
Hybrid Convolutional Neural Network and Long Short-Term Memory
Approach for Facial Expression Recognition

M. N. Kavitha1,* and A. RajivKannan2

1Department of Computer Science & Engineering, Kongu Engineering College, Perundurai, Erode, 638060, Tamil Nadu, India
2Department of Computer Science & Engineering, K.S.R. College of Engineering, Tiruchengode, 637215, Tamil Nadu, India

*Corresponding Author: M. N. Kavitha. Email: kavithafeb1@gmail.com
Received: 23 November 2021; Accepted: 27 February 2022

Abstract: Facial Expression Recognition (FER) has been an important field of
research for several decades. Extraction of emotional characteristics is crucial
to FERs, but is complex to process as they have significant intra-class variances.
Facial characteristics have not been completely explored in static pictures. Pre-
vious studies used Convolution Neural Networks (CNNs) based on transfer learn-
ing and hyperparameter optimizations for static facial emotional recognitions.
Particle Swarm Optimizations (PSOs) have also been used for tuning hyperpara-
meters. However, these methods achieve about 92 percent in terms of accuracy.
The existing algorithms have issues with FER accuracy and precision. Hence,
the overall FER performance is degraded significantly. To address this issue, this
work proposes a combination of CNNs and Long Short-Term Memories (LSTMs)
called the HCNN-LSTMs (Hybrid CNNs and LSTMs) approach for FERs. The
work is evaluated on the benchmark dataset, Facial Expression Recog Image
Ver (FERC). Viola-Jones (VJ) algorithms recognize faces from preprocessed
images followed by HCNN-LSTMs feature extractions and FER classifications.
Further, the success rate of Deep Learning Techniques (DLTs) has increased with
hyperparameter tunings like epochs, batch sizes, initial learning rates, regulariza-
tion parameters, shuffling types, and momentum. This proposed work uses
Improved Weight based Whale Optimization Algorithms (IWWOAs) to select
near-optimal settings for these parameters using best fitness values. The experi-
mental findings demonstrated that the proposed HCNN-LSTMs system outper-
forms the existing methods.

Keywords: Facial expression recognition; Gaussian filter; hyperparameter
optimization; improvedweight-basedwhale optimization algorithm; deep learning (DL)

1 Introduction

FER in humans has developed into a significant subject of study in these twenty years. Humans transmit
their emotions and intentions through the face and face is the most powerful, natural, and instantaneous way
of assessing emotions. Individuals use facial expressions and verbal tones to infer emotions like joy, sadness,
and anger. Computer visions recognize facial expressions that reflect anger, contempt, fear, pleasure, sadness,
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and surprise. Many studies [1,2] have pointed out that verbal components account for 1/3rd of human
communications, while nonverbal components account for the balance 2/3rd. Facial expressions are
nonverbal components that carry emotional meaning and are primary to interpersonal communications
[3,4]. As a result, it’s no surprise that research into facial expressions has attracted much attention in
recent decades [5]. Automated and real-time FERs have significant influences in many areas, including
healthcare, human-computer interaction, safe driving, virtual reality, picture retrievals, video-
conferencing, human emotion analyses, cognitive sciences, personality developments, and so on [6].
However, effective identification of facial emotions from images/videos remains a complex task where
the challenges are inaccurately extracting emotional features.

Detections, feature extractions, and facial expressions categorizations are the basic phases in automated
FERs. Studies have used several feature extraction approaches, including Scale-Invariant Feature Transform
(SIFT) [7], Histograms of Oriented Gradients (HOGs) [8], Local Binary Patterns (LBPs) [9], and Local
Gabor Binary Patterns (LGBPs) [10] for facial emotion identifications. These approaches performed well
on small training sets but were constrained in generalizations and could not be adapted to FERs. Many
Machine Learning Techniques (MLTs) have been proposed for classifying facial expressions, including
Neural Networks (NNs), Support Vector Machines (SVMs), Bayesian Networks (BNs), and rule-based
classifiers but failed to achieve acceptable recognition rates.

Despite the use of DLTs in FERs difficulties persist as they need a substantial quantity of training data to
avoid overfitting [11]. Moreover, available databases/datasets on FERs are insufficient to train NNs with a
deep architecture. NNs have been used in object identification tests successfully. FERs are also affected
by significant inter-subject variances based on humans’ characteristics like age, gender, ethnicity, and
level of expressiveness. Confusions are also added by variations in postures, lightings, and occlusions in
unconstrained facial expression settings. These variables are nonlinearly associated with FERs and
emphasize the need for DLTs to address high intra-class variations while and learning expression-specific
representations effectively.

The study in [12] used the Toronto Face Database (TFD) dataset for FERs using multitask CNNs. Their
scheme resulted in a success rate of 85.13%. Khorrami et al. [13] used zero-bias CNNs for facial expression
identifications and achieved 88.6% in terms of accuracy. Khorrami et al. [14] proposed fine-tuned CNNs for
predicting facial expressions. Their tests on the TFD dataset resulted in a success rate of 88.9 percent.
However, CNN’s training choices directly impact performance successes where improving hyper-
parameter optimizations can lead to enhanced accuracy in DLTs. Following this introductory section, a
thorough examination of prior proposed FERs is examined followed by this study’s proposed FER design
approach. The fourth section displays simulation results followed by conclusions and future projects.

2 Literature Review

Zhang et al. [15] created a joint expression modeling system for FERs based on Generative Adversarial
Networks (GANs). The work used the generator’s encoder-decoder structure to learn facial images’ identity
representations. Then, the authors used expressions and posture codes where identity representations were
decoupled from both expressions and pose variants. The automated production of facial images with
various expressions in arbitrary positions for expanding FERs training sets has been focused on in the
final stage. Quantitative and qualitative assessments on controlled and uncontrolled datasets showed that
their proposed algorithm outperformed most other techniques.

Zeng et al. [16] proposed a novel framework for FERs that could accurately discriminate expressions as
it contained accurate and comprehensive information about emotions. The study introduced high-
dimensional features encompassing facial geometry and appearances for its FER. In addition, DSAEs
(Deep Sparse Auto Encoders) detected facial emotions with high accuracy by learning discriminative
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features robustly from data. Their experimental results showed that their framework had high recognition
accuracies (95.79%) on the extended Cohn–Kanade (CK+) database and outperformed the other three
benchmarked methods by 3.17%, 4.09%, and 7.41%. Their proposed scheme used eight facial emotions,
including neutral expressions, for better recognition accuracy, demonstrating the practicality and
effectiveness of the approach.

FaceNet2ExpNet presented by Ding et al. [17], was a unique idea in network-based training for
expression recognition from static pictures. The scheme used a novel distribution function to describe the
expression network’s high-level neurons. The work used a two-stage training method wherein the pre-
training step, expressions trained CNNs and regularized by face net. Moreover, in the refining stage, they
appended fully-connected layers to the pre-trained CNNs layers and jointly trained the entire network.
Their visual findings demonstrated that their model captured better high-level expression semantics. Their
evaluations on FERs datasets:CK+; Oulu-CASIA; TFD, and SFEW, showed excellent results compared to
other techniques.

Li et al. [18] proposed a new and efficient Deep Fusion-CNNs (DF-CNNs) in their study for multimodal
2D/3D FERs. Feature extraction/ feature fusion subnets and a softmax layer constituted their DF-CNNs.
Each textured three-dimensional face scan was represented as six 2D facial attribute maps (one geometry,
three normal, one curvature, and one texture). These maps were fed into the proposed DF-CNNs for
learning features and fusion resulting in highly concentrated facial representation (32-dimensional). The
study used two methods for predicting expressions: 1) learning linear SVMs on 32-dimensional fused
deep features and 2) directly predicting using softmax on the six-dimensional expression probability
vectors. Their DF-CNN’s integrated feature/fusion learning into a single training architecture. The study
illustrated the efficacy of DF-CNNs with extensive tests on three 3D facial datasets and compared it with
the performance of DFCNN handmade features, pre-trained deep features, fine-tuned deep features, and
other techniques (i.e., BU-3DFE Subset I, BU-3DFE Subset II, and Bosphorus Subset). Their proposed
DF-CNN’s consistently outperformed other methods. This was probably the first paper to introduce deep
CNN to 3D FERs and deep learning-based feature level fusion for multimodal 2D/3D FERs.

Sun et al. [19] proposed robust vectorized CNNs with an attention mechanism for extracting
characteristics from facial ROIs (Region of Interests). This study designated facial ROIs before sending
them to CNNs. The attention notion, in particular, was used as the first layer of their proposed NNs to
conduct ROI-related convolution computations and extracted robust features. The study’s ROIs-related
convolution outcomes on particular ROIs were found to be improved. The scheme used CapsNetin NNs
next layer for the generation of feature vectors. Multi-level convolutions extracted feature vectors from
distinct ROIs for facial expressions, which were subsequently rebuilt by a decoder to reconstruct the
entire image. Their experimental findings showed that their suggested method was extremely successful
in enhancing the performances of FERs.

Alenazy et al. [20] focused on predicting facial expressions in their study where the datasets CK+, Oulu
CASIA, MMI, and JAFFE were used for testing. Their scheme was semi-supervised DBNs (Deep Belief
Networks). For accuracy in FERs, the study used GSAs (Gravitational Search Algorithm) which
improved specific parameters of DBMNs. The study for extracting features from lips, cheeks, brows,
eyes, and furrows, their scheme used HOGs (Histogram Oriented Gradients) and 2D-DWTs (2D-Discrete
Wavelet Transform). Their feature selections eliminated undesirable information from images. Their
Kernel-based PCAs (Principal Component Analysis) extracted features. Their proposal also discovered
non-linear components by obtaining higher-order correlations between input variables. Features derived
from the lip patches using HOGs resulted in accurate facial emotion categorizations. Their results showed
that any classifier based on DBN-GSA could produce accurate results.
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Ryu et al. [21] introduce a novel face descriptor for FERs. Their facial emotion detections were called
Local Directional Ternary Patterns (LDTPs) which effectively encoded emotion-related characteristic
information including eyes, brows, upper nose, and mouth) with the help of directional information and
ternary patterns, thus capitalizing on edge patterns’ strength in edge areas. They proposed histogram-
based facial description methods which partitioned a human face into multiple areas and sampling codes.
They used face descriptors with two-level grids while sampling expression-related information using
different scales. One was a coarse grid for stable codes (closely connected to non-expressions) and a finer
grid for active codes (highly related to expressions). Their multi-level technique allowed the description
of facial movements at a finer granularity while maintaining coarse expression characteristics. The study
learned from LDTPs codes from emotion-related facial areas where their experimental results suggested
that their designed technique enhanced overall FERs accuracy values.

3 Proposed Methodology

This study proposes the HCNN-LSTMs approach for FERs where the proposed scheme is divided into
four stages: pre-processing, facial detections, feature extractions, and classifications. Fig. 1 depicts the
workflow of the proposed scheme.

3.1 Input

In this work, FERC Dataset is taken as the input for facial expression recognition. It contains two
directories, namely train and test and file labels. Both train and test directories contain seven classes:
anger, disgust, fear, happiness, neutral, sadness, and surprise.

Facial expression 
image database

Preprocessing

Gaussian filter

Face detection using Viola-Jones algorithm     

Feature extraction and classification

Hybrid Convolutional Neural Network -
Long Short-Term Memory 

Parameter selection using 
Improved Weight based Whale 

Optimization Algorithm

Final FER results 

Figure 1: Flow diagram of the proposed work
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3.2 Preprocessing Using Gaussian Filter

Pre-processing facial pictures is a very crucial process in FER. The image noises can be filtered using
filters, and this study uses GFs (Gaussian Filters) to smoothen noises present in facial images. The GFs usage
based on a 2-D convolution smoothing operator where current image pixel values are replaced by weighted
mean computed from the pixel’s neighborhood. This weight decreases as the pixel’s distance from the centre
increases. GFs are similar to mean filters but use a different kernel to reflect Gaussian (‘bell-shaped’) humps.
Eq. (1) represents 2D Gaussian distributions with 0 and standard deviation σ = 1.

G x; yð Þ ¼ 1

2pr2
e�

x2þy2

2r2 (1)

where, σ is the standard deviation and x, y is the local coordinate of an image.

3.3 Facial Detections Using VJ Algorithm

The faces from images are detected using VJ algorithm in this research work. This technique is used as it
has high detection rates in real-time data. This VJ algorithm can be divided into four stages: Haar feature
selections, integral images, Adaboost training, and cascading classifiers.

3.3.1 Haar Feature Selections
Haar features are visual characteristics used for object detection. VJ algorithm modifies Haar wavelet

concepts to generate Haarlike characteristics. Many humans share a few common characteristics, like eyes
in images are darker than their neighboring pixels while the nose region looks brighter than the eyes.
Haar features can be assessed where two or three rectangles are used to determine the existence of a face
in images. Each Haar feature’s value can be computed by calculating the area of each rectangle and then
adding it up. Fig. 2 shows the haar features.

3.3.2 Creating an Integral Image
Integral images are a kind of image representation used in the pre-processing phase, and integral images

are computed. VJ algorithm starts by converting input facial images into integral images, which is
accomplished by setting each pixel equal to the total sum of all pixels above and to the left of the pixel.
Integral images can be computed using Eq. (2):

Figure 2: Haar features
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I x; yð Þ ¼
X

x0�x;y0�y

o x;; y;ð Þ (2)

where I - integral image and O - original image

Integral images are summations of rectangular regions where the sum of all pixels within a rectangular
region Z = [A1, A2, A3, A4] can be computed using Eq. (3)

I x; yð Þ ¼
X
x;yð Þ2z

O A4ð Þ þ O A1ð Þ þ O A2ð Þ þ O A3ð Þ (3)

Features are determined in a specified time since the sum of the pixels in the component rectangles can
be computed in constant time. VJ discovers the values through a detector and a basic resolution of
24*24 pixels for producing good results.

3.3.3 AdaBoost Based Raining
AdaBoost is an MLT that finds the correct hypothesis by combining multiple weak hypotheses with

average accuracy. Adaboost is used in this work as it aids in the selection of only the best features in a
pool of features. Once it establishes required features, a weighing of features is used to determine if the
feature is the part of the window with a face. The characteristics are often called weak classes.

3.3.4 Cascading Classifiers
The use of multiple/cascade of sophisticated classifiers can produce higher detection rates. VJ face

detection algorithm works by scanning detectors often with different sizes of the same image where the
disproportionate number of assessed sub-windows may not face. Cascade classifiers are made of layers
where each layer has a powerful classifier, and each level is responsible for determining if a particular
sub-window is a face/non-face.

3.4 Feature Extractions and Classification

This research work uses HCNN-LSTMs for its feature extractions and facial expression categorizations.
The CNNs used in the study include training alternatives that can directly impact performance successes. The
essential parameters for training include maxepochs, minbatch sizes, initial learning rates, regularization
parameters, shuffle types, and momentum. This work’s IWWOAs select near-optimal settings of
parameters used in this work.

3.4.1 CNNs
CNN is one of the most powerful DLTs that can function with several hidden layers, convolute these

layers, and sub-sample to extract low/high-level features from input data. CNN typically has convolution,
sub-sampling/pooling, and fully connected layers as depicted in Fig. 3.

This work uses CNNs for two main things: feature extractions and classifications. Multiple convolution
layers are used for feature extractions, and max-pooling and activation functions are subsequently used.
Classifiers are typically made up of completely linked layers.

3.4.2 Convolution Layer
Convolution layer is a key component of CNNs in this study and is used for feature extractions. It

includes linear/non-linear processes including convolution and activation functions. Input features are
convolved with a kernel in this layer for filtering (convolution matrix kernels) and producing n output
features identified from input images. The output features are generated by convolving the kernel and
inputs referred to as feature maps of size i*i.
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CNN has many convolution layers, and output features are inputs to subsequent convolution layers.
Each convolution layer has n filters convolved with inputs, resulting in (n*) feature maps, which equals
the number of filters used in convolutions. It should be noted that each filter map is regarded as a distinct
feature at a given position in inputs. The outputs from lth convolution layer denoted by C lð Þ

i , has feature
maps and computed using Eq. (4)

C lð Þ
i ¼ B lð Þ

i þ
Xa l�1ð Þ
i

j¼1

K l�1ð Þ
i;j � C lð Þ

j (4)

where, B lð Þ
i is the bias matrix and K l�1ð Þ

i;j is convolution filter or kernel of size a*a that connects the j-th feature
map in layer (l − 1) with the i-th feature map in the same layer. The output C lð Þ

i layer consists of feature maps.

In Eq. (5), the first convolutional layer C l�1ð Þ
i is input space, that is, C 0ð Þ

i ¼ Xi. The kernel generates feature
map. After the convolution layer, the activation function can be applied for nonlinear transformation of the
outputs of the convolutional layer

Y lð Þ
i ¼ Y C lð Þ

i

� �
(5)

where, Y lð Þ
i - output of the activation function, C lð Þ

i - input that it receives. CNNs generically use activation
functions which may be sigmoid, tanh, and ReLUs (rectified linear units). This research work uses ReLUs
depicted in Eq. (6)

Y lð Þ
i ¼ max 0;Y lð Þ

i

� �
(6)

ReLUs are used in DLTs as it reduces interactions and nonlinear effects. When the input is negative,
ReLUs convert outputs to 0 while positive values are unchanged. The main advantage of activation
functions is its accommodation of quicker training based on an error derivative, which becomes
extremely tiny in the saturating area, and therefore weights that get updated virtually disappear also
referred to as vanishing gradient problem.

Input 
image  

Convolutional 
layer

Sub 
samplinglay

er

Convolutional 
layer

Sub 
sampling 

layer

Convolutional 
layer

Sub 
sampling 

layer

2 Fully connected 
layers

Output

5× 5
5× 52× 2

2× 2
1× 1 1× 1

Prediction  

Figure 3: CNNs
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3.4.3 Sub-Sampling/Pooling Layer
Reducing dimensionality of input features maps produced from preceding convolutions is the primary

goal of this layer. Sub-sampling process is carried out between masks and feature maps where a mask of size
bb is chosen. The sub-sampling procedure between masks and feature maps can be depicted mathematically
as Eq. (7).

X l
j ¼ f bljdown X l�1

j

� �
þ blj

� �
(7)

where down (•) is a sub-sampling function and sums each individual n-by-n features in the input t, resulting
in an output that is n-times smaller in spatial dimensions. Each output map has its own multiplicative bias and
additive bias b.

3.4.4 Fully Connected Layer
The convolution layers extracted features and were sampled by pooling layers translated into the

network’s final output. The probabilities for each class in classification tasks are a subset of fully
connected layers. The Softmax activation function used in the output layer and detailed below:

Y lð Þ
i ¼ f ðz lð Þ

i Þ (8)

z lð Þ
i ¼

Xm l�1ð Þ
i

i¼1

w lð Þ
i;j y

l�1ð Þ
i (9)

where, w lð Þ
i;j are the weights adjusted in the fully connected layer for constructing representations of each

class, and f is a transfer function that represents non-linearity. The fully linked layer’s non-linearity is
constructed through neurons, instead of distinct layers like convolution/pooling layers.

3.4.5 LSTMs
The LSTMs are a type of RNNs (Recurrent Neural Networks), but describe temporal sequences and

long-term relationships within them better than standard RNNs. Fig. 4 depicts a typical LSTM cell that
encompasses input, forget and output gates along with a cell activation component. These devices receive
activation signals from multiple sources and use specific multipliers to regulate cell activations.

The input gate of LSTM is defined as

it ¼ r Wxixt þWhiht�1 þWcict�1 þ bið Þ (10)

The forget gate is defined as

ft ¼ r Wxf xt þWhf ht�1 þWcf ct�1 þ bf
� �

(11)

The cell gate is defined as

ct ¼ ftct�1 þ ictanhðWxcxt þWhcht�1 þ bcÞ (12)

The output gate is defined as

ot ¼ r Wx0xt þWh0ht�1 þWc0ct þ b0ð Þ (13)

Finally, the hidden state is computed as

ht ¼ ottanh ctð Þ (14)

tanh - hyperbolic tangent activation function, xt - input at time t and Wand b - network parameters (Weights
and Biases).
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The σ is the logistic sigmoid function, and i, f, o and c are respectively the input gate, forget gate, output
gate and cell state. Wci, Wcf and Wco are denoted weight matrices for peephole connections. In LSTM, three
gates (i, f, o) control the information flow. Input gates determine input ratios which influence determining cell
states (12). Forget gates determine whether prior memory ht1 is passed where prior memory ratio is derived
based on Eq. (10) and used in the Eq. (12). Output gates decide if a memory cell’s output is passed and
depicted as Eq. (14). LSTMs address the vanishing gradient issue with the use of these three gates.
LSTM cells replace the recurrent hidden layer in the LSTM-RNN architecture.

The proposed HCNN-LSTMs approach takes a facial image as input and extracts features followed by
dimensionality reduction where two layers of CNNs are used. The convolution layers use learnable filters to
identify certain characteristics in the original image where different filters identify them and convolve them,
resulting in a set of activation maps. These generated maps are then fed into LSTMs after being reduced in
spatial dimensionality. LSTMs further acquire temporal features of images for accurate recognition of facial
expressions. The two fully connected layers that existed in CNN architecture which refers to FC1 and
FC2 are used to categorize the facial emotion recognition as happiness, disgust, fear, angry, neutral, sad
and surprise based on the probabilities for each class in classification tasks. Fig. 5 shows the architecture
of the proposed HCNN-LSTM.

Figure 4: Long short term memory cell

Detected face image

Convolutional layer 

Sub sampling layer 

Convolutional layer 

Sub sampling layer 

LSTM layers 

Fully connected layer 

FER prediction results

Figure 5: Hybrid CNN-LSTM model
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3.4.6 Parameter Selection Using IWWOAs
Increasing the number of training samples directly affects the success rates of DLTs. Tuning DLT’s

hyperparameters like max epochs, min batch sizes, initial learning rates, regularization parameters, shuffle
types, and momentum improves the model’s performances. This work’s proposed IWWOAs select near-
optimal settings for these parameters based on which CNNs train on adjusted hyperparameter values.
Finally, the testing set is categorized using a trained model to assess the effectiveness of the suggested
technique.

Mirjalili and Lewis presented a meta-heuristic nature-inspired that mimics the real-life behavior of
whales. WOAs are swarm-based, mimicking humpback whales’ social behavior and inspired by their
bubble-net tactics while hunting. These whales are the biggest group of baleen whales and always stand
together. They hunt tiny groups of krill and small fish near the surface by forming bubbles along with a
spiral pattern around their prey and then swimming up to the surface along this path. Their behaviors can
be represented numerically.

Encircling of Prey: Maxepochs, small batch sizes, initial learning rate, regularization parameters,
shuffle types, and momentum are treated as the whale population X i ði = 1, 2, 3, …, n). Recognitions are
imagined as a fitness function. Humpback whales can detect the presence of prey and encircle it where
WOAs assume that the current best candidate solution is either the targeted optimal value or a value near
to the target optimal value. When the best search agent is determined, other search agents attempt to
update their locations about the best search agent and depicted by the following equations:

~D ¼ ~C: X ��!
tð Þ � ~X tð Þ

��� ���; (15)

~X t þ 1ð Þ ¼ X ��!
tð Þ �~A:~D; (16)

To improve the performance of the WOAs, this work uses a time-varying inertia weight along with the
update Eq. (16). Inertia weight x is defined in Eq. (17).

x ¼ x1 � x2ð Þ Itermax � Iter

Iter

� 	
þ x2 (17)

~X t þ 1ð Þ ¼ x: X ��!
tð Þ �~A:~D (18)

where, x1 is initial value of the inertia weight, x2 final values of the inertia weight, iter current iteration, the

Itermax is the maximum number of allowable iteration, it represents the present iteration~A and ~C refer to the
coefficient vectors. The X∗ indicates the location vector of the best solution, which is acquired till now and

X ��!
stands for the location vector. X has to be updated through iteration if a better solution exists.

The vectors A
!

and ~C are computed as below:

~A ¼ 2 a!: r!� a! (19)

C
�! ¼ 2: r! (20)

where 0a0
�!

is linearly reduced from two to zero with the number of iterations. ‘r’ represents the random vector
in the range [0,1].

As discussed in the preceding section, humpback whales use the bubble-net technique to attack their
prey. The following is a mathematical formulation of this approach.

Exploitation Phase: This phase is called a bubble net attack, where operations are based on two
mechanisms as detailed below:
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Shrinking Encircling Technique: Locating the search agent randomly A
!

in the interval [–1, 1] and
between the agent’s earlier and current best positions.

Spiral Updating Position: The distance between the whale and prey located at (X, Y) and (X∗,Y∗) is computed,
and a spiral equation between the position of whale and prey is created based on the following Eq. (21):

~X t þ 1ð Þ ¼ D0:
�!

ebl:coscos 2plð Þ þ x: X ��!
tð Þ (21)

Exploration Phase: WOAs achieve global optimizations. In Fig. 3, whales seek prey based on random
locations or allow search agents to navigate from a reference whale,~A is set in the interval, [–1,1]. Moreover,
the positions of search agents are updated by randomly selecting agents making WOAs execute global
searches. The following equations mathematically depict these exploration scans:

~X t þ 1ð Þ ¼ Xrand
��!�~A:~D (22)

where, Xr and
���!

- random position of a whale selected randomly from the population.

Algorithm 1: IWWOAs

1. Set hyperparameter initial values Xi(i = 1, 2, 3, …, n).

2. Calculate parameters fitnesses

3. Make X � as the best hyperparameter value.

4. while (t < maximum number of iterations) do

5. for (each hyperparameter) do

6. Update a, A, C, l and p.

7. if (p < 0.5) then

8. if (|A| < 1) then

9. The current search position is updated by the Eq. (18).

10. Elseif (|A| ≥ 1) then

12. Select the random parameter Xr and

13. The position is updated using Eq. (22)

14. End if

16. elseif (p ≥ 0.5) then

18. update positions using Eq. (21).

19. End if

20. End for

22. Check if a search agent is outside the search range and modify it

23. Calculate fatnesses’ of search agents

24. Update the value of X � if the solution is better

25. obtain near-optimal hyperparameter values for output

26. t = t + 1

27. End while
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The main steps of the proposed HCNN-LSTMs are described as follows

1: Prepare the Dataset

2: Process Face alignments

3: Convert RGB images to grayscale

4: Apply GDs for reducing noises

5: Facial detections

6: Split data into Training and Testing sets

7: Apply HCNN-LSTMs

8: Set initial values for IWSO control parameters

9: Set initial values for SwarmSize

10. Set initial values for of MaxIter

11: Set initial values for the fitness function

12: Execute until stop criterion of IWSO is not achieved

13: Perform IWSO algorithmic phases

14: Obtain near-optimal values for the hyperparameter as output

15: Train HCNN-LSTMs on the Training Set and tune hyperparameters

16: Output the trained model

17: Evaluate the success of HCNN-LSTMs on the Testing Set by using the trained model

4 Experimental Results

Python was used in implementations of the proposed HCNN- LSTMs FERs and tested on FERC dataset
found on https://www.kaggle.com/manishshah120/facial-expression-recog-image-ver-of-fercdataset. The
dataset had train and test folders with a labels file. In train/test image directories, seven expressive faces:
anger, disgust, fear, happiness, neutral, sorrow, and surprise were found in train/test images directories.
HCNN- LSTMs performances were compared with LSTMs and CNNs in terms of accuracy, precision,
recall, and f-measures for FERs where the proposed scheme outperformed compared techniques, and their
results are displayed in this section.

Initially, the input is taken from the FERC of Dataset and filtered using a Gaussian filter. The input and
filtered image is represented in Figs. 6 and 7 respectively.

Figure 6: Input image
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4.1 Accuracy

The measurement accuracy correctly identifies the weighted percentage of facial expressions. It is
represented as,

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(23)

where,

TP-True Positive

TN-True negative

FP-False Positive

FN-False Negative

4.2 Precision

Precision is the ratio of properly predicted positive results to the total predicted observations.

Precision ¼ TP

TP þ FP
(24)

4.3 Recall

Recall is the ratio of correctly predicted positive results to all observations in actual class.

Recall ¼ TP

TP þ FN
(25)

4.4 F-Measure

F-measure has represented the weighted average of precision and recall.

F ¼ 2
P � R

P þ R
(26)

Tab. 1 lists the comparative performance of the proposed HCNN-LSTMs on FERs with existing LSTMs
and CNNs.

Fig. 8 shows iterations of the fitness function based on the data with recognition errors as output. It can
be inferred that values decrease when iteration counts increase.

Figure 7: Filtered image

IASC, 2023, vol.35, no.1 701



Fig. 9 shows the performance comparison. The proposed HCNN-LSTMs were compared with existing
LSTMs and CNNs for FERs. The proposed system showed better performance in increased precision as it
tuned hyperparameters using IWWOAs. This work’s experimental results showed that the suggested
HCNN-LSTMs achieved 0.77% accuracy compared to LSTMs and CNNs accuracy values of 0.55% and
0.66% respectively. In terms of precision values the proposed system achieved a value of 0.78 when
compared to 0.62 (LSTMs) and 0.63 (CNNs). According to the graph, the recall scores of HCNN-LSTMs
suggested the proposed system had a recall of values of 0.77, whereas LSTMs and CNN scored 0.55 and
0.66, respectively. The suggested system’s f-measure value was 0.72, while LSTMs and CNNs f-measure
values were 0.44 and 0.59, respectively.

Table 1: Performance comparison

Metrics Methods

LSTM CNN HCNN-LSTM

Accuracy 0.55 0.66 0.77

Precision 0.62 0.63 0.78

Recall 0.55 0.66 0.77

F-measure 0.44 0.59 0.72

Figure 8: Fitness value

Figure 9: Performance comparison
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5 Conclusion

This research work has proposed and demonstrated an approach for FERs called HCNN-LSTMs, a
Hybrid approach combining CNNs with LSTMs. GFs eliminate noise from images in this work, and VJ
algorithm identifies faces. This study increased the recognition rates by its use of the proposed HCNN-
LSTMs in feature extractions and classifications. CNN use the parameters of maxepochs, min batch sizes,
initial learning rates, regularization parameters, shuffle types, and momentum in training which IWWOAs
tuned to select near-optimal hyperparameter values. This study’s experimental findings demonstrated the
proposed system’s superior performances by outperforming prior systems in accuracy, precision, recall,
and f-measure.
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