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Abstract: Smoking is a major cause of cancer, heart disease and other afflictions
that lead to early mortality. An effective smoking classification mechanism that pro-
vides insights into individual smoking habits would assist in implementing addic-
tion treatment initiatives. Smoking activities often accompany other activities
such as drinking or eating. Consequently, smoking activity recognition can be a
challenging topic in human activity recognition (HAR). A deep learning framework
for smoking activity recognition (SAR) employing smartwatch sensors was proposed
together with a deep residual network combined with squeeze-and-excitation modules
(ResNetSE) to increase the effectiveness of the SAR framework. The proposed model
was tested against basic convolutional neural networks (CNNs) and recurrent neural
networks (LSTM, BiLSTM, GRU and BiGRU) to recognize smoking and other
similar activities such as drinking, eating and walking using the UT-Smoke dataset.
Three different scenarios were investigated for their recognition performances using
standard HAR metrics (accuracy, F1-score and the area under the ROC curve). Our
proposed ResNetSE outperformed the other basic deep learning networks, with
maximum accuracy of 98.63%.

Keywords: Smoking activity recognition; deep residual network; smartwatch
sensors; deep learning

1 Introduction

Smoking is now globally recognized as one of the most harmful human habits, impacting not only the
well-being of smokers but also those around them. Smoking also increases the danger of fires due to the
carelessness with which it is practiced, and also leads to issues with health care and finances. People who
smoke have nicotine cravings, making it tough to quit. Systems that can identify when a person is about

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.028290

Article

echT PressScience

mailto:anuchit.j@sci.kmutnb.ac.th
http://dx.doi.org/10.32604/iasc.2023.028290
http://dx.doi.org/10.32604/iasc.2023.028290


to relapse anywhere and at any time are required to help kick the habit. The process of mining statistical data
such as smoking recurrence can be used to better comprehend smoking patterns [1] and help people to
enhance their standard of health and boost their wellness. Inertial sensors are now utilized to track
physical activity utilizing wearable intelligent products such as smartwatches. Smoking Activity
Recognition (SAR) is also commonly used as a research tracking activity [2].

Many motion sensors can be included in commercialized wearable or portable devices such as
accelerometers, gyroscopes and magnetometers found in smartphones and other wearable devices. Motion
sensor data from wristwatches can be analyzed to better understand smoking-related hand movements and
identify higher-level activities on an Android-based system [3]. Smoking can be monitored by linking a
wristwatch with an Android smartphone and running detection algorithms [4]. Numerous researchers
have utilized smartphone sensor information to detect smoking occurrences [4,5]. However, the
effectiveness of online smoking prediction using a mobile phone has not been examined in detail because
movement domains from a wristwatch or smartphone are usually employed as standalones.

Traditional identification classifier approaches such as Naive Bayes [6], Support Vector Machine [7] and
Random Forest [8] have been extensively used as learning approaches in earlier SAR studies. The Random
Forest algorithm has proven advantages and has been effectively employed in various research studies of
smoking event detection and activity identification. Deep Learning (DL) approaches such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have also gained popularity [9].

Here, a DL-based framework for recognizing smoking activities was proposed, with CNNs and RNNs
examined as five baseline DL models (CNN, LSTM, BiLSTM, GRU and BiGRU). To increase recognition
performance, a deep residual network was proposed to identify complicated hand motions utilizing inertial
sensors. The UT-Smoke dataset was used to investigate the recognition efficiency of basic deep learning
models and our proposed model.

The remainder of this article is organized as follows. Section 2 introduces current research relevant to the
topic under consideration. Details of the proposed deep learning model (ResNetSE) are presented in Section
3. Section 4 describes experiments conducted to compare accuracy and efficiency, while Section 5 evaluates
the experimental results. Finally, Section 6 outlines some of the major anticipated future challenges.

2 Related Studies

Recently, increased research has focused on recognizing smoking activities. Video-based and sensor-
based approaches are the two most common methods for classifying smoke occurrences and
distinguishing human activities [1,3,7,10,11]. The former examines images or videos from a single
camera that contains human motion, whereas the latter examines signal data from sensors like
gyroscopes, accelerometers, WiFis and sound sensors [12,13]. This article focuses on sensor-based SAR
and presents the latest research results and deep learning approaches.

2.1 Sensor-based Smoking Activity Recognition

The goal of smoking activity recognition (SAR) is to understand human behavior so that computer
systems can classify smoking activity using available data. Hand movements for smoking, drinking and
eating can be specified as a series of complex hand activities that the user performs over time in each
protocol. Copious research has been conducted on SAR over the past decade.

A feasibility study utilizing a wrist-worn accelerometer was one of the earliest efforts on smoking
detection [14]. The researchers achieved a user-specific recall rate of 70% and accuracy of 51%. Despite
the limited identification performance, they found some useful results using wrist-worn sensors to
discriminate smoking activity, focusing exclusively on smoking whilst standing. The researchers in [15]
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employed two Support Vector Machine (SVM) classifiers; one for the initial detection of high-level activity
in a window of sensor data and the other to detect micro activity within the same window. They claimed a
very high smoking detection rate but this study only examined smoking while standing and the quantity of
training and testing data was not reported. Furthermore, this study collected data from sensors at the foot
position in addition to the wrist as a very conspicuous position. These two investigations did not take into
account the intervening gestures of smoking while walking and while conversing in a group. They also
did not include temporal information contained in a smoking activity that could be beneficial. In [16], the
researchers employed accelerometers across both wrists to detect smoking. Six participants smoked and
engaged in other activities over 11.8 hours (comprising 34 smoking episodes or 481 puffs). Several
different types of smoking were considered as standing, sitting, walking, eating, talking on the phone and
talking in a group. A two-layer technique was used to classify smoking habits.

With advances in wearable sensor technology and ubiquitous computing, sensor-based smart gadgets
such as wristbands and smartwatches are becoming more prevalent. Several studies employed wristbands
or smartwatches because of their wearability and simplicity to track smoking and other related activities
such as eating and drinking. Maramis et al. [16] and Bhandari et al. [17] utilized a single gyroscope or
accelerometer on the wrist to distinguish cigarette-to-mouth movements and smoking activities, using
traditional approaches to find anomalies on remote servers. Shoaib et al. [3] used an Android wristwatch
to collect data from multiple sensors and perform activity detection processes in real-time, while Skinner
et al. [18] employed two decision tree classifiers to recognize typical hand movements of cigarette
smoking using accelerometer and gyroscope motion data from an Android smartwatch. The two smoke
event detection systems discussed above were powered by low-cost smartwatches that required more
computing power.

2.2 Deep Learning Approaches in HAR

Machine learning techniques used in the past required a thorough understanding of the domain to
implement, let alone develop. The main problem with using manually developed features is that it is
difficult to find an exact characteristic or set of characteristics that accurately distinguishes all activities.

Classification methods traditionally used in SAR research include the Naïve Bayes classifier [6], Support
Vector Machine classifier [19] and Random Forest classifier [8]. Among these, the Random Forest classifier
has been effectively applied to smoke event detection and activity recognition in several studies, while deep
learning technologies such as convolutional neural networks and recurrent neural networks have also
achieved higher performances and significant results [9].

Deep learning algorithms have recently acquired prominence in a variety of fields [20,21].
Convolutional Neural Networks are deep neural networks that operate as feature extractors by
automatically learning numerous layers of characteristics. However, CNNs are not able to learn
subsequent correlations, while Long Short-Term Memory (LSTM) [22,23] recurrent neural networks are
ideally adapted to modeling temporal dynamics. For time series problems such as speech recognition and
human activity recognition, combining CNNs with LSTMs provides a state-of-the-art approach [24,25].

Deep learning networks spontaneously combine low, medium and high level features [25] and classifiers
in a multi-layer end-to-end method, with the number of layers (depth) stacked enhancing feature levels. The
latest findings [26] show that the depth of the network is crucial. He et al. [27] added residual connectivity,
which is necessary for training extremely deep convolutional models. Residual connectivity allows the
proposed method to grow while maintaining performance and avoiding overfitting, which is a common
problem with existing deep neural networks. In the field of human activity recognition, Ronald et al. [28]
employed the iSPLInception model to increase the performance of HAR by using the residual connection
and the inception module.
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Squeeze-and-Excitation block [29] is a channel attention method that can be applied to existent CNNs
to increase their performance. The SE block has been shown to be effective in congestive heart failure
detection [30] and object detection tasks [31]. Motivated by [27,29], the ResNetSE model was introduced
here for smoking activity classification and compared with ResNet baseline deep learning models in the
same scenario.

3 Sensor-based SAR Framework

The sensor-based SAR framework used in this study consisted of four main processes as data
acquisition, data pre-processing, data generation, model training and evaluation, as shown in Fig. 1.

3.1 UT-Smoke Dataset

In this study, the UT-Smoke dataset was used as a previously published public smoking activity dataset
[3,32]. Over the course of three months, 11 volunteers (2 females and 9 males ranging in age from 20 to 45)
provided data via a smartwatch application. Both a smartwatch and a smartphone were used to collect
timestamps, triaxial accelerometer, gyroscope and magnetometer measurements. All data were sampled at
50 Hz. The activities performed included smoking while standing (SmokeSD), smoking while sitting
(SmokeST), smoking while walking (SmokeW), smoking in a group conversation (SmokeG), drinking
while standing (DrinkSD), drinking while sitting (DrinkST), eating (Eat), standing (Stand), sitting (Sit)
and walking (Walk). This dataset focused on detecting different types of smoking as well as comparable
actions that could be mistaken for smoking. With the exception of SmokeG and SmokeW, which were
completed by 8 and 3 participants, respectively all exercises were completed by all participants. Fig. 2
shows a variety of smartwatch sensor data samples.

3.2 Data Pre-processing

Raw sensor data generally cannot be used to directly detect smoke events. Therefore, data pre-
processing is essential to prepare the data for the next training task. In sensor-based HAR, inertial signals
from various body components, such as accelerometer or gyroscope data, are preserved at a lower
frequency. However, during excitation, generation and transmission, the signals can be confronted with
numerous types of high-frequency noise. The Butterworth filter is one of the most commonly used low-
pass filter because it has an apartment amplitude response and preserves phase information without

Figure 1: SAR framework based on smartwatch sensors
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distortion. To achieve this purpose, a 6th order Butterworth filter with a 12 Hz cutoff frequency was used to
confine the signal bandwidth to frequencies common in human motion.

Furthermore, different types of sensors have diverse value ranges. As a result, each data channel should
be rescaled to provide a uniform contribution. The normalized data followed a typical normal distribution
with mean of zero (μ = 0) and unit variance (δ = 1).

Many forms of inertial signals are continually created over time, with long data sequences occurring
from discrete sampling at a specific frequency. The inertial signals in this study were separated into
frames using a sliding window with a predetermined width of 2 s, as suggested in [33] and an overlap
fraction of 50%, as suggested in [34] to improve feature extraction and subsequent training processes.

3.3 Baseline Deep Learning Models

In this study, our proposed ResNetSE model was compared with five baseline CNN and RNN models,
with specifications of each model given below. The CNN model is a conventional convolutional neural
network with N convolutional layers, ReLU activation [35] and a hidden dense layer. An example of
applying CNNs to time series data can be found in [36]. The CNN architecture is shown in Fig. 3.

The number of convolutional layers, as well as the number of filters for each convolutional layer and the
number of neurons in the hidden dense layer, are CNN hyperparameters. Pooling layers were excluded in this
study since reducing the spatial size of the sequence is usually unnecessary when there are enough
convolutional layers.

Figure 2: Samples of smartwatch sensor data from the UT-smoke dataset
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The Long Short-Term Memory (LSTM) network is a commonly used variant of the recurrent neural
network architecture. LSTM was proposed by [35] to solve the vanishing gradient problem in long-term
dependency learning. To model long-range dependencies in temporal sequences, LSTM employs memory
cells with three gates and parameters as a solution. These gates determine when states are updated and
earlier concealed states are forgotten, and hence control the general operation of the memory cells. Fig. 4
depicts the RNN-based architecture.

Schuster et al. [36] presented the Bidirectional LSTM (BiLSTM) to improve the amount of knowledge
available in the LSTM network. The BiLSTM is connected with two hidden layers in different directions.
This structure simultaneously learns from previous and subsequent sequences. The LSTM is a viable
alternative to RNNs with vanishing gradients but the architecture’s memory cells result in increased
memory requirements. The Gated Recurrent Unit (GRU) network, a new RNN-based model, was
introduced in 2014 by Cho et al. [37]. The GRU is a simplified version of the LSTM that lacks a
dedicated memory cell. In a GRU network, there is an update and reset gate that controls the degree of
change of each hidden state. The GRU determines what knowledge must and must not be transferred
from one state to the next. A major disadvantage is that the GRU network is unidirectional. This means
that the output at a given time step, apart from the current input, depends solely on the previous
information in the input sequence. However, in other situations, it may be more useful to make
predictions by considering not only the past but also the future [38]. Alsarhan et al. [39] presented a
human activity recognition model based on bidirectional gated recurrent units (BiGRU). Results showed
that the BiGRU model was successfully applied for human activity recognition from sensor data.

Figure 3: CNN architecture

Figure 4: RNN-based architecture: (a) LSTM, (b) BiLSTM, (c) GRU and (d) BiGRU
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3.4 Proposed ResNetSE Models

3.4.1 Architecture of the Proposed Models
To detect smoking activities, a deep learning model inspired by ResNet called the ResNetSE model was

presented in this article. Fig. 5 shows the architecture of ResNetSE, which includes a convolutional block and
eight ResNetSE blocks, a Global Average-Pooling layer (GAP), a flattening layer and a fully connected layer.

3.4.2 ResNetSE Module
Most convolutional architectures are based on the discipline of image classification, containing the first

and most important achievements of DL. Skip-connections (also known as residual connections) represent
connections that skip numerous layers in higher neural networks [25] as a particularly successful strategy
to deal with them efficiently. Such a neural network was also developed for time series classification [20]
and showed similar performance in a variety of situations [40]. The number of residual modules is one of
the hyperparameters of ResNet architecture. As shown in Fig. 6, a ResNetSE module consists of two
convolutional layers and a skip connection that connects the two layers.

Convolutional neural networks combine spatial and channel-wise information [29] to extract features.
The SE block was developed to increase the representability of the model from the perspective of channel
relationships. After the convolution operation, various feature maps are obtained, with some containing
data redundancy. The SE block performs feature recalibration to enhance the informative aspects while
suppressing the less beneficial ones. In the squeezing process, global pooling is first performed for each
feature map, followed by weight vector determination. The feature weights are then redistributed in the
excitation procedure, which uses fully linked layers and a sigmoid activation function. A gradient descent
approach is used to manage redistribution. Finally, the weights are used to reweight the feature maps. In
this study, the SE block in each residual block was positioned behind the BN to recalibrate the feature
maps obtained with the stacked layers.

Figure 5: Proposed ResNetSE model

Figure 6: Structure of the ResNetSE block
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4 Experiments and Results

The experimental setup and results used to evaluate deep learning models for SAR using smartwatch
sensor data are described and demonstrated in this section.

4.1 Conducted Experiments

The wristwatch sensor data from the UT-Smoke dataset were divided into three scenarios for
investigation because not all activities were completed by all participants. Scenario 1 considered all
participants; however, smoking while walking and during group conversations were excluded because not
all participants engaged in these two smoking activities. Scenario 2 used the first eight participants since
they all smoked during group discussions but ignored the first three participants who smoked while
walking. Scenario 3 evaluated the first three participants from Tab. 2 as well as all of their activities.
These three participants were selected since they were the only ones who smoked while walking [32].
These scenarios are summarized in Tab. 1.

Table 1: Smoking scenarios

Scenario Participant Activity Class Samples Percentage

I 1–11 SmokeST, SmokeSD Smoke 37,645 28.57

DrinkST, DrinkSD Drink 37,667 28.58

Eat, Eat 18,828 14.29

Sit, Stand Inactive 37,634 28.56

II 1–8 SmokeST, SmokeSD, SmokeG Smoke 36,831 32.84

DrinkST, DrinkSD Drink 30,144 26.88

Eat Eat 15,068 13.43

Sit, Stand Inactive 30,120 26.86

III 1–3 SmokeST, SmokeSD, SmokeG, SmokeW Smoke 33,242 39.99

DrinkST, DrinkSD Drink 16,627 20.00

Eat Eat 8,321 10.01

Sit, Stand Inactive 16,618 19.99

Walk Walk 8,309 9.99

Table 2: Achievements of deep learning models using smartwatch data for scenarios I, II and III

Model Scenario I Scenario II Scenario III

Accuracy F1-score Accuracy F1-score Accuracy F1-score

CNN 95.51% 95.53% 94.72% 94.73% 96.07% 96.03%

(+/− 1.45%) (+/− 1.43%) (+/− 0.73%) (+/− 0.72%) (+/− 0.68%) (+/− 0.71%)

LSTM 77.41% 76.98% 73.94% 72.50% 90.18% 90.31%

(+/− 2.29%) (+/− 2.81%) (+/− 3.85%) (+/− 4.23%) (+/− 2.54%) (+/− 2.51%)

BiLSTM 98.01% 98.06% 97.92% 98.01% 97.99% 98.13%

(+/− 1.63%) (+/− 1.78%) (+/− 1.19%) (+/− 1.22%) (+/− 1.97%) (+/− 1.77%)
(Continued)
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All experiments were conducted on the Google Colab Pro platform using a Tesla V100, and Python
3.6.9, Numpy 1.18.5, TensorFlow 2.2.0, Scikit-Learn, Keras 2.3.1 and Pandas 1.0.5 libraries. The
recognition performances of the deep learning models were evaluated and results were compared with
standard metrics (accuracy and F1-score). The performance metrics used were:

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(1)

Recall ¼ TP

TP þ FN
(2)

F1� score ¼ 2: TP

2: TP þ FP þ FN
(3)

Accuracy as the first statistic quantifies the proportion of accurate estimates to all predicted values in the
validation data. Eq. (1) was used to compute the accuracy. The recall is defined as the proportion of correctly
categorized positives to the number of actual class activities in the testing dataset. Recall is also referred to as
sensitivity and was computed using Eq. (2). The third statistic is the F1-score as the average accuracy and
recall multiplied by two (3). This is also referred to as the symmetrical F1-score. It considers false
positives (FP) and false negatives (FN) and is a more helpful statistic for assessment than accuracy. The
lowest possible outcome for each of the four measures is 0%, while the highest possible result is 100%.

The area under the receiver operation characteristic (ROC) curve (AUC) was used to evaluate the
models. This is specified in terms of the integral of the true positive rate (TPR) and the false positive rate
(FPR). Eqs. (4)–(6) define TPR, FPR and AUC. The AUC value has to be in the range of 0 to 1. A high
AUC value indicates that a proposed method can discriminate across distinct types of human activity.
Thus, the model with the most significant AUC is the optimal solution for identification. The TPR is
calculated as the ratio of true positives (TP) to the total of true positives and false negatives (TP + FN),
while FPR is the ratio of false positives (FP) to false positives and true negatives (FP + TN). The
assessment indicators “accuracy, F1-score, and area under the ROC curve” were considered because they
help to analyze and assess the performance of the suggested model [41].

Table 2 (continued)

Model Scenario I Scenario II Scenario III

Accuracy F1-score Accuracy F1-score Accuracy F1-score

GRU 93.86% 93.88% 91.89% 91.76% 96.53% 96.77%

(+/− 2.01%) (+/− 2.11%) (+/− 2.64%) (+/− 2.99%) (+/− 2.59%) (+/− 2.78%)

BiGRU 95.37% 95.38% 94.75% 94.71% 97.53% 97.73%

(+/− 2.23%) (+/− 2.18%) (+/− 1.95%) (+/− 1.73%) (+/− 1.28%) (+/− 1.62%)

ResNet 95.80% 95.79% 95.93% 95.93% 97.33% 97.33%

(+/− 2.07%) (+/− 2.07%) (+/− 0.85%) (+/− 0.85%) (+/− 0.13%) (+/− 0.13%)

SE-Net 97.61% 97.66% 97.58% 97.71% 97.9% 98.12%

(+/− 1.36%) (+/− 1.42%) (+/− 1.61%) (+/− 1.45%) (+/− 1.09%) (+/− 1.43%)

ResNetSE 98.65% 98.65% 98.40% 98.39% 98.63% 98.63%

(+/− 0.11%) (+/− 0.11%) (+/− 0.08%) (+/− 0.07%) (+/− 0.12%) (+/− 0.12%)
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TPR ¼ TP

TP þ FN
(4)

FPR ¼ FP

FP þ TN
(5)

AUC ¼
Z1

0

TPR dðFPRÞ (6)

4.2 Experimental Results

These results were obtained using 5-fold cross-validation. Various analyses were performed to determine
the recognition efficiency of five fundamental deep learning models (CNN, LSTM, BiLSTM, GRU and
BiGRU) and known classification networks (ResNet and SE-Net), along with the recommended
ResNetSE model. These deep learning models were evaluated using a variety of metrics including
accuracy and F1-score (Tab. 2). The ROC curves compared the recognition performances of these DL
models, as shown in Fig. 7.

These experimental results showed that our proposed ResNetSE outperformed the other deep learning
networks in scenarios I, II and III with highest accuracy of 98.65%, 98.39% and 98.63%, respectively. Fig. 7
shows the confusion matrices of the CNN, LSTM and ResNet.

ROC probability curves were used to evaluate the models, with the true positive rate (TPR) on the
vertical axis and the false positive rate (FPR) on the horizontal axis for threshold values ranging from
0.0 to 1.0. Fig. 7b demonstrates ROC curves zoomed in at the top left of curves in Fig. 7a. Highest
values for the three scenarios were obtained from the proposed ResNetSE model, indicating that the
ResNetSE achieved better performance results than the other models.

Figure 7: Comparative findings of the area under the ROC curves of DL models produced from each
experimental setup scenario I, II and III: (a) ROC curves and (b) ROC curves with zoomed representation
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5 Discussion

5.1 Impact of Squeeze-and-Excitation Modules

The squeeze-and-excitation module was developed to improve the explanatory capability of deep
learning models in terms of channel relationships. Multiple feature maps are needed after convolutional
processes in the recommended ResNetSE structure, as seen in Fig. 6. Several feature maps included
duplicate data. The SE module performed feature recalibration to improve significant features and
disabled less supportive features. To determine the effect of the SE module, further investigations were
conducted comparing the recommended ResNetSE to a model with the SE module excluded. Fig. 8
shows the comparative findings.

Fig. 8 illustrates comparative results obtained by utilizing the squeeze-and-excitation mechanism to
enhance the SAR experience in various settings. Our recommended ResNetSE model with the squeeze-
and-excitation module outperformed the multivariate model without the squeeze-and-excitation module in
terms of identification effectiveness. The squeeze-and-excitation module combined a channel attention
mechanism approach to significant valuable data to map channel reliance. Our suggested ResNetSE
recalibrated the filter outputs, resulting in increased effectiveness.

5.2 Impact of Residual Connections

To investigate the effect of residual connectivity on the suggested method, the ResNetSE was adjusted
by discarding residual connections of the previous model and repeating the experiment. Fig. 9 shows the
comparative findings.

As seen in Fig. 9, the suggested ResNetSE outperformed its upgraded structure without residual
connections in various circumstances because the residual connections efficiently addressed the
deteriorating issue associated with SAR. The residual link also improved the suggested ResNetSE
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Figure 8: Comparative results showing the impact of the squeeze-and-excitation module on different
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convergence rate. As seen in Fig. 10, the residual connection layer considerably accelerated the convergence
of the proposed method.

5.3 Comparison with Existing Works

Our progressive approach was then assessed against other approaches to the SAR issue. Tab. 3 compares
the UT-Smoke dataset with previous studies. The F1-score of our model showed enhanced SAR capabilities.
Machine learning classification models in [31,32] relied on handcrafted classifiers to extract the features,
resulting in reduced accuracy. However, the ResNetSE model had a superior F1-score to the CNN
classification model in [41] because it used residual functionalities to identify high-level abstract features.

Figure 10: Change in loss and accuracy curves of the proposed models: (a) with residual connections, (b)
without residual connections

Table 3: Comparison with previous studies

Reference Classifier Feature extraction Performance (F1-score) (%)

[31] Hierarchical Handcrafted 83–94

[32] SVM Handcrafted 85

[41] CNN Deep learning 92–96

This study ResNetSE Deep learning 98.40–98.65
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6 Conclusions

DL-based SAR was studied using smartwatch sensor data. Five standard deep learning algorithms as
CNN, LSTM, BiLSTM, GRU and BiGRU as well as two residual networks (ResNet and SE-Net) were
compared with our suggested ResNetSE model. To evaluate the recognition performance of SAR, a
public benchmark dataset called UT-Smoke was conducted for three experimental scenarios. Results
revealed that the ResNetSE model significantly outperformed the other baseline models, with highest
accuracy of 98.63%. Additional investigations were performed to evaluate results compared to the other
current models. Findings demonstrated that our suggested ResNetSE model outperformed other
previously examined approaches regarding classification effectiveness. Furthermore, the impacts of end-
to-end functionalities, such as a squeeze-and-excitation module and a residual connection module, were
also studied. Results showed that the squeeze-and-excitation module improved detection capability by
mapping channel dependence and approaching potential information through a channel attention method,
while the residual connection module tackled the deterioration issue for SAR satisfactorily and benefited
the suggested ResNetSE in terms of faster convergence. Findings demonstrated a practical method for
detecting smoking activity using inertial sensors from smartwatches.

However, more instances are required for modeling in actual applications. Validation of the proposed DL
models using datasets with larger numbers of subjects and different smoking activity patterns should be
included in future research. Further improvements in the performance would be achieved by developing
more complicated and lightweight deep learning networks, as well as unique data representations based
on time-frequency analysis.
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