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Abstract: Android Smartphones are proliferating extensively in the digital world
due to their widespread applications in a myriad of fields. The increased popular-
ity of the android platform entices malware developers to design malicious apps to
achieve their malevolent intents. Also, static analysis approaches fail to detect
run-time behaviors of malicious apps. To address these issues, an optimal unifica-
tion of static and dynamic features for smartphone security analysis is proposed.
The proposed solution exploits both static and dynamic features for generating a
highly distinct unified feature vector using graph based cross-diffusion strategy.
Further, a unified feature is subjected to the fuzzy-based classification model to
distinguish benign and malicious applications. The suggested framework is exten-
sively experimentally validated through both qualitative and quantitative analysis
and results are compared with the existing solutions. Performance evaluation over
benchmarked datasets from Google Play Store, Drebin, Androzoo, AMD, and
CICMalDroid2020 revealed that the suggested solution outperforms state-of-
the-art methods. We achieve average detection accuracy of 98.62% and F1 Score
of 0.9916.

Keywords: Fusion; smartphone; android; security analysis; malware detection

1 Introduction

Smartphones are deeply rooted in the digital market due to their potential applications in 4G and 5G-
based wireless networks. Android upheld its status as a leading smartphone OS universally in September
2020, with 85% of the total market share [1]. The profound growth of mobile technology brings
significant measures to be incorporated in the mobile security landscape. Also, sum of existing apps in
the Google Play repository has been increased to 3.047 million [2]. However, this deluge of mobile apps
attracted the malice writers to infuse malwares in these apps for nefarious deeds and the number of new
android malwares are also growing as 482579 [3] malware samples per month. Android malicious
applications (malapps) proliferate due to the easiness of installing fresh apps from third-party [4] sources.
Amongst different mobile OS, Android is the most widespread platform because of its open architecture.
Unluckily, android based smartphones have progressively turned into the key target of the attackers,
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thereby enforcing urgency for mobile app security. On the other hand, Linux based OS like SailfishOS,
PostmarketOS, Ubuntu Touch, Mobian, LuneOS etc. are also vulnerable to malwares. But due to their
limited presence, the attacks are also limited.

Abundant literature is available on static and dynamic analysis to detect malapps and other unintended
functionalities in Android apps. Generally, malign (M) apps are camouflaged as benign (B) apps causing
system impairment, financial damage, and information seepage. Malign apps can also form mobile
botnets. Numerous investigation mechanism has been suggested to identify malapps. The detection
mechanism can be broadly characterized into static and dynamic analysis. Static analysis analyzes code
and the manifest.xml file of the app without executing them [5]. However, in dynamic analysis, apps are
executed and the run-time activities of the apps are analyzed for building solutions. Mostly, static-analysis
is thwarted by code-obfuscation and code-polymorphism resulting in variations of malware to escape
detections. Whereas, dynamic analysis is favorable for analyzing these types of obfuscated apps.

To build a solution to address these issues, static and dynamic features are exploited by the various
machine learning(ML) algo to detect the android malwares [6]. The static features mostly used are
permissions, app components, intents, API, network address, opcode, hardware component, call flow
graph, static taint analysis, dataflow, file property, system command, and native code [7]. On the other
hand, the dynamic features frequently used are system calls, API calls, network traffic characteristics, and
battery features [8]. In hybrid analysis, both static and dynamic features are exploited for malicious app
detection [9]. We propose a hybrid solution that combines both static and dynamic analysis to overcome
the limitations of static and dynamic analysis.

In brief, the key contributions of our paper are described as below:

1. First, we put forward a unique approach for optimal unification of static and dynamic features
resulting in Unified feature (UF) for smartphone security analysis by cross diffusion technique.

2. Second, UF is fed to two ML classifiers to detect the android malapps. Results of these classifier’s
scores were combined by fuzzy based fusion approach for improving the performance.

3. Lastly, we provided a comprehensive study founded on benchmarked databases and compare the
results with contemporary techniques to validate the efficacy of the suggested framework.

The rest of this manuscript is organized as follows. Section 2 covers the android malapp detection-
related work. Section 3 explicates core design of our suggested unified framework for malapp detection.
Section 4 covers details of the datasets and experimental scheme. Section 5 covers the experimental
results of suggested model by qualitative and quantitative methods. In Section 6, we discuss about the
suggested framework and its comparison with other state-of-the-arts methods. Section 7 covers some
limitations of the proposed methodology. Finally, under Section 8, concluding comments together with
future directions for the suggested work are emphasized.

2 Related Work

Smartphone security analysis has been extensively studied in the literature wherein ML based
approaches have been surveyed in reported work [10–12]. Also, hybrid techniques exploiting both static
and dynamic features for malicious app detection can address the major limitations of static and dynamic
analysis. Surveys [13–15] available on static and dynamic analysis techniques also conclude that hybrid
technique comprising both static and dynamic features is the better alternative to static and dynamic
analysis methods.

In this section, to measure the research gap in the latest work, we have reviewed the work in the research
papers based on the hybrid security analysis techniques with ML algorithms and without ML algorithms.
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2.1 Hybrid Security Analysis Techniques without ML Algorithms

The authors in [16] presented a hybrid model DAMBA based on client/server architecture. It can detect
the android malapps by constructing the directed graphs depicting the object reference information with
96.9% detection accuracy and a detection time of approximately 5 seconds. Hybrid analysis approach
“mad4a” offered by the authors [17] for android malapp detection leveraging advantages of both the
dynamic and static analysis methods. In this, authors pointed out some undervalued characteristics of
android malapp that can further help the investigators to augment their knowledge for detecting android
malapps. In this, API calls and network logs were used as static and dynamic features respectively.

Manzanares et al. offered a novel hybrid analysis method “KronoDroid” [18] that addresses the time and
data platform source. Here, 489 static and dynamic features were used for generating hybrid dataset with
labelled timestamps on each sample to detect the malapps with high accuracy. A hybrid method [19]
“DirectDroid”, that merges fuzzing and a novel app analysis procedure “on-demand forced execution” to
activate concealed malicious behaviour. It can effectively detect malapps by the “augmenting fuzzing”
technique. This method could not cater to obfuscated codes in the malapps. In sum, hybrid security
analysis techniques without ML are limitedly applied for malapp detection.

2.2 Hybrid Security Analysis Techniques with ML Algorithms

In [20], a multi-level hybrid model SAMADroid for effective android based malapp detection was
proposed. Static analysis results were determined on the remote host. Smartphone was used for the
dynamic analysis. Machine learning algorithms Support Vector Machine (SVM), Random Forest (RF),
Naïve Bayes(NB), and Decision Trees (DT) were used to train the model to detect malapps with 98.5%
of TPR. In [21], a hybrid model using API calls and permissions was suggested. SVM and RF classifiers
were further leveraged to achieve a true positive rate of up to 89%. Authors in [22] presented a model for
android malapp detection with intents, permission, and API calls as features and compare the results with
four ML classifiers viz. RF, NB, Gradient Boosting(GB), and DT. Accuracy of 96% and TP rate (TPR) of
0.85 were achieved with GB classifier. In [23], authors exploited static and dynamic feature vectors to
detect malapps with 89.7% accuracy with a voting classifier-based fusion approach.

A hybrid model [24] implements dynamic analysis on the outcomes of static investigations. API calls
and permissions were used as static features, while system calls were used as dynamic features to identify
the malapps with an accuracy of 94.6%. Improved Bayesian classifier was used in static analysis and
ensemble of three classifiers viz. RF, GC Forest, and XG boost were used for dynamic analysis. A
Hybrid method “MADAM” [25] was proposed to detect the malapps on a rooted device by extracting
static and dynamic features. A feature vector was formed and input was given to K-NN classifier to
obtain an accuracy of 96.9%. Detection accuracy of 94.7% was achieved.

Dhalaria et al. [26] proposed the hybrid framework by combining the static and dynamic features for the
classification of malapp and family it belong and 90.10% to by creating the two feature oriented datasets.
This method attains accuracies of 98.53% for malapp detection and 90.10% for its family classification.
Kabakus et al. [27]presented a hybrid analysis method for detecting malapps with the maximum detection
accuracy of 99.5% when using J48 ML algorithm.

Karim et al. [28] proposed a hybrid android smartphone botnet detection platform by exploiting the API
calls, permissions as static features and network traffic-based dynamic features for detecting the botnets with
high detection accuracy of 98% with RF algo. Ding et al. [29] presented a ResLSTM based hybrid model
using static features and traffic based dynamic features to achieve the detection accuracy of 99%. The
subsequent section elaborates on the proposed android malapp detection framework. In sum, ML based
smartphone security analysis has shown promising results and were in use. But optimal combining of
static and dynamic features were limitedly addressed.
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3 Core Design of Proposed Framework

In this paper, a unified feature resulting from optimal combination of static and dynamic features
followed by fuzzy-based score fusion model for smartphone security analysis is proposed. The outline of
the suggested hybrid analysis framework is described in Fig. 1. Framework basically comprised of four
building blocks namely, feature extraction (static and dynamic vector formation), feature fusion, classifier
fusion, and eventually a decision block for effective malapp detection. Extracted dynamic features and
static features are converted into dynamic and static feature vectors. Each dynamic and static feature
vector is used for producing similarity graphs using the cosine similarity. Similarity graphs are further
subjected to normalization so as to produce the normalized graphs. Using the reference curves for
dynamic and static feature vectors, we obtain refined graph for dynamic and static feature vectors. The
obtained dynamic and static normalized and refined graphs are further cross diffused to produce a
diffused graph corresponding to the dynamic and static feature vectors. The diffused graphs of dynamic
and static feature vectors are fused to generate a unified feature which is extremely discriminatory. This
discriminative unified feature is given to two ML classifiers so as to classify a test app into Benign (B) or
Malicious (M).

Our methodology exploits two classifiers in parallel whose scores are fused using fuzzy-based fusion
technique to enhance the overall performance. Lastly, the final score wfused in the decision model is
matched with the threshold, wthr and test app is categorized into B if wfused �wthr or M otherwise.

Figure 1: Proposed hybrid analysis framework for smartphone
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The description of the suggested framework is as follows:

3.1 Feature Fusion

Feature fusion block comprises static and dynamic feature vector generation after extracting the five
static features and two dynamic features. In the proposed model, feature fusion is basically the
concatenation of diffused graphs corresponding to static and dynamic feature vectors obtained by cross-
diffusion process of normalized and refined graphs.

3.1.1 Feature Extraction
Five static and two dynamic features were extracted for a given android test appt together with N android

apps from ref. repository, r 2 Rþ;R�f g;Rþ and R� relates to B and M app respectively. The feature
extraction process has been illustrated in Fig. 2. Apps in the ref. repository are updated so as to include
the latest apps to improve the suggested framework detection ability. Here, extraction of static-based
features is done using the APK and Baksmali tool. APK tool converts the app into classes.dex and
manifest.xml files. Classes.dex files are further subjected to baksmali tool to convert it into smali file.
Static-API calls are extracted from smali file. The rest of the static features permissions, hardware
features, app components, and intents are extracted from the manifest.xml file. For dynamic features, the
system runs the app on a sandbox environment using an Android emulator. The dynamic API calls and
the system calls were extracted from the system log files.

Figure 2: Static and dynamic feature extraction process
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Static Features
API: We have selected a1 number of API’s whose sum of frequency is the feature value. API-linked

static-feature vector of test app (t) is computed as follows:

Ft
AS ¼

Xa1
i¼1

f Aið Þ

where, function f Aið Þ computes the frequency of API, Ai. Likewise, API linked static feature vector Fr
AS for

repository apps are extracted for r 2 Rþ;R�f g.
Similarly, pairs {Ft

Per ¼
Pp1
i¼1

f Pið Þ , Fr
Per}, {F

t
Int ¼

Pi1
i¼1

f Iið Þ,Fr
Int}, {F

t
Comp ¼ f ðApp ComponentÞ, Fr

Comp}

and {Fr
Hard ¼ f ðHardware FeatureÞ, Fr

Hard} corresponding to Requested Permissions, Intents Filters, APP
Component and Hardware Feature were computed.

Dynamic Features
System calls: System call-linked dynamic feature vector of test app t is computed as follows:

Ft
Sys ¼ f ðSystem CallsÞ

where f ðSystem CallsÞ is a function that calculates total count of system calls resulted by executing the app.
Likewise, system calls-linked dynamic feature Fr

Sys for the repository apps are extracted for r 2 Rþ;R�f g.
Similarly, pair {Ft

Ad ¼ f ðAPI CallsÞ, Fr
Ad} for API calls was computed.

From the above seven feature-descriptors, we form two static and dynamic feature vectors as follows in
Eqs. (1) and (2) respectively:

FStatic ¼ fFAS;FPer;FInt;Fcomp;FHardÞ (1)

FDynamic ¼ fFSys;FAdÞ (2)

In short, we have built seven feature-descriptor as stated for every app. In feature fusion, features vectors
corresponding to test and repository apps are used for creating non-linear graph. In the generated graph,
feature-vectors corresponding to test apps and repository apps acts as nodes. Subsequently, graphs are
created for each test app t corresponding to static feature vector and dynamic feature vector.

For feature vectors, Ft
Static and Ft

Dynamic of test app t corresponding to static and dynamic features, we
construct graphs Gf ¼ ðVf;Edf;wfÞ ,where f 2 fStatic;Dynamicg , wf are edge weights that act as the
similarity between feature-vectors of apps t and r where r 2 Rþ;R�f g, Vf corresponds to the nodes of
the generated similarity graphs, Edf corresponds to the edges of the similarity graphs that portray the
association between the test app and the repository apps. In the proposed framework, similarity matrices
Gf 2 RN�N are constructed by calculating the cosine similarity between the static and dynamic feature

vectors of the test app and repository apps, wherein N ¼ r þ 1. For feature pair values Ft
f;F

r
f

� �
corresponding to t and r apps, where f corresponds to static and dynamic feature vector, the edge
weights are denoted by similarity vector wfðt; rÞ, and is calculated by the cosine similarity between the

pair Ft
f;F

r
f

� �
using Eq. (3)

wfðt; rÞ ¼
Ft
f � Fr

f

Ft
f

��� ��� Fr
f

��� ��� (3)
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Constructed graphs are further fused to obtain unified feature. Feature unification follows in the coming
subsection.

3.1.2 Feature Unification
Constructed static and dynamic feature vectors are fused in a way to extract complementary information

embedded in them. This is achieved by the means of the suggested optimal non-linear cross-diffusion of
generated refined and normalized graphs to create a distinct borderline between the B and M apps. To
unify the multiple features graph-oriented cross diffusion method was presented by [30]. The results
validate that the feature fusion via non-linear graph-based technique is better than linear graph-based
approaches. Graph-based unification maintains a robust depiction of the apps and discards all the feeble
features that contribute to undesirable classification errors.

Similarity graph created using Eq. (3) for the static and dynamic feature vectors are again normalized by
means of “min-max normalization” to obtain the normalized graphsGf whose edge weights are calculated as
wfðrÞ using Eq. (4)

wfðt; rÞ ¼ wfðt; rÞ �minðwfðt; rÞÞ
maxðwfðt; rÞÞ �minðwfðt; rÞÞ (4)

Normalized graphs Gf are employed to obtain the refined graphs Rf, for static features and dynamic
features vectors. A refined graph is generated to attain highly distinctive attributes. Normalized attributes
are initially deducted out of a generated reference curve to make an estimated graph. There are N
normalized weights corresponding to apps. The ideal plot of normalized feature characterized as weight
vector wfðt; rÞ can be represented as:

wfðt; rÞ ¼ 1; if t ¼ r
0; otherwise

�
(5)

Static feature vectors when plotted appear as a curve, where a self-match appeared as a peak and the rest
tends to the horizontal line. The more the match score tends to zero, the more dissimilar is the feature value
with other apps. Capitalizing this, a curve Ref representing reference score values is calculated using the
training apps, and deviance from Ref is used to attain adaptability. Ref 2 RN�1 is produced by taking
mean of the normalized attributes when evaluated over training apps:

Ref ¼
PN
i¼1

arrange wfðt�; iÞ
� �
N

(6)

where t� one of training apps of set N and “arrange” is a function used to arrange values in increasing
order. This reference curve gives the estimation of training app attributes.

Gf is used to form an estimated graph for test apps , where estimated test app feature components are
calculated by deducting wfðlÞ from Ref as follows:

we
fðlÞ ¼

wfðlÞ; l < m
wfðlÞ � RefðlÞ
�� ��;m � l � N

�
(7)

where, we
f 2 RN�1 denotes estimated test app attribute and the variable m segregate the dimension of a

feature vector. This method helps in generating the highly discriminative test app features leading to the
detection of the malapps with high efficiency. Estimated features we

fðlÞ are plotted to determine the test
app’s estimated feature weights. Significant area under curve (SA) of the estimated feature is determined
and its weight ef is calculated using Eq.(8).
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ef ¼ N �

1

SAf
	 


tPN
i¼1

1

SAf
	 


i

2
6664

3
7775 (8)

where, SAf
	 


i and SAf
	 


t are the SA of the ith app used for training and of the test app t in the estimated graph
respectively. This area signifies feature efficacy.

To generate a Refined Graph Rt
f , its edge weights wT

fðlÞ are calculated by reorganizing we
fðlÞ by means

of Eq. (9). Rt
f resulted in the robust connections among vertices of graph and all the feeble connections are

significantly reduced.

wr
fðlÞ ¼ we

fðlÞ
� �aef

(9)

where a is pre-estimated constant used to achieve adaptiveness.

Normalized and refined graphs for static features and dynamic features vectors are further exploited in
the cross diffusion process.

Static features and dynamic features vectors possess distinctive and complementary information for the
segregation of apps into B or M. Therefore, the cross-diffusion of static feature vector normalized graph and
the dynamic feature vector refined graph and vice-versa results in boosting up of the robust connections along
with filtering out the weaker connections leading to better accuracy.

In the proposed framework, Gf and Rf are fused via non-linear cross diffusion scheme resulting in the
fused graphs Df with edge-weights calculated using Eq. (10)

wdiffused
f ¼ wf � 2

F
�
XF

j¼1;j6¼f

wr
j

� � !
� wf
	 
T

(10)

Where F is the total number of feature vectors and T above represents transposition. In our framework,
F = 2 as we have taken only two feature vectors i.e. static and dynamic feature vector

The diffused edgeweightswdiffused
f are further used to form a unified feature vectorU bymeans of Eq. (11).

UðtÞ ¼ 1

bF
�
X2
j¼1

wdiffused
j

� � !
(11)

Where j ¼ 1 corresponds to static feature vector, j ¼ 2 corresponds to dynamic feature vector and b is
the pre-estimated constant used to achieve adaptiveness. Details of the classifier fusion follows next.

3.2 Classifier Fusion

Vector U is given to the two classifiers in parallel. Classification scores obtained are again fused. To
achieve this, the U is inputted to two ML classifiers viz. SVM and RF. Their respective classification
scores Ss(SVM) and Sr(RF) are determined. In the proposed framework, the obtained classifier(s) scores
are optimally fused using the fuzzy-based score fusion method to improve the segregation of apps. Fuzzy
fusion is basically combining scores of two ML algorithms in a natural way to determine valuable info
and also to boost the performances of the individual algorithm. In the suggested method, the fuzzy logic
conditions are formulated by a group of twenty-five fuzzy rules as stated in Tab. 1 under Section 3.2. The
classifiers scores are combined in a way so as to boost the concurrent classifier scores and to suppress the
discordant classifier scores. Proposed fusion model attains a precise decision boundary between B and M
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apps. Here, we have defined the fuzzy set as signifying very large, large, medium, small, very small values of
the classifier’s score. Membership value for the classification score is calculated as elements of a fuzzy set by
means of Eq. (12–16)

�VLðxÞ ¼ 1

1þ e�mVLðx�fVLÞ (12)

�LðxÞ ¼ e

�ðx� nLÞ2
f 2L (13)

�M ðxÞ ¼ e

�ðx� nM Þ2
f 2M (14)

�SðxÞ ¼ e

�ðx� nSÞ2
f 2S (15)

�VSðxÞ ¼ 1

1þ e�mVSðx�fVSÞ (16)

where mVL ¼ 36, fVL ¼ 0:84, fL ¼ 0:13, nL ¼ 0:7, fM ¼ 0:13, nM ¼ 0:5, fS ¼ 0:12, nS ¼ 0:3, fVS ¼ 0:14,
mVS ¼ �36 are linguistic variable values attained from the training phase and x 2 Sr; Ssf g.These values
are chosen so that concordant classifiers scores are boosted and discordant classifier scores are suppressed
concurrently. The functional mapping Tu;v between the RF and SVM classifiers scores are tabulated in
Tab. 1, where u and v are fuzzy set values allocated to each evaluated score. This mapping guarantees an
accurate decision boundary-line for segregating the malapps.

Fuzzy fused output is further converted to the optimal crisp value using the center of gravity (COG)
technique for defuzzification. Crisp variable value using COG for a pair of elements u and v in the fuzzy
set is calculated using Eq. (17)

COGTu;v ¼
P
u

P
v
�Tu;vðxÞxP

u

P
v
�Tu;vðxÞ

(17)

where value of Tu;v is taken from Tab. 1 and x 2 Sr; Ssf g . The weighted mean of the COG values over the
pair of elements u,v is used for the estimation of the final fused weight using Eq. (18).

Table 1: Fuzzy mapping rules Tu;v

v

u VL L M S VS

VL VL VL L L L

L VL VL M M M

M L M M S VS

S L M S VS VS

VS L M VS VS VS
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wfused ¼
P
u

P
v
�u;v � COGTu;vP

u

P
v
�u;vðSr;SsÞ (18)

where �u;v is fuzzy control rule calculated using Eq.(19)

�u;v ¼ minð�pðSrÞ;�qðSsÞÞ (19)

The wfused is compared with the wthr to determine whether a given app is M or B depending on whether
wfused < wthr or vice-versa (wfused > wthr). Datasets and experimental design follows in the subsequent
subsection.

4 Datasets and Experimental Design

The balanced and unbalanced [31] datasets can be used for experimentation purpose. Here, we have used
balanced datasets for experimentation. B apps are taken from CICMalDroid2020 Dataset and Google Play
Store and M apps are collected from CICMalDroid2020 [32], AMD [33], Androzoo [34] , and Drebin
[35] covering the multitude of malwares from different families. 2000 B and 2000 M apps are selected
from these datasets and rearranged in Tab. 2 as Group1, Group2, Group3, Group4, & Group5.

Experimental validation of the framework was accomplished by means of MATLAB 2018a installed on
i7, 2.7 GHz CPU with 16 GB RAM. Ten-fold cross-validation method was employed by randomly
subdividing the dataset into ten equal parts and using one for testing and the rest for training. The final
result is the average of the results obtained from five Groups as in Tab. 2.

5 Experimental Results

Experimental results comprise of the assessment of the suggested framework on the benchmarked
datasets containing B and M apps as mentioned in Tab. 2. Also, comparisons of the results with other
state-of-art methods applying static and dynamic features were also reported.

Table 2: Experimentation dataset

App kind

Data set Malicious
Apps(M)

Benign
Apps(B)

Comments

Group1 500 500 Androzoo(M)
GooglePlay(B)

Group2 500 500 AMD(M)
CICMalDroid2020(B)

Group3 500 500 CICMalDroid2020(M)
GooglePlay(B)

Group4 500 500 Drebin(M)
GooglePlay(B)

Group5 2000 2000 Combined
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5.1 Qualitative Assessment

Cumulative Frequency Analysis: Qualitative assessment for the suggested framework is performed by
plotting the cumulative frequencies (CF) as shown in Fig. 3 of the various static and dynamic features
selected for M and B apps. The CF of the features in the M apps is directly proportional to the threat
level of that particular feature for platform security.

In addition, score distributions of the two best state-of-the-art techniques and the suggested framework is
obtained and results are shown in Fig. 4. It is apparent from Fig. 4 that the suggested framework performs
better than the other two methods because of the minimum overlap of the scores. Quantitative assessment of
the suggested framework follows in the next sub-section.

5.2 Quantitative Assessment

Quantitative assessment of the suggested method was realized using the standard evaluation benchmark
viz. sensitivity, specificity, F1 Score, detection accuracy via ten-fold cross validation over datasets as
mentioned in Tab. 1. The suggested method was also compared with respect to running time against
different state-of-the-art methods. Evaluation metrics results are also compared with the two state-of-the-
arts techniques [20,22], and two self-proposed techniques. Specificity, Sensitivity, F1 Score, and
Accuracy are calculated using Eqs. (20–23).

SPECIFICITY ¼ TN

TN þ FP
(20)

SENSITIVITY ¼ TP

TP þ FN
(21)

F1SCORE ¼ 2TP

2TP þ FP þ FN
(22)

Figure 3: Cumulative frequencies for five static and two dynamic features for group 5 dataset

IASC, 2023, vol.35, no.1 1045



ACCURACY ¼ TP þ TN

TP þ FP þ TN þ FN
(23)

where TP is true positive, FP is false positive, TN is true negative, FN is false negative. ROC curves depicted
in Fig. 5 are drawn to assess the binary classifier. ROC is an overall index portraying sensitivity and
specificity.

To test the robustness and to evade overfitting issues, 10-fold cross-validation is employed to estimate
the performance of the suggested model. The investigational outcomes are displayed in Tab. 3.

Figure 4: Score distribution for group2 dataset of (a) Proposed method (b) Arshad et al. [20] (c) Hussain
et al. [22]
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Figure 5: ROC curves for the proposed method (red) and two best state-of-the-art methods (Arshad et al.
[20] (blue) and Hussain et al. [22] (black)) for (a) Group1, (b) Group 2, (c) Group 3, (d) Group 4

Table 3: Comparative analysis of performance metrics i.e., accuracy, specificity, sensitivity, F1 Score for
hybrid models and proposed method

Dataset Performance
metrics

Arshad
et al. [20]

Hussain
et al. [22]

RF+UF SVM+UF Proposed
method

GROUP 1 Accuracy 0.9781 0.9480 0.9580 0.9540 0.9860

Specificity 0.9786 0.9481 0.9560 0.9560 0.9859

Sensitivity 0.9775 0.9480 0.9600 0.9520 0.9861

F1 Score 0.9886 0.9733 0.9581 0.9539 0.9930
(Continued)
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6 Discussions

It has been observed that for the suggested framework the mean value of the result of the Accuracy,
Specificity, Sensitivity, and F1 measure for the proposed framework are 98.62%, 98.634%, 99.30%, and
0.9916 respectively. Maximum value of the accuracy, specificity, sensitivity, and F1 score is 98.80%,
98.80%, 98.81%, and 0.9940 respectively.

The suggested technique outperforms the other hybrid-based state-of-the-art techniques when assessed
on datasets as tabularized in Tab. 2. Enhancement for a mean value of detection accuracy of the suggested
technique by 1.402% and 2.914%, over [20] and [22] respectively has been realized. Self-proposed
techniques are also included to show the proper justification for the choice of ML algorithms in the
optimal classifier. Enhancement of average detection accuracy of 2.674% and 3.274% have been achieved
by the proposed method over two self-proposed methods RF+UF and SVM+UF.

The run time of different state-of-the-art approaches is also compared with the proposed approach. To
calculate the running time of different methods, we first built and learned their corresponding detection
model. These detection models were then fed with the 200 random apps for analysis. Our proposed
method attains an average analysis performance of 5.6 seconds per app. Similarly, the average analysis
performance of [20] and [22] comes out to be 6.1 seconds and 6.7 seconds respectively. Hence, our
proposed method outclassed other methods in respect of detection time, detection accuracy, and efficacy
in real-life apps scenarios.

Table 3 (continued)

Dataset Performance
metrics

Arshad
et al. [20]

Hussain
et al. [22]

RF+UF SVM+UF Proposed
method

GROUP 2 Accuracy 0.9760 0.9640 0.9590 0.9530 0.9840

Specificity 0.9759 0.9641 0.9600 0.9520 0.9839

Sensitivity 0.9757 0.9639 0.9580 0.9540 0.9842

F1 Score 0.9869 0.9817 0.9590 0.9530 0.9919

GROUP 3 Accuracy 0.9670 0.9600 0.9600 0.9520 0.9880

Specificity 0.9680 0.9600 0.9660 0.9540 0.9878

Sensitivity 0.9660 0.9600 0.9540 0.9500 0.9881

F1 Score 0.9827 0.9776 0.9598 0.9519 0.9940

GROUP 4 Accuracy 0.9660 0.9560 0.9610 0.9550 0.9860

Specificity 0.9659 0.9558 0.9640 0.9560 0.9861

Sensitivity 0.9661 0.9561 0.9580 0.9540 0.9858

F1 Score 0.9827 0.9775 0.9609 0.9550 0.9930

GROUP 5 Accuracy 0.9738 0.9573 0.9593 0.9533 0.9870

Specificity 0.9650 0.9540 0.9600 0.9540 0.9880

Sensitivity 0.9825 0.9605 0.9585 0.9525 0.9860

F1 Score 0.9740 0.9574 0.9592 0.9532 0.9870
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7 Limitations

Hybrid technique encompasses both the static and dynamic features to detect the malapps, thereby
increasing the all-around complexity of the framework regarding time, effort, and cost. Also, our method
is unable to distinguish the zero-day malware as malware authors are constantly updating the current
malware families and frequently produce new malwares exhibiting the unfamiliar behavior close to the B
apps thereby tricking even the latest detection models.

8 Conclusion and Future Direction

To tackle the challenges of effective detection of ever-evolving android malapps, we suggested a novel
hybrid malapp detection scheme. Here, the optimal combination of static and dynamic features by cross-
diffusion followed by fuzzy-based score level fusion was proposed. In the suggested framework, we have
used five static and two dynamic features to form static and dynamic feature vectors. These feature
vectors are further fused after the formation of normalized and refined graphs through the non-linear
graph diffusion method. Fused feature vector is then given to an optimal classifier comprising of RF and
SVM classifiers. A remarkable benefit of our method is that it can extract the static and dynamic features
in each app almost in real-time.

In sum, the unification of static and dynamic features resulted in highly distinct feature. Adoption of
fuzzy-based fusion of classifier scores not only create clear boundary but also achieve optimal
performance. Our technique has accomplished mean value of accuracy, specificity, sensitivity, and
F1 score as 98.62%, 98.634%, 98.604%, and 99.16% respectively. Experimental results reveal that our
technique outstrips other state-of-the-art methods.

In the future, we will look forward to incorporate traffic-based dynamic features for smartphone security
analysis as many malapps are detected solely on their traffic characteristics. Furthermore, training on more
datasets comprising diverse malware families will further add robustness to the framework.
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