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Abstract: The primary purpose of the Energy Management Scheme (EMS) is to
monitor the energy fluctuations present in the load profile. In this paper, the
improved model predictive controller is adopted for the EMS in the power system.
Emperor Penguin Optimization (EPO) algorithm optimized Artificial Neural Net-
work (ANN) with Model Predictive Control (MPC) scheme for accurate predic-
tion of load and power forecasting at the time of pre-optimizing EMS is
presented. For the power generation, Renewable Energy Sources (RES) such as
photo voltaic (PV) and wind turbine (WT) are utilized along with that the fuel cell
is also presented in case of failure by the RES. Such a setup is connected with the
grid and applies to the household appliances. In improved model predictive con-
trol (IMPC), the set of constraints for the power flow in the system is optimized
by the ANN, which is trained by EPO. Such a tuning based prediction model is
presented in the IMPC technique. The proposed work is implemented in the
MATLAB/Simulink platform. The energy management capability of the proposed
system is analyzed for different atmospheric conditions. The total system cost, life
cycle cost and annualized cost for IMPC are 48%, 45% and 15%, respectively.
From the performance analysis, the cost obtained by the proposed method is very
low compared to that obtained by the existing techniques.

Keywords: Artificial neural network; emperor penguin optimization; energy
management; model predictive control

1 Introduction

Nowadays, the RES, such as hydro, wind and PV, have more attention among the peoples because of the
reasons like environmental pollution and the rapid depletion of fossil fuel [1]. String research efforts are
promoting to seek optimal exploitation of the RES like limited fossil fuels, growing energy demand, and
need to reduce carbon dioxide emission in the atmosphere, which offers a distributed potential [2]. In
recent decades solar energy is widely used. The reason for choosing PV is that it has no emission cost.
Providentially, the utilization of energy from wind and PV has more potential in India because of its
suitable climate and location. In this area, most of the electricity is used to meet the specific demand with
the help of Diesel Generators (DG). However, the cost for maintaining the DG and the cost of fossil is
exceptionally high. Thus, an alternative energy source like wind and PV hybrid combinations provides
appropriate options for the power production [3,4].
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Hybridization of wind and solar energy implementation in a particular field needs to be energy
consumption-less without interruption [5]. Any kind of RESs can be combined to supply for many
applications like domestic, industrial. Among various RES, solar and wind systems are widely affected
by climatic changes [6]. The integration of more than RESs, such as hybrid form has more significant
influence due to these environmental changes [7]. For example, high solar radiation and less wind
velocity sunny days and less solar radiation and high-speed wind velocity in winter. Thus, the efficiency
of RESs may change throughout the year because of various climatic conditions. Different kinds of RESs
can be used in a hybrid energy system. Therefore, it is reliable and more cost-effective than the other
single energy system [8].

In recent years, the hybridization of different RESs has been widely considered. Frequency variation and
power quality issues may happen in Hybrid RES based standalone grid systems [9]. Harmonics commonly
occur at the source side of the system while the presence of connection [10]. Model Predictive Control
(MPC) is one of the promising technologies, which processes the control unit by reducing the objective
function. The advantages of MPC is the enhanced energy savings, improve steady-state response,
enhanced transient response and cost-effective [11]. However, it has some disadvantages and these are
installation and maintenance expenses, controller structure limitation, process limitation and operator
interface.

The essential contribution is given as follow,

� To fulfil the load, the RES power generators like PVandWT is used along with that the fuel cell is also
used during the time of failure in PV and WT (due to climatic change) since the power generation is
performed for 1-year time interval.

� The IMPC scheme is developed for regulating the system of power flow, which takes the initial energy
flow as a reference and then control the power that is needed for the load every time.

� The set of constraints and objective functions are predicted by the ANN, where the error in the
prediction is reduced by the training phase.

� The Emperor penguin optimization (EPO) algorithm is used to train the Artificial Neural Network
(ANN) with a Model Predictive Control (MPC) scheme for accurate prediction of load and power
forecasting.

� The performance of the proposed method is analyzed in contrast with the ant colony and artificial
neural network (ACO-ANN), neural network with back propagation (NN-BP) and MPC technique
of energy management.

The paper’s organization shows that the contribution of the hybrid renewable energy system (HRES) and
its related works are presented in Section 2. The proposed methodology for describing HRES power flows is
covered in Section 3. Then the suggested system simulated results are briefly examined in Section 4, and the
conclusion of the proposed system has been made in the conclusion section.

2 Literature Survey

Some recently developed Hybrid RES utilized EMS with some other traditional controllers is also
presented as follows.

Comparative analysis of Hybrid RESs was presented byMuh et al. [12] for off-grid applications with the
help of climate data of sum, in the North-West region of Cameroon that had been utilized to represent the
resource data for Southern Cameroons. Based on the wind turbine, battery, diesel generator, charge
controllers, PV module, inverters and micro-hydro turbine, nine hybrid arrangements were deliberated in
that task.
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A hybrid RESs optimal mapping of locations was discussed by Diemuodeke et al. [13] using the
TOPSIS decision making multi-criteria algorithm. By deliberation of storing the power and diesel
generator as backup, the hybrid energy systems were recommended for the optimal mapping in wind and PV.

Advanced technology of solar PV and environmental challenges of fossil fuels in fast-tracking hybrid
RES was recommended by Ebhota et al. [14]. Then the Energy Materials (EMs) roles were improved on
community-scale HRES to develop energy challenges. Furthermore, the combination of HRES into EM
was developed.

The smart building optimal cost operation, integrated with a centralized HVAC system, solar power
generation, and the storage devices as electrical and thermal had been presented by Bianchini et al. [15].
A demand response program was considered in building participation. The HVAC system was managed
optimally by MPC strategy-based solution along with the storage devices in thermal comfort and constraints.

The public grid electrically coupled with a complex residential power system based on the potential
economic MPC had been presented by Kuboth et al. [16]. That system consisted of a battery and thermal
storage system, a PV production system, a heat pump of air-to-water and a model of the building. The
power system was managed by the MPC algorithms through nonlinear global optimization.

Integrating the hybrid energy storage system (HESS) with DC microgrid was based on a Bidirectional
Single Inductor Multiple Port (BSIMP) converter that had been presented byWang et al. [17]. The HESS was
formed as the combination of some kinds of energy storages (ESs). The BSIMP converter was utilized for
regulating the HESS by the developed MPC based control method. Instantaneously, the bus voltage of the
DC microgrid could be maintained under the non-linear load consumption and the generation of renewable
energy.

The rapid increase in industrialization and globalization is leading to higher consumption of energy
sources, including an increase in electricity requirements. Development of newer EMS definitely needs
implantation of a suitable control method to maintain good working of the energy management scheme.
Many existing works have dealt with the development of different control schemes for energy
management purpose in domestic usage. However, most of them failed inaccurate prediction of load and
weather forecasting at the time of pre-optimizing EMS. Similarly, they exhibit design complexity while
developing the EMS with separate algorithms for every stage of operation. This has motivated me to
create a new control strategy in EMS with the aid of NN concept to make the work easier and efficient
than other existing works.

3 Optimal Methodology of HRES Based EMS

In electrical energy production, renewable energies are increasingly operated in hybrid energy storage
systems such as PV panels and WT. The vital key for the design is the distribution of the power
generation. The optimal controller strategy design for developing an EMS with RES and the utility grid
system is discussed in this section. Here, the IMPC scheme is developed for regulating the power to the
load profile. Already MPC is used in the field of oil refineries and chemical plant successfully; here, the
hope is to manage energy among the load and generation concerning MPC. The IMPC method works by
having a set of objective functions and the set of constraints. Those operating constraints and the
objective functions are optimized by the artificial neural network (ANN), which requires training and
testing for the weight and the bias value to reduce the error factor. Hence the system employs EPO to
minimise the error occurs in the ANN that led accurate model prediction.

The resultant EMS by IMPC is utilized for household appliances as well as to the grid. The architecture
of the proposed system with the controller design is given in Fig. 1, which consists of RESs and its control
system. The power generated from RES is forecasted, then they are up-converted with the help of boost
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converters. The proposed IMPC scheme controls the EMS based on adequate power output for grid and
household applications.

The proposed RESs system power flow (Phybrid) is determined by Eq. (1).

Phybrid ¼ Ppv þ Pwecs þ Pfc (1)

Here, Ppv is represented as the PV generated power and wind power generation is presented as Pwecs and
Pfc is denoted as the fuel cell power. The active power control process derives the system power balance,
which depends on the variation of the HRES and required load output power. The system power balance
equation is given by Eq. (2).

Pgrid ¼ Pload � Phybrid (2)

The generated power is allowed to load with the DC-link (Pdc), which is determined by Eq. (3).

Pdc ¼ CdcðdVdc=dtÞVdc ¼ Phybrid � Pgrid (3)

Here, the DC link voltage is denoted as Vdc, Cdc is described as DC-link capacitance and the grid operator
power is as Pgrid. When the uncertainty RESs and nonlinear load demand variation is not satisfied, the balance
condition of power is disturbed. The system parameters are presented in the following section.

3.1 Solar PV Power Generation System

Solar PV generates electricity from the sunlight by using the PV modules and the induced direct current
(DC) is converted into alternating current (AC) using an inverter. The performance of the PV models is
attained based on the current-voltage (I–V) curve. Also, the PV system performance is optimized with the
help of Maximum Power Point (MPP). According to the latitude regions, the optimum tilt angle is varied
[18]. The output of PV array power (Ppv) concerning the PV module current and voltage is determined by
Eq. (4).

Ppv ¼ YsolarfsolarðGinc=G
STC
inc Þð1þ dtempðTcell � TSTC

cell ÞÞ (4)

Figure 1: Proposed IMPC design for HRES based EMS system
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Here, the PVarray rated capacity is denoted as Ysolar concerning the standard test conditions (kW) based
output power, fsolar is described as the de-rating factor (%) of PV, the PVarray instance radiation of the solar
(kWm−2) is denoted as Ginc, GSTC

inc is described as the instance radiation under standard test conditions
(kWm−2), the coefficient of the temperature described as δtemp and its value is 0.004°C−1, the operation
temperature (°C) of the PV cell is denoted as Tcell and then the standard test conditions (25°C)
temperature of PV cell is described as TSTC

cell . For an optimal operation of the PV systems, the Maximum
Power Point Tracking (MPPT) is used for high power generation. Then another power generation of the
RES as wind power generation is presented in the following subsection.

3.2 Wind Power Generation System

A WECS is used for generating the power from wind based on the Permanent Magnet Synchronous
Generator (PMSG), which is connected to the grid. The Voltage Source Converters (VSC) of the stator
side controls the PMSG electrical torque for achieving the maximum power point tracking (MPPT) and
also the regulation of flux by controlling the direct axis current of the generator. The generated power is
transferred to the grid with the help of the grid side VSC and the DC-link by stabilizing the nominal
voltage value of the DC-link. The grid side VSC is utilized for compensating the reactive power for
establishing the unity power factor without injecting reactive power to the grid [19]. In a traditional
MPPT algorithm for avoiding the generator fast electrical dynamics, the generated electrical power (Pwecs)
is determined by Eq. (5).

Pwecs ¼ ðPmechgwecsÞ=ðswindLtrans þ 1Þ (5)

The mechanical power (Pmech) is given by Eq. (6).

Pmech ¼ 0:5qCpowerðkÞASwind (6)

where Ltrans is described as Laplace transform operator, the efficiency is denoted as ηwecs, the drive train’s
time constant as the ratio among shaft’s inertia and friction is τwind that is assumed to be 1.5S while ηwecs
is 0.9, air density is denoted as ρ, power coefficient is described as Cpower, λ is described as the tip
speed ratio, A is the disk area of rotor and Swind is denoted as the wind speed. The WECS main dynamics
are modelled with representing the input disturbance as a first-order filter to the system. The description
of the fuel cell model is presented in the following section.

3.3 Fuel Cell Model

An electrochemical device for exchanging a fuel chemical energy and oxidant directly to the low voltage DC
electricity is a fuel cell unit. The proton exchange membrane (PEM) fuel cell is one of the best selections for
distributed generation between the fuel cells. Generally, the transformation of an electrochemical reaction is
completed with oxygen or air oxidant. The oxidized output is not a portion of the structure of fuel cells, and
both products are provided instantaneously. However, electricity generation is kept constant when there are reagents.

Here, the complete model of the PEM fuel cell is modelled from a reduced model and validity was
demonstrated and compared the reduced and complete models [20]. The output voltage of fuel cells
ðVout

fc Þ in this reduced model is determined by Eqs. (7) and (8) respectively.

Vout
fc ¼ Ncell

fc ðEcell
fc � ðVact

fc þ Voh
fc þ Vconc

fc ÞÞ (7)

Ecell
fc ¼ Ecell

ini � keðT � TiniÞ � ðRT=2FÞ lnðPH2O=P
0:5
O2
PH2Þ (8)

Here, PH2O is assumed to be constant, PH2 is designed from the law of mass conservation and PO2 is
considered from the law of ideal gas, the other components of fuel cell are air cooler, compressor and
humidifier.
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3.4 DC/DC Boost Converters

The hybrid system energy source gives an adjustable voltage that is based on their current demand under
different ranges. Each source requires a device at the constant voltage for transferring the power output in the
DC bus.

Especially, the DC/DC converters require pulse width modulation (PWM) that is interconnected with
DC bus and sources. Here, the equivalent model of the converter is given in Fig. 2, which has been
modelled by the converters and also the switches of power electronics are described by the sources of
voltage and current. The reproduction dynamics of this converter model permits the control system results
and interactions of power system higher sample times. Finally, the IMPC for controlling the new EMS is
presented in the following section.

3.5 IMPC for EMS

In this work, the IMPC is designed, which is optimized by the ANN-based EPO, as shown in Fig. 3. EPO
algorithm optimizes the ANN with MPC scheme for accurate prediction of load for the management. At first,
the HRES output is given to the load; if there are any fluctuations in the received power at the grid, then it will
be returned to the controller. There as a reference, the energy at the converter is managed to comfort the load.

Figure 2: Equivalent circuit model for DC-DC converter

Figure 3: Overview of proposed IMPC
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In the MPC, the different optimization resolution problem in each sampling period, as different
information is combined in dynamic evolution, this concept is known as receding horizon, illustrated in
Fig. 4. In this process, the first control is manually performed through operators, which is a well-known
process comprising in area MPC control. At an industrial level, an exact spontaneous approach addresses
process control and affected diffusion. The predictor is controlled for determining for every instant t
based on the process model and the dynamic process evolution of predictions is [y(t + 1/t), …, y(t + (N/t))]2

in prediction horizon N from information dynamic accessible until that moment [21]. Thus, the cost
function of the process is taken as a main objective to retain the output y(t + (k/t)) and a trajectory w(t+k).

Initially, the input process u(t) is and the control signal u(t+1) have to be applied at that moment of the
previous instant u(t+(1/t)), which is one not equal to that postulated. The control methodology, analysis
describes that in all the implementation, the optimization problem in any predictive control models is
understood in each sampling period. In this methodology, it comprises some important components
such as optimizer, predictor and objective function, by combining with different variations of these
components to obtain some family of predictive controllers. In IMPC, the optimizer for the control of
constraints and objective function is set by the ANN. The set of constraints are power limit, load profile
etc., and the objectives considered here are demand satisfaction, cost profile. According to the objective
function utilized in the given optimization method, the process is modelled by considering different
controllers. This can be inferred diversity. The output is determined by Eq. (9).

yðtÞ ¼
X1
i¼1

hiuðt � iÞ (9)

Here, hi is the sampled values, which is attained by exposing process to an amplitude impulse unit equal
to the sampling time interval. Considering the N values as sum is truncated that is described by Eqs. (10)
and (11).

yðtÞ ¼
XN
i¼1

hiuðt � iÞ ¼ Hðz�1ÞuðtÞ (10)

Hðz�1Þ ¼ h1z
�1 þ h2z

�2 þ . . .þ hNz
�N (11)

Figure 4: The control structure of the IMPC
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The required prediction is described by Eq. (12).

yðt þ k=tÞ ¼
XN
i¼1

hiuðt þ k � i=tÞ ¼ Hðz�1Þuðt þ k=tÞ (12)

For stable systems, the truncated response is determined by Eq. (13).

yðtÞ ¼ y0 þ
XN
i¼1

giDuðt � iÞ ¼ y0 þ Gðz�1Þð1� z�1ÞuðtÞ (13)

Here, gi is the sampled value before step input y, then the variation of actual and reference values is
presented by Eq. (14).

DuðtÞ ¼ uðtÞ � uðt � 1Þ (14)

The value of y0 taken as 0 without generality loss with the predictor is determined by Eq. (15).

yðt þ ðk=tÞÞ ¼
XN
i¼1

giDuðt þ k � ði=tÞÞ (15)

The equations of state space are presented by Eq. (16).

CðxðtÞÞ ¼ Axðt � 1Þ þ Buðt � 1Þ ¼ yðtÞ (16)

Here, the state is described as x, the system matrices A, B are denoted as input and C is the output. The
prediction control model is illustrated by Eq. (17).

yðt þ ðk=tÞÞ ¼ C AkxðtÞ þ
XN
i¼1

Ai�1Buðt þ k � ði=tÞÞ
" #

(17)

This strategy has a favorable position, which additionally helps multivariable frameworks, though
permitting for investigating the procedure internal structure. To predict the output parameters, the
significant input constraints are generated. The selected parameters include the controllable parameters,
uncontrollable parameters and parameters impacting system operations. The uncontrollable parameters
like solar normal flux and outside air temperature. The data-driven models of hybrid renewable energy
system (HRES) have three zones, the humidity and temperature of these three zones of energy
consumption at t + 1. The neural network of multi-layer perceptron (MLP) is working for improving
models. The IMPC is used with two hidden layers for the ANN, thus forming four layers as input, hidden
layer 1, hidden layer 2 and output layer [22] as shown in Fig. 5. To evaluate the predictive model
performance, four metrics are utilized in this model described as follows. These metrics are given to the
ANN.

The mean absolute percentage error (MAPE) is determined by Eq. (18), which is computes the power
fluctuation error present in the system.

MAPE ¼ 1

n

Xn
i¼1

Yi � Y �
i

Yi

����
����� 100 (18)

The standard deviation of absolute percentage error (Sd_APE) is evaluated by Eq. (19), computes the
MPC controller standard deviation error.
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Sd APE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Yi � Y �
i

Yi

����
�����MAPE

� �2

n� 1

vuuut
(19)

The maximum absolute error (MAX) is estimated by Eq. (20), which is used to find the maximum error,
which is present in the load profile.

MAX ¼ max fjY1 � Y �
1 j; jY2 � Y �

2 j; . . . ; jYn � Y �
n jg (20)

The minimum absolute error (MIN) given by Eq. (21) is used to find the minimum error present in the
load profile.

MIN ¼ min fjY1 � Y �
1 j; jY2 � Y �

2 j; . . . ; jYn � Y �
n jg (21)

In the hidden layer, for training the neural networks, the number of nodes is randomly set from 3 to 25.
To initialize the weights of connecting input, output and hidden nodes, the normal distribution of standard
with deviation 1 and mean 0 is presented. In the next section discussed the established predictive models
based MLP are the optimization process utilized.

3.6 EPO Based Training of ANN

Here an optimization algorithm named EPO algorithm is proposed for optimizing the ANN parameters
for improving the performance of the proposed system. The algorithm inhibits the huddling behavior of
emperor penguins (EP) [23]. The EP move towards the high temperature profile region on the search
space. Here the temperature search of the EP is noted as the weight of the ANN with reduced error.
Number of EPs are move in the ANN by taking the initial output of the ANN to search the weight and
bias value. The fitness function is the minimization of error in the neural network and is given by Eq. (22).

fitnessfunction ¼ minðerrorÞ (22)

The total population for the search of the low error rate by EP is 2 N. Initially the boundary limit for the
EP to move on the search space is given by Eq. (23).

Hidden layer 1 and 2 Input layer Output layer

Weight update by EPO

Figure 5: ANN for IMPC with two hidden layers
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� ¼ rf (23)

where, ϕ is the weight factor between the hidden layers andΨ is the current output of the neural network. The
complex term is given by Eq. (24).

F ¼ fþ ic (24)

Here, iγ is the imaginary term to generate the potential having γ as vector and F is the analytical function.
Then the error rate searched by the EP is given by Eq. (25).

E0 ¼ E � t iteration

s� t iteration

� �
(25)

E ¼ 1 0 � P � 0:5
0 0:5 � P � 1

�
(26)

where, s is the ongoing iteration. E′ is the current search by EP, which is calculated based on the previous
search value. E is the previous search that is obtained at the previous iteration. P is the error rate if the
error rate at the previous stage is within 0.5, then the accurate prediction is needed else the maximum
error is obtained on the previous stage. t iteration is the total number of iterations performed by the EP.
The distance between the two EP which are in search of optimal error rate is given by Eq. (27).

DEP ¼ AbsðZðLilÞ:Opt � CilPoðsÞÞ (27)

where, Z is the force that makes the EP to move towards the low error rate value and the current position
of the EP is given by Po(s). Opt is the optimal error rate and Lil is the parameter that is used to avoid the
collision between the EP and are given by Eq. (28).

Lil ¼ M � E0 þ ðOpt � PoðsÞÞ � randðÞ � E0 (28)

where, Cil = rand() and M is a constant which is set to 2. The function R() can be given by Eq. (29).

RðLilÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � e�s

z � e�sð Þ2
q

(29)

Then the relocation of the EP is set that is the movement of EP by calculating the error rate. The
movement of it is given by Eq. (30).

Poðsþ 1Þ ¼ OptðsÞ � Lil:DEP (30)

where, Po(s + 1) is the position of EP in the subsequent iterations. The pseudocode for the EPO that relies on
the search for the exploration and exploitation properties is given below:

Algorithm:

Step 1: Initialize the number of EP that are involved in search of error factor

Step 2: Initialize the parameters E`, M, Z (), t_iteration

Step 3: Find the initial position of the EP

Step 4: Evaluate the fitness for the EP

Step 5: Find the initial error rate in the ANN

Step 6: until error rate is less than the other one

(Continued)
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Step 7: Calculate the weight and bias by the equation

Step 8: Determine the position of EP

Step 9: Evaluate the new solution

Step 10: Sort the solution

Step 11: Return the fitness

Step 12: End

A linear dynamic model developed by empirical data is used in most industrial applications, even though
the process itself is often nonlinear. Due to the difficulty in developing a generic nonlinear model from
empirical data, the linear models have been used, and the computational expense is often involved in
using nonlinear models. For developing a nonlinear dynamic model from empirical data, and EPO
optimized ANN-based technique is presented in this paper. It shows that these models are utilized in the
MPC method. In several applications, this nonlinear IMPC based approach has been successfully
implemented. The proposed method performance is described in Section 3.

4 Result and Discussions

Here, the proposed IMPC is utilized as an energy management system. The proposed method was
implemented in an Intel Core i5 processor through 8 GB RAM based hardware with MATLAB/Simulink
platform with the 2016a version. The proposed system performances are compared with recently
developed existing works, such as ACO-ANN, BP-NN and MPC. The load forecasted performance is
compared with actual load, forecasted load with ACO-ANN and predicted load with NN-BP. The
proposed controller for total harmonic distortion (THD) is compared with the existing NN-BP and MPC
controller. The performance comparison is performed utilizing power parameters of the proposed control
scheme. The energy management capability of the proposed system is analyzed for different atmospheric
conditions as case studies. The detailed working procedure of the proposed control method and the
resultant energy management system will be presented.

The MATLAB/Simulink for the proposed architecture has been shown in Fig. 6. The PV, wind and fuel
cell are modelled on the corresponding blocks in Fig. 6. For the control of harmonic produced by the DC-DC
converter, the FW diode is used along with the three power generator blocks. For the controlled delivery of
the power to the load, the 3-level bridge is used. The next scope to this block is the three-phase output power
generated by the generators. In this setup, if the power generator fails, then the connection with the fuel cell
supply the load. The state of charge is also analyzed and is transmitted to the fuel cell when the other
generators are not able to meet the load. On the whole, the designed Simulink setup delivers power from
the power generator to the load through the grid connection. Finally, the results are evaluated, and the
power balance between the generated power and the load demand is obtained in this system.

The simulation results of energy for a 12-h performance are shown in Fig. 7. It shows the generated
power in kW, load consumption power, high generation power of fuel cell and balanced storage power
between the generated and demand power. The results are obtained in various conditions for 12-h. The
first graph in Fig. 7 indicates the generated power graph by the PV and wind generator, the second graph
represents the load profile; the third one represents the amount of power that is balanced in the storage
system for future use and the last graph represents the power generated by the fuel cell.

Algorithm (continued)
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The self-energy storage system has also been displayed in Fig. 7, and it is related to the variation in the
generated power and consumed load power. The storage system maintains the state of charge in it by sending
the signal to the fuel cell when the power is indeed to the load. If the generated power is lower than the load
utilization, the storage system will be discharged. At the same time, the power grid input power is filled based
on the power deficit, because all load demand cannot satisfy the discharging power.

Fig. 8 shows the simulation results of the energy routed for 12 hrs in different conditions. It shows that
the high generation power, load utilization power, drop out of fuel cell power and the balanced storage power.
The generated power is increased in this condition. Demand utilization values are also shown in this result.

Figure 6: Simulation diagram of the proposed model

Figure 7: Simulation results of energy transmitted for 12 h: Power generation, load consumptions, fuel cell
generated power, and balanced storage system
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Besides, reduced fuel cell power is also shown in this performance. Finally, the balanced storage power is
also displayed in these results.

Fig. 9 shows the comparison of load power and load demand in different state. The power values are
given for 24-h. On one condition, the load demand is constant; that is, constant load demand is there for
24 h. The generated power reaches the load demand in less time duration. 7 kW constant load demand is
reached during the 1 h time period. Next, for another condition, different load demand has been fixed in
24 h. Here also the generated power meets the demand at different load demand.

Fig. 10 shows the comparative analysis of load forecasted with the proposed system. The performance of
the proposed model is compared with actual load, load forecasted of ACO-ANN and NN-BP. High forecasted
load power value is shown in Fig. 10. Compared with existing approaches, the proposed model forecasted the
load easily. Compared to the actual load, the proposed model gets the performance of second-most level.

Figure 8: Simulation results of energy routed for 12 h: High power generation, load consumptions, low
power generation of the fuel cell, and low balanced storage system

Figure 9: Load power and load demand comparison at different conditions
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Compared to the NN-BP approach, the proposed model obtains better results. The forecasted load values are
obtained in kW for 24 h. Existing approaches NN-BP obtains lowermost value for the forecasted load.

Fig. 11 shows the comparison of power values one year from Jan-18 to Dec-18. For 1st year, the
approximate power generated by the PV, wind, the demanded load from the grid side, and the fuel cells
balanced power generation to equalize the load is shown in Fig. 11. Comparison of generating power of
PV and wind in kW, balanced power of fuel cell in kW, required grid power in kW and the total power
are shown in Fig. 11. The blue lines represent the PV generated power in kW; green line represented the
FC balance power in kW; sky blue line represents the total power (kW); red line represents the wind
generated power (kW) and violet line represents required grid power (kW). The total and required grid
power is varied in each month. The highest rate of total and the required power is indicating oct-18. At
Jan-18, the total power is lower than the demand, therefore the discharging is placed, and hence the
balanced power gets discharged. Compared to Jan-18, Apr-18 has low demand and high total power, and
then the balanced power stored or charged. Furthermore, Dec-18 also has a lower demand than the total
power, so the remaining power is charged. Based on the analysis, the proposed system gives better
outcomes for all time variations. Finally, the proposed system concludes with its performance from
analysing different weather and load demand conditions.

Cost reduction is the primary requirement in the power system to manage energy. The cost analysis
brings the average specificity of the energy management system in terms of power utilization by the load.
Fig. 12 displays the computational cost analysis of IMPC, which was performed concerning total system

Figure 10: Comparison analysis of load forecasted with proposed system

Figure 11: Comparison of power values for one year from Jan-18 to Dec-18
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cost, life cycle cost and annualized cost by comparing with ACO-ANN, BB-NN, MPC and IMPC. The
performance analysis shows that the total system cost, life cycle cost and annualized cost obtained by
IMPC are better compared to other methods. The highest cost using method is ACO-ANN method. The
IMPC is most benefit and cost-effective method compared to other comparative methods because of
neural network optimized EPO, which removes the noise present in the system and give the perfect
output. This is the reason for reducing the cost in the proposed IMPC method.

Tab. 1 shows the comparison of total harmonic distortion (THD). The reduction of harmonics using the
proposed controller is better than that using the NN-BP and MPC controllers. The THD value for the existing
NN-BP controller is 18.19% and MPC controller is 16.11%. Hence the THD value becomes lower when the
proposed controller has been used.

5 Conclusions

An improved model predictive control (IMPC) scheme has been developed for the prediction of accurate
load and weather forecasting data of RES with EMS in this work. The proposed IMPC is working based on
the combination of MPC controller and EPO optimization algorithm, which optimizes the bias and weight of
ANN. Further, this optimized ANN is used to tune the MPC prediction model. The design of the proposed
EMS structure consists of PV, wind and fuel cells along with household appliances and grid system. The
weather and forecast data are generated from RES for processing the performance of the proposed EMS.
There are some converters like AC-DC and DC-AC, and these are used in the conversion process of one
form to another form of signal. The MATLAB/Simulink platform has been utilized for the
implementation of the proposed system, and the outcomes are validated with some traditional techniques

Figure 12: Analysis of computational cost

Table 1: Comparison of THD

S. No Controller used THD%

1 NN-BP 18.19

2 MPC 16.11

3 IMPC 0.06
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based on the different atmospheric conditions. Computational cost analysis of IMPC is performed concerning
total system cost, life cycle cost and annualized cost by comparing with ACO-ANN, BB-NN, MPC and
IMPC. The performance analysis shows that IMPC consumes less cost than comparative methods. The
THD obtained by the proposed controller is 0.06%, which is better when compared with the existing NN-
BP and MPC controllers. However, this system is only applicable for household appliances (moderate
power). In future, the work will be implemented for heavy duty industries carrying high power where the
power fluctuation limitation is necessarily needed.
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