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Abstract: Data clustering is crucial when it comes to data processing and analy-
tics. The new clustering method overcomes the challenge of evaluating and
extracting data from big data. Numerical or categorical data can be grouped.
Existing clustering methods favor numerical data clustering and ignore categorical
data clustering. Until recently, the only way to cluster categorical data was to con-
vert it to a numeric representation and then cluster it using current numeric clus-
tering methods. However, these algorithms could not use the concept of
categorical data for clustering. Following that, suggestions for expanding tradi-
tional categorical data processing methods were made. In addition to expansions,
several new clustering methods and extensions have been proposed in recent
years. ROCK is an adaptable and straightforward algorithm for calculating the
similarity between data sets to cluster them. This paper aims to modify the algo-
rithm by creating a parameterized version that takes specific algorithm parameters
as input and outputs satisfactory cluster structures. The parameterized ROCK
algorithm is the name given to the modified algorithm (P-ROCK). The proposed
modification makes the original algorithm more flexible by using user-defined
parameters. A detailed hypothesis was developed later validated with experimen-
tal results on real-world datasets using our proposed P-ROCK algorithm. A com-
parison with the original ROCK algorithm is also provided. Experiment results
show that the proposed algorithm is on par with the original ROCK algorithm
with an accuracy of 97.9%. The proposed P-ROCK algorithm has improved the
runtime and is more flexible and scalable.
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1 Introduction

To group comparable data points in a cluster, data points are clustered. Numerical points are easier to
cluster because several clustering methods have previously been established in this manner. There is a
substantial challenge when the data has clustered numeric properties and is categorical. Categorical data
must be translated into numerical data because minimal research in this field [1] represented a new
promise in the research of categorical data clustering.

Recent research has concentrated on resurrecting traditional simple clustering algorithms with
modifications to improve their efficiency. This serves two purposes. Traditional algorithms’ scalability
and ease of implementation can be preserved for starters. Second, the investment required to develop a
new algorithm is significantly higher than that required to modify an existing one.

2 Literature Review

As massive data warehouses store massive amounts of data, clustering has become increasingly
important in today’s world. Various clustering methods have been developed over the years to cluster this
massive amount of data. Clustering categorical and numerical data, on the other hand, is an entirely
different challenge. Categorical data values exist on a nominal scale. Each one represents a conceptually
distinct notion, they cannot be meaningfully sorted, and they cannot be handled or manipulated the same
way numbers can. Blood types A, B, AB, and O, for example, indicate a person’s blood type. Rocks can
be classified as igneous, metamorphic, or sedimentary. Computing the similarity between data points does
not require a distance similarity metric. Over the years, many clustering approaches have been created,
and some of them are detailed in the following sub-section.

2.1 Categorical Clustering

The several clustering is listed in the below sub-sections.

2.1.1 K-Modes Clustering
One of the earliest attempts in this direction was the application of the widely used K-means algorithm

[2] to categorical data. The authors of [3] referred to the K-modes technique because it determines the central
tendency of a group of categorical variables rather than the mean or median. This K-means version worked
well with categorical data by utilizing a primary matching dissimilarity method. Finally, the clustering
process is updated using a frequency-based method rather than the mean value, resulting in a lower cost
function. Choose a K-initial mode value and assign the item with the lowest mode value to the cluster as
a starting point for clustering. Each item’s dissimilarity metric is then compared to the current model.
Then comes the comparison. If the object’s mode value is in a different cluster than the current one,
reallocate the item to a new one. The procedure is repeated until no further changes are required.
However, one issue is that it selects the initial cluster centers at random for each subsequent run, resulting
in non-repeatable clustering results.

2.1.2 K-Histogram
The k-means algorithm was also extended in the form of a K-Histogram [4], which required the

replacement of means with the histogram to cluster categorical data efficiently. In this direction, the k-
means algorithm was modified by replacing mean with histogram and applying a new similarity measure
between categorical data and histogram. After the ‘k’ value is initialized and the cost functions are
calculated, the object is assigned to a cluster whose histogram is similar. After each assignment is
completed, histograms are updated, and the process is repeated until no further changes are observed.
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2.1.3 Fuzzy K-Means Variations
In fuzzy c-means clustering, data items can belong to multiple clusters depending on their degree of

cluster membership [5]. Data points on the outskirts of a cluster are less significant than those in the
center. Fuzzy k-modes [6] are an extension of Fuzzy c-means clustering that alters the similarity measure
between centroids and data points in addition to utilizing the hard mode [7]. Fuzzy c-means extensions
for k-representative and k-populations are also available [8].

2.2 Variants of ROCK

The QROCK [9] and MROCK [10] are direct variations of the ROCK algorithm [11].

2.2.1 Q-ROCK
The Q-ROCK [12] is a quicker version of the ROCK [13] algorithm. The methodology is similar to the

ROCK algorithm but with certain proposed modifications discussed below.

� It computes clusters by determining the connected components of the graph.

� It drastically reduces the computation of the algorithm.

� It does not believe in the prior knowledge of the desired number of clusters

� Also detects outliers

� Defines a new weighted goodness measure

� Avoids explicit computation of links, thereby substantially improving computational efforts.

� Computes a correspondence between the values of the number of clusters, k, and the threshold θ;
selection of k and θ in conformance with this correspondence makes the termination criteria
equivalent.

2.2.2 M-ROCK
The M-Rock [14] algorithm improves the computing time of the ROCK [15] algorithm by introducing a

new goodness measure and criterion function, the former for computing intra similarity between identities
and the latter for effective cluster merging. Depending on the dataset, it selects the best intra similarity
measure from Modified Sorensen Dice coefficient, Modified Traversky, and Modified second Kulczynski.
The approach is similar to that of ROCK. M-ROCK outperformed ROCK in terms of results.

3 Proposed Approach

This section first presents a detailed overview of the ROCK algorithm with its methodology and further
shows our proposed modification. Our proposal includes fine-tuning parameters of the algorithm as our
modification. Analysis of the same is also provided for better evaluation of the proposed modifications.

3.1 ROCK Algorithm

The ROCK algorithm in [16] was one of the first categorical clustering algorithms, and it was very
effective at handling categorical data without the use of any additional methods. The concept of links was
used to determine the similarity between data points, distinguishing them from the other category
clustering methods. In previously suggested methods, distance metrics were used as a similarity measure
for dividing the database, but they were ineffective for the category and Boolean characteristics. The
method’s use of links mitigates the disadvantages of using distance metrics or the Jaccard coefficient to
handle categorical data. The algorithm considers two data points to be “neighbors” if their similarity
based on any similarity measure exceeds a certain threshold. The number of ‘links’ between the locations
corresponds to the number of neighbors. The algorithms construct superior clusters by merging clusters
with the most connections. Unlike distance or other similarity measures, which only include local
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information about the points, the link idea includes global information about other points, making the method
more resilient. The greater the number of connections between two locations, the more likely they are in the
same cluster.

Two points, p1 and p2 are neighbors if the similarity between them, calculated as sim(p1, p2) does not
exceed a threshold θ such that

simðp1; p2Þ � u (1)

where 0 ≥ θ ≥ 1.

It means similarity 0 reflects no links between the data points and vice versa. The algorithm presents a
new criterion function on links and maximizes this criterion for best results. The criterion function aims to
maximize the links between two points pq and pq lying in the same cluster but to minimize the links between
the same points pq and pq If they lie in different clusters. The criterion function E1 is as follows.

E1 ¼
Xk
i¼1

ni�
X

pq;pr2Ci

linkðpq; prÞ
n1þ2f ðuÞ
i

(2)

where Ci denotes cluster i of size n:

It then merges the clusters based on the links using a goodness measure till no further merging is possible
or no links remain. The goodness measure is calculated as:

gðCi; CjÞ ¼ linkjCi; Cjj
ðni þ njÞ1þ2f ðuÞ � n1þ2f ðuÞ

i � n1þ2f ðuÞ
j

(3)

The steps involved in the ROCK algorithm

� Step 1: Consider all the data points as separate clusters.

� Step 2: Repeat steps 3 to 5 until no more clusters can be merged or links remain.

� Step 3: Compute links between the clusters.

� Step 4: Compute the goodness measure.

� Step 5: Merge the best two clusters.

3.2 ROCK Parameter

The parameters involved in the ROCK algorithm are discussed below.

a. The threshold for neighborhood decision: Two points are considered neighbors if there is a
considerable similarity between them. This similarity is further dependent on a given threshold
whose value ranges from 0 to 1. Variations in the value of the threshold can bring about changes
in the result of the ROCK algorithm.

b. Value of f ðuÞ: f ðuÞ is a function dependent on the data set as well as the kind of clusters with the
property that each point belongs to a cluster Ci has neighbors n

f ðuÞ
i in it. For the market database, the

value of f ðuÞ was taken equal to 1þu
1�u such that if θ = 1, f(θ) = 0 and vice versa. Determining a

more accurate value for the same can be done.
c. Value of h(θ): If the equation of goodness measure is closely observed, it is noticed that in the

denominator, the powers of used entities are a function of f(θ) or indirectly function of θ. Thus,
representing this through a new function h(θ), the formula for good measure can be rewritten as:
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gðCi; CjÞ ¼ linkjCi; Cjj
ðni þ njÞhðuÞ � nhðuÞi � nhðuÞj

(4)

where h(θ) can be varied according to f(θ).

3.3 Proposed Algorithm

After observing the method’s parameters, the algorithm can be converted into a parameterized version
with all parameters being user-defined and input. After that, the user-defined parameters can be calculated.
Using domain knowledge and data properties. Given below are the steps of the proposed Parameterized-
ROCK (P-ROCK) algorithm.

Algorithm: 01 Parameterized-ROCK Algorithm

Input: Data set X ¼ fxgiNi¼1, number of clusters k, threshold θ, Deff(θ), Defh(θ)

Step 1: Compute similarity for all points using Jaccard Coefficient for any two points p1; p2, that is
simðp1; p2Þ � ; u8p1;p2
Step 2: Let the current number of components be N, that is CURR −CLUST =N;

Step 3: Using criteria simðp1; p2Þ � u, decide neighborhood of points

neighborðp1; p2Þ ¼ 1; ifsimðp1; p2Þ � u
0; otherwise

�
(5)

Step 4: Compute value of function f(θ) as per definition Deff(θ)

Step 5: Compute value of function h(θ) as per definition Defh(θ)

Step 6: Compute number of links among all current components as number of common neighbors.

linkjCi; Cjj ¼ number of familiar neighbors of a point p1in Cluster Ciand point p2in Cluster Cj

Where Ci, Cj denote clusters i and j of size ni and nj respectively.

Step 7: Compute goodness measure, gðCi; CjÞ, for Clusters Ci, Cj as

gðCi; CjÞ ¼ linkjCi; Cjj
ðni þ njÞhðuÞ � nhðuÞi � nhðuÞj

(6)

Step 8: Pick two components with the best values of good measure. If such components exist, merge them,
that is CURR −CLUST =CURR −CLUST − 1 and go to Step 6.

Step 9: Else, return the cluster components.

The proposed algorithm requires Definition of functions f(θ) and h(θ) as input. From the implementation
point of view, this can be done through subroutine calls that take (as input) steps 4 and 5. The initial values of
links can be directly computed as link = neighbor *neighbor. At a time, only two clusters are merged, thus
reducing the value of CURR −CLUST by 1 in each iteration.

3.4 Hypothesis

In this section, a few hypotheses will be formed regarding the effect of parameters on runtime and the
clustering quality of the ROCK algorithm. Further implementation results of the proposed Parameterized
ROCK algorithm can justify the statements of hypotheses.
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The first hypothesis has been adopted directly from [17]. We have chosen the hypothesis based on
cluster parameters. The value of θ affecting the number of neighbors and overall cluster quality. The
hypothesis shows the effect of θ and threshold value on the number of clusters. In the third hypothesis,
we have shown that the algorithm stops running f(θ) values are increased and require more time. This can
be explained by fewer links among the components, causing very few components that will be
mergeable. A formal hypothesis regarding the effect of threshold parameter θ over P-ROCK.

HYPOTHESIS 1: “Increasing the threshold value should decrease the runtime of the algorithm and
degrade the cluster quality”

Besides this effect of θ, it can also be safely assumed that θ deduced from one dataset cannot be applied
to another dataset. It implies θ needs to be learned for each data or be provided by a domain expert.

HYPOTHESIS 2: “There can be no universal value of f (θ); it is dependent on characteristics of data”

The constraint mentioned in [18] for f(θ) require that f(θ) should be 0 at θ = 1 and f(θ) should be 1 at
θ = 0. Keeping this constraint, many definitions of f(θ) can be formulated. It is expected that the effect of
the definition of f (θ) is negligible over the algorithm’s performance if the constraint is obeyed.

HYPOTHESIS 3: “Definition of f(θ) should not affect the performance of ROCK if the constraint ‘f(θ)
should be 0 at θ = 1 and f(θ) should be 1 at θ = 0’ is satisfied.”

The extra parameter h(θ) introduced for P-ROCK needs a detailed analysis. Putting the limiting values of
ni and nj in the formula of good measure, as in Eq. (3), that is at the beginning, initial clusters are points
themselves giving ni ¼ nj ¼ 1.

Therefore, a good measure is

gðCi; CjÞ ¼ linkjCi; Cjj
2hðuÞ � 1hðuÞ � 1hðuÞ

¼ linkjCi; Cjj
2hðuÞ � 2

(7)

Since goodness measure cannot be a negative value,

2hðuÞ. 2

Which makes,

hðuÞ log2 2. log2 2

Resulting,

hðuÞ. 1

The other extreme situation where both clusters to be merged might have n
2 points each, which makes

gðCi; CjÞ ¼ linkjCi; Cjj
ðnÞhðuÞ � n

2

� �hðuÞ
� n

2

� �hðuÞ (8)

where, ðnÞhðuÞ � n
2

� �hðuÞ� n
2

� �hðuÞ
. 0

This makes, ðnÞhðuÞ. 2 n
2

� �hðuÞ
Taking log both sides,

hðuÞ log2 n. log2 2þ hðuÞ log2 n� hðuÞ log2 2 (9)
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This makes,

hðuÞ log2 n. 1þ hðuÞ log2 n� hðuÞ (10)

Resulting,

hðuÞ. 1

A hypothesis can thus be formed as:

HYPOTHESIS 4: “If constraint h(θ) > 1 is followed, the definition of h(θ) should not affect the cluster
quality.”

As mentioned in [19], the expression for good measure depends only on the number of links between
two components. The other parts of the expression are just for normalization purposes. Therefore, these
factors can be removed to reduce the computations involved in the algorithm.

A hypothesis can therefore be framed as:

HYPOTHESIS 5: “Only the threshold parameter can affect the quality of output and will not be
affected by goodness measure if goodness measure depends on link.”

4 Experiments and Results

Experiments are designed and conducted to verify the hypotheses discussed in the last section. The later
sections discuss the results of the experiments.

4.1 Experimental Setup

Experiments on the proposed P-ROCK algorithm have been performed on MATLAB, an easy and
efficient platform for mathematical computations. Two real-life datasets have been taken for the
experiments: The small soybean dataset and the Congressional Votes dataset. A brief description of the
datasets has been given below.

4.2 Experimental for θ

The working of ROCK algorithm on soybean dataset is as shown in Tab. 1.

Table 1: Results on soybean dataset for varying θ

Value of θ Total elapsed
time (in s)

Number of
current clusters

Number of
major clusters

Cluster structure

0.5 0.024847 4 1 44

0.55 0.023962 4 1 44

0.6 0.022707 4 3 10, 9, 27

0.65 0.021525 4 3 10, 10, 26

0.7 0.021052 4 3 10, 9, 27

0.75 0.020861 4 4 10, 10, 10, 17

0.8 0.018242 17 8 2, 5, 2, 7, 3, 5, 8, 6

0.85 0.016214 34 6 2, 2, 3, 4, 5, 3

0.9 0.014884 46 1 2
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Fig. 1 shows the plot of execution time for increasing values of θ using the proposed P-ROCK algorithm
on Soybean small dataset. As the value increases, the number of iterations reduces.

Tab. 2 records the three values, i.e., runtime, current cluster, number of significant clusters, and Cluster
Structure of the significant clusters observed for the Congressional Votes dataset. Increasing values of θ result
in decreasing runtime of the algorithm and increasing the number of current and significant clusters.
The increasing number of current clusters represents that the merging of clusters has stopped sooner. The
algorithm takes maximum time in the merging step. Therefore, if efficient merging does not occur, the
number of current clusters will increase, decreasing the runtime. The best cluster structure obtained is
0.7 and 0.75 and the significant clusters is of size 188 and 162 with four small clusters.

Fig. 2 shows the plot of execution time for increasing values of θ using the proposed P-ROCK algorithm
on Congressional Votes dataset. The plot shows a declining slope of runtime with increasing values of θ due
to the reduction in the number of iterations.

Figure 1: Plot of execution time for increasing θ on Soybean dataset

Table 2: Results on the congressional votes dataset for varying θ

Value
of θ

Total
elapsed time
(in s)

Number of
current
clusters

Number of
major
clusters

Cluster structure

0.5 2.534873 3 2 431, 4

0.55 2.438263 10 2 424, 3

0.6 2.445057 10 2 424, 3

0.65 2.263818 29 3 3, 2, 404

0.7 1.891412 82 6 2, 2, 2, 3, 188, 162

0.75 1.838770 82 6 2, 2, 2, 3, 188, 162

0.8 1.394288 185 8 124, 122, 2, 2, 2, 2, 2, 2

0.85 1.393105 185 8 124, 122, 2, 2, 2, 2, 2, 2

0.9 0.857809 342 38 5, 3, 4, 8, 5, 3, 2, 8, 3, 2, 2, 4, 2, 2, 3, 3, 2, 5, 5, 2, 6, 2,
5, 2, 2, 2, 2, 5, 3, 4, 3, 2, 6, 2, 4, 2, 4, 2
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4.3 Experimental for f (θ)

We observed the values of θ for which obtained cluster structure is most accurate and keeping all other
parameters constant. A changing definition of f(θ) can provide insight into its impact on the algorithm’s
performance. The definitions used for f(θ), other than the standard ROCK algorithm [20], in our
experiments are as follows.

1) f(θ) = 1 − θ
2) f(θ) = 1 − log2(1 + θ)
3) f(θ) = 1 + log2(1 + θ)
4) f(θ) = 1 + θ
5) f(θ) = 1
6) f(θ) = 0

The first three definitions have been designed according to the constraint mentioned in [21] as f(θ)
should be 0 at θ=1 and f(θ) should be 1 at θ=0. The following three definitions are designed to test the
erroneous f(() formulation like larger values than 1 or some constant value. Values recorded for the
experiment are again relevant to the cost of time incurred to achieve certain cluster quality. Since f(θ)
decides the number of neighbors to be considered for computation of good measure, it is expected to
affect cluster quality. There should be no direct impact on runtime. The particular case of (θ) = 0 would
eventually result from an error of “Division by zero” in the formula of good measure, halting the
execution before results are produced. For the Soybean dataset, at θ = 0.75, it was observed that
practically, there is no effect on runtime. Moreover, even the cluster quality did not vary, against the
hypothesis. Tab. 3 shows the recorded values.

Figure 2: Plot of execution time for increasing θ on Congressional Votes dataset

Table 3: Results on soybean dataset for different F(θ)

Value of f(θ) Total elapsed
time (s)

Cluster structure Number of
current clusters

Number of
major clusters

1 − θ 0.020748 10, 10, 10, 17 4 4

1 − log2(1 + θ) 0.021128 10, 10, 10, 17 4 4

1 + log2(1 + θ) 0.020752 10, 10, 10, 17 4 4

1+θ 0.020771 10, 10, 10, 17 4 4

1 0.021448 10, 10, 10, 17 4 4

0 - - - -
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Tab. 4 shows the records of the results on the Congressional votes dataset for θ=0.75. Different values of
f(θ) seem to have a negligible difference in the overall results. Except for f(θ)=0, all the results show all
achieve the optimum values for the Congressional Votes dataset by the proposed P-ROCK algorithm.

4.4 Experimental for h(θ)

Definition of h(θ) decides the extent of the impact of (θ) over goodness measure. It implies that h(θ) will
directly affect the quality of clusters produced. The definitions used for f(θ), other than the standard ROCK
algorithm, in our experiments are as follows.

h (θ) = c*f(θ), h(θ) = 1 + f(θ), h(θ) = 1 + 1 + 2f(θ)2, h(θ) 1 + 2f(θ), c in c*f(θ) is a constant which
generates optimum structure of clusters in Soybean dataset for values of c ≥7. For values less than 7, the
merging of clusters does not occur. The reason for dependence on the value of c exists, concerning
HYPOTHESIS 4, that the resultant h (θ) should be greater than 1. The experimental results for different h
(θ) are tabulated in Tab. 5. The results show that there is a negligible difference in total elapsed time. The
last four values of h (θ) follow the constraint discussed in HYPOTHESIS 4, and therefore, the cluster
quality is the best.

Tab. 6 shows the tabulated results of experiments performed on the Congressional Votes dataset for
different h(θ) at θ=0.75. For the first function h(θ) = c*f(θ), no values of c < 8 could produce better result.
Rest all the results are the best that can be achieved, exhibiting no impact of changing definitions of h(θ).

Table 4: Results on the congressional votes dataset for different F(θ)

Value of f(θ) Total elapsed time
(in s)

Cluster structure Number of
current clusters

Number of
major clusters

1 − θ 1.836260 188, 162, 2, 3, 2, 2 82 6

1 − log2(1 + θ) 1.825012 188, 162, 2, 3, 2, 2 82 6

1+log2(1 + θ) 1.800062 188, 162, 2, 3, 2, 2 82 6

1+θ 1.896225 188, 162, 2, 3, 2, 2 82 6

1 1.828216 188, 162, 2, 3, 2, 2 82 6

0 - - - -

Table 5: Results on soybean dataset for different H(θ)

Value of h(θ) Total elapsed time
(in s)

Cluster Structure Number of
current clusters

Number of
major clusters

c*f(θ), c < 7 0.012128 1, 1, 1, 1, 47 4

c*f(θ), c ≥ 7 0.021340 10, 10, 10, 17 4 4

1 + f(θ) 0.021291 10, 10, 10, 17 4 4

1 + 2f(θ)2 0.020862 10, 10, 10, 17 4 4

1 + f (θ)2 0.021033 10, 10, 10, 17 4 4
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4.5 Experimental for Goodness Measure

Reference [22] defined the Goodness measure as a criterion for measuring the “goodness” of clusters
with high-quality clustering obtained for the highest values of good measure. HYPOTHESIS 5 discusses
the impact of links and other factors in the expression for good measure function.

The impact of other factors on the clustering results of the real-life datasets can be observed through Tab. 7.
Experiments for good measure have also been performed on the Mushroom dataset [23]. This dataset gives
details about the physical characteristics a mushroom possesses with all attributes of categorical nature. The
attributes can be size, shape, odor, and color. A data record contains all the physical characteristics and a
poisonous or edible label for each mushroom. With the total number of 8124 records, the number of
poisonous and edible mushrooms in the dataset is 3916 and 4208. The threshold values for the Soybean
Small, Congressional Votes, and Mushroom Datasets are kept fixed at 0.75, 0.75, and 0.7, respectively.

Table 6: Results on congressional votes dataset for different H (θ)

Value of h (θ) Total elapsed time
(in s)

Cluster Structure Number of
current clusters

Number of
major clusters

c*f(θ), c < 8 0.616397 1, 1, 1… 435 0

c*f(θ), c > 8 1.786754 188, 162, 2, 3, 2, 2 82 6

1 + f(θ) 1.798534 188, 162, 2, 3, 2, 2 82 6

1 + 2f(θ)2 1.819414 188, 162, 2, 3, 2, 2 82 6

1 + f(θ)2 1.834672 188, 162, 2, 3, 2, 2 82 6

Table 7: Results on datasets for different expressions of goodness measure

Expression for goodness measure,
g(Ci, Cj)

Cluster structure

Soybean
small
dataset

Congressional
Votes dataset

Mushroom dataset

2�linkjCi; Cjj
ð2�ðni þ njÞÞ1þ2f ðuÞ � n1þ2f ðuÞ

i � n1þ2f ðuÞ
j

(11)
10, 10,
10, 17

188, 162, 2, 3,
2, 2

96, 96, 704, 256,
768, 192, 1728, 8,
32, 48, 192, 48, 288,
1296, 8, 16, 104,
288, 36, 1728, 192

2�linkjCi; Cjj
ð2�linkjCi; CjjÞ1þ2f ðuÞ � n1þ2f ðuÞ

i � n1þ2f ðuÞ
j

(12)
10, 10,
10, 17

188, 162, 2, 3,
2, 2

96, 96, 704, 256,
768, 192, 1728, 8,
32, 48, 192, 48, 288,
1296, 8, 16, 104,
288, 36, 1728, 192

link|Ci, Cj| 10, 10,
10, 17

188, 162, 2, 3,
2, 2

96, 96, 704, 256,
768, 192, 1728, 8,
32, 48, 192, 48, 288,
1296, 8, 16, 104,
288, 36, 1728, 192
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The results obtained are the best clustering results for each real-life dataset, proving HYPOTHESIS 5.

4.6 Comparison with ROCK

The proposed algorithm PROCK is a modification of ROCK [24]; hence, both performances should be
compared. Taking the results published in [25,26] for the Congressional Votes dataset, Tab. 8 shows the
cluster structures obtained by ROCK and P-ROCK. The number of members in the two major clusters
and their class is recorded. Accuracy can be obtained from this information using.

Accuracy ¼ No:of correctly clustered points

Total number of points
(13)

In a scientific report of the ROCK algorithm [27], the researchers present the results of a sensitivity
analysis conducted to determine the impact of input factors on rock mass classification. A new research
study provides [28] a new point cloud segmentation technique employed in the boulder detecting
application. The approach is built with features from the Point Cloud Library (PCL), and it is compared
to other PCL methods.

4.7 Summary of Contributions

The significant modifications are done in the original ROCK algorithm, and the conclusions from the
experimental results are listed below.

1. A new parameter h(θ) indicating the function used as an exponential factor in goodness measure is
identified.

2. All ROCK algorithm parameters are combined as user-defined inputs to the algorithm, except for the
similarity and good measure formulas.

3. The parameterized version of the ROCK algorithm, P-ROCK, is proposed.

4. Hypotheses are verified through experimental results.

5. Increasing the threshold value above the optimal decreases the algorithm’s runtime and produces
many small clusters. Decreasing the threshold value below the optimal increases runtime and
produces few significant clusters.

6. There can be no universal value of θ; it depends on data characteristics. The optimal value of θ needs
to be learned separately or be provided by an expert.

7. Definition of f(θ) does not affect the performance of ROCK if the constraint ‘f(θ) should be 0 at θ =
1 and f(θ) should be 1 at θ=0’ is satisfied.

8. If constraint h (θ)>1 is followed, the definition of h(θ) does not affect the cluster quality.
9. Except for link and threshold, no other parameter controls the quality of output of the algorithm.

The significant time in the ROCK and the proposed P-ROCK algorithm is spent merging the clusters. At
every iteration, only two components are merged. Hence, iterations increase if a more significant number of

Table 8: Results of the comparison between Rock and P-Rock

Algorithms Cluster No. No. of republicans No. of democrats Accuracy

ROCK 1 144 22 79.31

2 5 201

P-ROCK 1 159 3 79.77

2 0 188

564 IASC, 2023, vol.35, no.1



mergeable components occur. This indicates higher runtime. Whether the components are mergeable
depends on the average number of neighbors per data point. Threshold θ decides the number of
neighbors. Since more components are merged, very few clusters are produced that are too big. Thus, a
constant decrease in runtime is observed with the increased threshold.

5 Conclusion

Very few research works are headed in the direction of handling categorical data. Most of the proposals
are extensions to the traditional algorithms handling categorical data because they are simplistic. The
limitations of the existing algorithms have already been addressed, making it easier to focus just on the
concept of improving them. Our work extends the ROCK algorithm to provide a parameterized version
of the ROCK algorithm (P-ROCK). ROCK algorithm has been taken because of its scalability and
simplicity. The overall steps of the algorithm, right from the computation of neighbors to links to
merging, are simple. The runtime and accuracy of the algorithm make it scalable enough to be used for
efficient clustering of categorical data. Providing flexibility to the algorithm is the aim of the paper. The
same is achieved through our proposed modification of user-defined parameters as inputs, making it more
flexible according to user needs. The parameters taken into account are the threshold (θ), f(θ) and h(θ).
By testing the algorithm for various values and definitions of the parameters, a specific hypothesis
outlining the impact of these parameters on the algorithm has been formulated. Experimental results on
real-life datasets prove our hypotheses. The proposed P-ROCK algorithm with the original ROCK
algorithm also provides a better insight into the proposal. The proposed modifications do not compromise
the accuracy and runtime of the original ROCK algorithm.
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