1:25� with p ¼ 1; 2; 3; 4ð Þ. After sorting, X ¼ x4 ¼ �1:25; x2 ¼½
�0:12; x1 ¼ 0:24; x3 ¼ 1:21� so p ¼ 4; 2; 1; 3ð Þ.

The Biggest Position Value (BPV) have the same principle as SPV but the positions are sorted in
descending order.

3.1.1 Particles Initialization
The population is initialized by generating randomly the initial position and velocity vectors for each

particle. The initial position values X 0
i ¼ x0i1; x

0
i2;…; x0in

� �
are drawn uniformally on xmin; xmax½ � ¼

�4:0; 4:0½ �. The velocity V 0
i ¼ v0i1; v

0
i2;…; v0in

� �
of each particle X 0

i is generated randomly, namely
vtij ¼ vmin; vmax½ � ¼ �4:0; 4:0½ �.

In order to obtain a heterogeneous population, most of the particles are randomly generated while some
particles are generated using five constructive heuristics Hi i ¼ 1; 2; 3; 4; 5ð Þ developed by Berrais et al. [4].
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3.1.2 Local Search Hybridization
In order to produce high-quality solutions, a local search (LS) procedure is integrated to the PSO

algorithm. The proposed local search is based on the Nawaz et al. (NEH) algorithm [32].

Let r be a partial sequence of scheduled jobs and �J be the set of unscheduled jobs, this procedure can be
described as follows:

3.1.3 Pseudo-code of the proposed PSO algorithm
An outline of the proposed PSO is the following:

Algorithm 1. NEH_Based_LS

Step 1: Let� ¼ p 1ð Þ;p 2ð Þ; . . . ; p nð Þð Þ be a sequence. Select among the partial sequences r ¼ p 1ð Þ;p 2ð Þ
and r ¼ p 2ð Þ;p 1ð Þ the one having the minimum partial total tardiness. Set �J ¼ �Jn p 1ð Þ; p 2ð Þf g and k ¼ 2

Step 2: Insert the job p kð Þ to the k þ 1 possible position of r. Select the sequence r with the minimum
partial total tardiness among k þ 1 sequences. Set �J ¼ �Jn p kð Þf g
Step 3: Repeat Step 2 until �J ¼ [

Algorithm 2. PSO

Step 1: Initialize the population by generating randomly N N ¼ 20ð Þ particles. Set t ¼ 0:

For each X 0
i i ¼ 1; . . . ;Nð Þ Do

. Set the initial position vector X 0
i ¼ x0i1; . . . ; x

0
in

� �
. Set the initial velocity vector V 0

i ¼ v0i1; . . . ; v
0
in

� �
. Set the current best X �

0 and the global best G�

End For

. Apply NEH_Based_LS to G�

. t ¼ t þ 1

Step 2:

Repeat

For each . . . i ¼ 1;…;Nð Þ Do
. Update inertia weight: wt ¼ wt�1b

. Update velocity vtij ¼ wt�1vt�1
ij þ c1r1 x�ij � xt�1

ij

� �
þ c2r2 g�j � xt�1

ij

� �
. Update position xtij ¼ xt�1

ij þ vtij
. Apply SPV rule to generate the permutation pti corresponding to X t

i

. Update the current best X �
i if TT pti

� �
< TT pt�1

i

� �� �
. Apply NEH_Based_LS to p�i associated to the current best X �

i

End For

. Update the global best G�

. Apply NEH_Based_LS to p� associated to the global best G�

. Update the iteration counter t ¼ t þ 1

Until (the maximum number of iterations is reached)
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3.2 Differential Evolution Algorithm

Differential Evolution (DE) is an evolutionary algorithm firstly proposed by Storn et al. [33] for
minimizing non differentiable continuous space functions. Like PSO, a DE algorithm is a population-
based search meta-heuristic. It is one of the most powerful stochastic algorithms and it has been widely
and successfully applied in many areas. DE algorithms were firstly designed to work with continuous
variables. Then different strategies have been proposed to adapt the DE algorithm to optimize integer
variables. Lampinen et al. [34] used a simple function to convert real numbers to integers. Onwubolu
et al. [35] developed two strategies known as Forward Transformation (FT) and Backward
Transformation (BT). Tasgetiren et al. [36] used the Smallest Position Value (SPV) rule inspired from
random key representation encoding scheme of Beans [37].

In DE algorithm the first population is called target population. It consists of N randomly chosen
chromosomes (solutions). Each solution Xi ¼ xi1; xi2;…; xin½ � is represented by a random floating-point
numbers vector. As a mutation operator, two solutions are randomly chosen and the weighted difference
between them is added to a third solution to generate a new population (called mutant population). After
that, the crossover operator was applied. In this step, the mutated solutions obtained in the previous
process are combined with the target population to generate a new one (known as trial population).
Finally, the fitness value of the target and trial populations were compared using a selection operator to
determine who can survive for the next generation. An outline of our proposed DE algorithm is the following:

3.2.1 Target Population
Our DE starts with the initialization of the target population Pt ¼ X t

1;X
t
2; ::;X

t
N

� �
of N members. Each

member X t
i ¼ xti1; x

t
i2;…; xtin

� �
at the iteration t is a vector of continuous random number xtij, where n is the

number of jobs and x0ij ¼
xmin þ xmax � xminð Þ � r

dj
with r 2 0; 1½ �; xmin ¼ �1 and xmax ¼ 1:

To find the corresponding permutation, H1;H2;H3;H4 and H5 are applied in order to generate the five
first solutions and the best solution between the Smallest Position Value (SPV) and Biggest Position Value
(BPV) for the remaining solutions. Then each member X t

i in the target population is evaluated by computing
the total tardiness.

Algorithm 3. DE

Step 0:

. Initialize target population

. Evaluate target population

. Apply NEH_Based_LS to the best solution

Step 1:

Repeat

. Generate mutant population

. Generate trial population

. Selection

. Apply local search for each selected member of the trial population

. t ¼ t þ 1

Until (Termination condition)
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3.2.2 Mutant Population Generation
Aweighted difference between two randomly chosen members from the target population X t

a and X t
b is

added to a third one X t
c a 6¼ b 6¼ c 2 1;N½ �ð Þ to obtain the mutant population V t ¼ V t

1;V
t
2;…;V t

N

� �
where

V t
i ¼ vti1; v

t
i2;…; vtin

� �
denotes a mutant individual. vtij is computed as in Onwubolu et al. [35]. Indeed,

they have proved that is the best strategy for the total tardiness criterion. So, in our DE procedure
V t
i ¼ X t

a þ F � X t
b � X t

c

� �
as a mutant factor that controls the differential variation amplification

X t
b � X t

c

� �
. In our implementation F ¼ 0:5:

3.2.3 Trial Population Generation
Let Ut denotes the trial population with Ut ¼ Ut

1;U
t
2;…;Ut

N

� �
: The Ut

i is the member of the
trial population with Ut

i ¼ uti1; u
t
i1;…; utin

� �
: To generate this population, a crossover operator is applied

as follows:

Let k 2 1; n½ � be a random integer number, r 2 0; 1½ � be a uniform random number, C 2 0; 1½ � be a user-
defined crossover constant, each element of Ut

i ¼ uti1; u
t
i1;…; utin

� �
is generated according the following

equation:

utij ¼
utij if r � C or j ¼ k

xt�1
i otherwise

�
(3)

The SPV rule is used to obtain the permutation and then evaluate each member Ut
i in the trial population

by computing its total tardiness. In our implementation, k is fixed at 0:05:

3.2.4 Selection
To make selection and determine the members who will survive for the next generation, the fitness of the

member X t
i is compared with the fitness of the member Ut

i :

X t
i ¼ Ut

i if f p Ut
i

� �� �
< f pti

� �
X t�1
i otherwise

�
(4)

3.2.5 Local Search Hybridization
A hybridization of our DE algorithm is proposed by integrating some local search procedures, in order to

enhance its performance. Ten local search schemes are proposed and, in each iteration, only one is used
according to a probability P. Given a permutation � ¼ p 1ð Þ;p 2ð Þ; . . . ;p nð Þð Þ, these procedures are the
following:

� Random_Exchange_LS: Generate two random positions i; j 2 1; n½ � with i 6¼ j and then exchange
p ið Þ and p jð Þ:

� Exchange_All_LS: Generate a random position i 2 1; n½ � and exchange p ið Þ with all k positions in
the sequence � with k 2 1; n½ �; and k 6¼ i.

� Bloc_Exchange_LS: Decompose the sequence� in n div 5 blocs and exchange each job p ið Þ with its
symmetric position s in the bloc sequence.

� Symmetric_Exchange_LS: Exchange each job p ið Þ with its symmetric position n� iþ 1ð Þ in the
job permutation �.

� Intensive_Exchange_LS: Generate two random positions i and j with i < jð Þ and exchange each job
p kð Þ in the sub-sequence p ið Þ; . . . ; p jð Þð Þ with all the remaining jobs.

� Insertion_LS: Remove a randomly chosen job p ið Þ and insert it at a new position j i 6¼ jð Þ.
� Circular_Insertion_LS: Place the job in the first position p 1ð Þ at the last position n and then shift the

remaining jobs. This step is repeated n� 1ð Þ times.
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� Adjacent_Swap_LS: Starts from a randomly chosen position k and exchange p kð Þ with the job
p k þ 1ð Þ and then increment k by 2 k ¼ k þ 2ð Þ. These steps are repeated until k ¼ n� 1.

� Bloc_Swap_LS: Decomposing the sequence in n div 5 blocs and then exchange two adjacent jobs in
the same bloc p kð Þ with the job p k þ 1ð Þ.

� NEH_Based_LS.

3.3 Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) is an evolutionary algorithm based on the behavior of ants. In order to
mark some shortest path between ant nest and food that should be followed by other colony ants, these ants
deposit a chemical substance called pheromone.

ACO algorithm has been proposed in the early nineties by Dorigo et al. [38]. This meta-heuristic belongs
to ant colony algorithm family introduced by Dorigo [39] to solve the Travel Salesman Problem. Several
variants of ACO algorithms have since been proposed to solve various optimization problems.

The outline of our ACO algorithm is as follows:

All the steps of our ACO are described as follows.

3.3.1 Pheromone Trails Initialization
The ACO algorithm starts by initializing the pheromone trails. Let N be the number of ants (population

size), so initially N ants are randomly generated. Let X t
i denotes the ith member in the population at the

generation t with X t
i ¼ xti1; x

t
i2;…; xtin

� �
, n is the number of jobs and xtij is a continuous random number

x0ij ¼ xmin þ xmax � xminð Þ � r with r 2 0; 1½ �; xmin ¼ �1 and xmax ¼ 1: It is worth noting that for finding
permutation the same method as our DE is used.

After that, three matrices are initialized:

� The s matrix of the pheromone density for each ant, where sij is the density of pheromone between

two jobs i and j. All sij ¼ s0 where s0 is the initial rate of pheromone, and s0 ¼ 1

1� r0ð Þ � Tbest where
r0 is a random chosen constant and Tbest is the best fitness value found.

Algorithm 4. ACO

Step 0: Initialize pheromone trails, t ¼ 0

Step 1:

Repeat

. Apply Exchange_All_LS for all ants

. Apply ants state transition rules

. Apply local updating rule

. Apply Exchange_All_LS for all ants

. Apply global updating rule

. Apply Insertion_LS for the best ants

. t ¼ t þ 1

Until (the maximum number of iterations is reached)
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� The d matrix of the distance for each ant, where dij is the distance between two jobs i and j, and
dij ¼ p1j þ p2j:

� The gmatrix of heuristic value for each ant, where gij ¼
1

dij
is the inverse of the distance between two

jobs i and j.

3.3.2 The State Transition Rule
To move from job i to job j, the ants use a decision rule known as State Transition Rule (STR) or Pseudo-

random Proportional Rule (PPR). The probability Pt
ij for an ant to move from job i to job j depends on a

random variable q uniformly distributed over 0; 1½ �, and a parameter q0:

j ¼ argmax j 2 pti
� �

sij
� �a

gij
� �bn o

if q � q0
Pt
ij otherwise

(
with Pt

ij ¼
sij
� �a

gij
� �b

P
j2pti sij

� �a
gij
� �b if j 2 pti

0 otherwise

8><
>: (5)

a and b are parameters controlling the relative importance of the pheromone vs. gij ¼ 1=dij.

3.3.3 The Local Updating Rule
Local updating rule favors the exploration of other solutions to avoid premature convergence. This rule

is performed after each step by all the ants as follows:

sij ¼ 1� jð Þ � sij þ j � s0 (6)

where j 2 0; 1½ � and s0 are the decay coefficient and the initial value of the pheromone, respectively. Then for
each ant Intensive_Exchange_LS is applied as local search procedure.

3.3.4 The Global Updating Rule
At the end of each tour, a global updating rule is applied only by the ant finding the shortest way as

follows:

sij ¼ 1� qð Þsij þ q � Dsij (7)

where Dsij ¼ 1

Tbest
if i; jð Þ 2 p� with p� is the global best sequence, Tbest is the best fitness found, and

q 2 0; 1½ � is a pheromone evaporating parameter.

3.4 Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm introduced by Atashpaz-Gargari
et al. [40]. It’s a population-based algorithm inspired by the imperialistic competition. The imperialism
consists of expanding the powerful of a country (known as imperialist) by dominating others countries
(called colonies) to take control of their resources. So, several imperialists compete for taking possession
of colonies of each other. Each individual in the population is called country and can be imperialist or
colony. All these colonies are divided among the imperialists according to their power to form empires.
Then each colony start moving toward their relevant imperialist country. The total power of an empire
depends mainly on the power of the imperialist country and has a negligible effect by the power of the
colonies. After that the imperialistic competition between these empires starts and some empires increase
their power. However, the powerless ones can’t increase their power and will be eliminated from the
competition.
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Our proposed ICA algorithm follows these steps:

3.4.1 Initial Empires Generation
The ICA begins by generating the initial empires. Let N be the number of empires (the population size),

and Nimp be the number of imperialists and Ncol be the number of colonies with N ¼ Nimp þ Ncol. So initially,
N countries are randomly generated. Let C be a country is the set of N members with Ci ¼ X i

1;X
i
2; ::;X

i
N

� �
:

Let X i
g denotes the i

th member in the population at the generation t with X t
i ¼ xti1; x

t
i2;…; xtin

h i
, n is the number

of jobs and xtij is a continuous random number where x0ij ¼ xmin þ xmax � xminð Þ � r with r 2 0; 1½ �; xmin ¼ �1

and xmax ¼ 1: To find permutation the same approach as in our DE is used.

Then the Nimp most powerful countries are selected as imperialists and the remaining Ncol countries as
colonies. To generate the initial empires, the colonies among imperialists are divided based on their power.
So, the initial number of colonies of each empire must be proportionate to its power. Then the normalized
cost �imp of an imperialist imp is defined by �imp ¼ ’imp �max ’if g where ’imp is the cost of the
imperialist imp and �imp its normalized cost, respectively.

Therefore, the normalized power� of each imperialist presents the approximate number of colonies that
should be possessed by that imperialist and is defined by:

�imp ¼ �impPNimp

i¼1 ’i

					
					 (8)

Also, the initial number of colonies of an empire imp is: Nimp ¼ round �imp � Ncol


 �
. So, for each empire

Nimp colonies are randomly selected.

3.4.2 Local Search Procedures
For each imperialist, one of the three previously defined local search procedures are applied randomly:

Insertion_Suppression_LS, Intensive_LS and NEH_Based_LS.

3.4.3 Assimilation
The aim of this step is to move the colonies of an empire toward the imperialist. A procedure of

perturbation (NEH_Based_L_S) is applied to the job permutation of the colony. If the colony’s cost is less
than the imperialist’s cost then we exchange the position of this colony with the relative imperialist.

Algorithm 5. ICA

Step 0. Generate the initial empires, t ¼ 0

Step 1. Apply local search for all imperialists

Step 2. Assimilation

Step 3. Compute the total cost of each empire

Step 4. Competition

Step 5. The powerless empires elimination

Step 6. Apply local search for all imperialists

Step 7. t ¼ t þ 1 and Goto Step 1 Until all colonies are under the control of the most powerful empire, or
the maximum number of iterations is reached.
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3.4.4 Total Cost Computing
After that the total cost of an empire is computed as follows. Let TCimp be the total cost of the impth

empire and n be a positive number n 2 0; 1½ �, the total cost is computed as follows:

TCimp ¼ Cost imperialistimp
� �þ n � mean Cost Coloniesimp

� �� �
(9)

So, the value of the total cost depends on the power of imperialist, and the power of the colony can
weakly affect this value if n have a large amount and can’t affect this value if n have a small amount.

3.4.5 Competition
In this step, each empire tries to possess and control the colonies of other empires. As a result of this

competition, the colonies of powerless empires will be divided among other imperialists and will not
necessarily be possessed by the most powerful empires. To model this competition, first each empire’s
ownership likelihood is calculated according to its total cost.

Let NTCimp be the normalized total cost of the impth empire, TCimp its total cost, and Pimp be the
possession probability of each empire, then NTCimp ¼ TCimp �max TCif g; i ¼ 1; 2;…;Nimp


 �
and

Pimp ¼ NTCimpPNimp

i¼1 NTCi

					
					.

Then the vector P ¼ P1;P2;…;PNimp

� �
, the vector R ¼ r1; r2;…; rNimp

� �
with ri 2 0; 1½ �, and the vector

D ¼ P � R P1 � r1;P2 � r2;…;PNimp � rNimp

� �
are computed. So, the empire with the maximum value of Di

will take the colonies. If after some iterations, the powerless empires lose all their colonies so they will be
eliminated.

3.5 Genetic Algorithm

Genetic Algorithm (GA) is an evolutionary algorithm that have been successfully applied to different
complex combinatorial optimization problems such as scheduling problems, knapsack problems, traveling
salesman problem, etc. The GAs were introduced by Holland [41] and are inspired from Darwin’s theory of
evolution. So, GA approach is based on natural evolution techniques, such as selection, crossover and mutation.

GA is a population-based algorithm, so each member in the population is called chromosome or
solution. Starting from an initial population, the goal is to create new populations with better solutions
after some iterations (called generation). In each generation, the fitness of every chromosome in the
population is computed by an evaluation function to select the most fitted individuals from the current
population. Then some genetic operators such as crossover and mutation are applied to these selected
chromosomes. This process is repeated until the satisfaction of a termination condition.

To solve our problem, a GA hybridized with local search procedures (known as genetic local search
GLS) is used. This algorithm has been developed initially for the two-machine flowshop problem where
the objective is to minimize the total completion time [42].

We recall here the pseudo-code of the GLS algorithm.

Algorithm 6. GLS

Step 0. Parameters initialization

Step 1. Population generation/initialization

Step 2. Selection

Step 3. Crossover

Step 4. Mutation

Step 5. Local search

Step 6. Goto Step 2 Until the maximum number of iterations is reached.
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We The above procedure is adapted as follows. The initial population consists of M solutions. M � 1
solutions are randomly generated while a single one is generated using H5 developed by Berrais et al. [4].
M is referred to as the population size. The fitness function consists on computing the total tardiness of a
given solution.

4 Experimental Results

In order to evaluate the empirical performance of the proposed algorithms, a large set of computational
tests have been undertaken. All these procedures were implemented in C and run on an Intel Core i5 PC
(3.60 GHz) with 8 GB RAM.

4.1 Test Problems

Our proposed algorithms were tested on 12 different problem sizes n 2 f10; 20; 30; 40; 50; 60; 70; 80;
90; 100; 200; 300g. The processing times and the release dates are uniformly distributed on 1; 100½ � and
0;

Pn

j¼1
p1j

2

� 
, respectively. The due dates dj are generated using the scheme of [43] as follows:

dj ¼ rj þ bf � p1jþp2jð Þ
2 c where the due date slack factor f where generated from a discrete uniform

distribution on 1� T � R
2 ; 1� T þ R

2

� �
, and T and R are the tardiness factors of jobs T 2 1:5; 2:5; 3:5f g,

and the dispersion factor of due dates R 2 0:2; 0:4; 0:6f g, respectively. By varying T and R, 9 problem
classes are obtained. For each class, 30 instances were randomly generated for a total of 3240 test
problems. Moreover, to consider the non-availability of machines, 5 holes are randomly generated on
each machine.

After an experimental study of the different parameters of our proposed algorithms, the following
settings have been used to achieve high-quality solutions:

- PSO: N ¼ 20; c1 ¼ 2; c2 ¼ 2; vmin ¼ �4; vmax ¼ 4; xmin ¼ �4; xmax ¼ 4;b ¼ 0:975;w ¼ 0:9
- DE: N ¼ 20; xmin ¼ �1; xmax ¼ 1;F ¼ 0:5; k ¼ 0:05
- ACO: N ¼ 20; xmin ¼ �1; xmax ¼ 1; a ¼ 0:1;b ¼ 0:1; ’ ¼ 0:1; q ¼ 0:1
- GLS: The same parameters as in [42]
- ICA: N ¼ 150;Nimp ¼ 10;Ncol ¼ 140; n ¼ 0:05

For all algorithms, the maximum number of iterations is fixed experimentally according to the size of the
problem (n� 50).

4.2 Performance of the Proposed Algorithms

To compare our algorithms’ performance, the average relative percentage deviation (ARPD) from the
best-known solution is used. This percentage deviation is defined as ARPD ¼ UB�UB�

UB�
� �� 100, where UB

is the solution provided by PSO, DE, ACO, GLS or ICA and UB� ¼ min UBið Þ; i ¼ 1;…; 5ð Þ.
Tabs. 1 and 2 summarize the results of the computational experiments.

The analysis with respect to the problem size in Tab. 1 clearly reveals that the best results among all
tested algorithms are found by the proposed ICA algorithm. In fact, in comparison to the remaining meta-
heuristics this algorithm provides lower values of ARPD, for all problem sizes. Among the 3240 tested
problems, ICA gives the best solutions for 1440 instances. It can solve very large instances with up to
300 jobs within a moderate CPU time. The average time in all instances of 300 jobs was 1628:9 s. It can
see that the average CPU time grew significantly as the number of jobs increased, especially for the ICA
and GLS algorithms. This is due to the fact that the number of jobs directly increases the number of
iterations of the algorithms and thereby increasing the computation time.
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Regarding the computational results of the GLS algorithm, we observe that it gives very good results for
large size problems (n > 90). In fact, the performance of GLS algorithm draws near significantly from the
ICA algorithm for n > 200. Unfortunately, it shows the worst results for small size problems (n � 30).
For n ¼ 10, all the proposed algorithms, except the GLS, present the best performances in term of ARPD
and the DE algorithm shows the best CPU time (0:005 s). Furthermore, the DE algorithm shows better
results than GLS for small and medium size instances (n � 90). Also, we observe that in term of ARPD
no significant differences between the PSO and ACO algorithms were found, particularly for large size
instances (n 	 200).

Table 1: Performance of the proposed evolutionary algorithms

n PSO GLS DE ICA ACO

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time

10 0.000 0.0 0.197 0.1 0.000 0.0 0.000 0.2 0.002 0.0

20 0.025 0.0 0.126 0.3 0.002 0.0 0.000 1.0 0.034 0.1

30 0.060 0.0 0.113 1.0 0.013 0.0 0.000 2.9 0.068 0.4

40 0.070 0.1 0.057 2.4 0.020 0.0 0.000 6.3 0.070 0.7

50 0.076 0.1 0.053 5.3 0.024 0.1 0.000 11.4 0.071 1.5

60 0.091 0.2 0.059 10.6 0.037 0.1 0.000 20.9 0.080 2.6

70 0.081 0.3 0.047 20.1 0.033 0.1 0.000 35.3 0.067 4.2

80 0.073 0.3 0.034 31.5 0.033 0.2 0.000 48.4 0.068 6.2

90 0.068 0.5 0.037 402.9 0.031 0.2 0.000 79.3 0.060 8.6

100 0.073 0.7 0.025 72.4 0.037 0.3 0.000 93.5 0.067 11.3

200 0.046 5.2 0.014 1117.2 0.025 1.5 0.001 542.0 0.045 86.4

300 0.042 17.0 0.011 6733.4 0.028 4.2 0.004 1628.0 0.042 302.2

Average 0.059 2.0 0.064 699.8 0.024 0.6 0.000 205.8 0.056 35.4

Table 2: Performance of the proposed algorithms with respect to the due dates’ factors

Class PSO GLS DE ICA ACO

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time

T = 1.5, R = 0.2 0.050 2.5 0.058 545.2 0.021 0.5 0.002 227.1 0.047 36.2

T = 1.5, R = 0.4 0.049 1.8 0.057 688.5 0.021 0.5 0.000 214.3 0.046 34.1

T = 1.5, R = 0.6 0.049 1.8 0.057 681.6 0.020 0.5 0.000 189.8 0.046 34.0

T = 2.5, R = 0.2 0.058 2.5 0.063 1213.2 0.024 0.5 0.000 200.3 0.054 34.0

T = 2.5, R = 0.4 0.057 1.8 0.063 554.7 0.023 0.5 0.000 205.1 0.054 34.0

T = 2.5, R = 0.6 0.057 1.8 0.063 847.4 0.022 0.5 0.000 208.9 0.054 34.0

T = 3.5, R = 0.2 0.071 2.0 0.073 681.1 0.027 0.6 0.000 197.1 0.068 36.1

T = 3.5, R = 0.4 0.070 2.0 0.074 528.1 0.027 0.6 0.000 201.1 0.068 36.9

T = 3.5, R = 0.6 0.069 2.0 0.074 558.3 0.026 0.6 0.001 208.1 0.067 39.0

Average 0.059 2.0 0.064 699.8 0.024 0.6 0.000 205.8 0.056 35.4
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Tab. 2 shows the ARPD of the proposed algorithms with respect to the combinations for the values of T
and R. Our computational experience shows that the performance of the algorithms was affected considerably
by the tardiness factor T. In fact, we observe that the ARPD increases when the tardiness factor T increases.
The proposed algorithms were able to provide a lower ARPD for the instances which present lower tardiness
factor (T ¼ 1:5).

Regarding the due date range factor R, the results reveals that the ARPD of the proposed algorithms was
slightly affected. Also, we observe the same remark for the CPU time except for the GLS algorithm. In fact,
for this meta-heuristic the computation time increases considerably in particular for the (T ¼ 2:5;R ¼ 0:2)
and (T ¼ 2:5;R ¼ 0:6) problem classes.

5 Conclusions

In this paper, we have proposed five evolutionary algorithms developed to minimize the total tardiness in
a two-machine flowshop scheduling problem where the machines and jobs are subject to non-availability
constraints and unequal release dates, respectively. To avoid the rapid convergence of these algorithms
and in order to derive high-quality solutions, we proposed a hybridization of our algorithms with several
local search procedures. Computational tests provide strong evidence, on the tested instances, that the
Imperialist Competitive Algorithm (ICA) outperforms all the proposed population-based approaches.
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