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Abstract: Renewable energy production plays a major role in satisfying electricity
demand. Wind power conversion is one of the most popular renewable energy
sources compared to other sources. Wind energy conversion has two major types
of generators such as the Permanent Magnet Synchronous Generator (PMSG) and
the Doubly Fed Induction Generator (DFIG). The maximum power tracking algo-
rithm is a crucial controller, a wind energy conversion system for generating max-
imum power in different wind speed conditions. In this article, the DFIG wind
energy conversion system was developed in Matrix Laboratory (MATLAB) and
designed a machine learning (ML) algorithm for the rotor and grid side converter.
The ML algorithm has been developed and trained in a MATLAB environment.
There are two types of learning algorithms such as supervised and unsupervised
learning. In this research supervised learning is used to power the neural networks
and analysis is made for various hidden layers and activation functions. Simula-
tion results are assessed to demonstrate the efficiency of the proposed system.

Keywords: Doubly fed induction generator; machine learning; convertors;
generators; activation function

1 Introduction

Wind power generation based on the doubly-fed induction generator (DFIG) has gained growing esteem
due to numerous advantages, including smaller converters rating around 30% of the generator rating, variable
speed and four-quadrant, active and reactive power operation capabilities, lower converter cost, and power
losses compared with the fixed-speed induction generators or synchronous generators with full-sized
converters [1]. Over the past few years, many researchers have carried out extensive research for DFIG
wind turbine generator to enable frequency regulation and frequency support capability [2]. In DFIG,
Sliding Mode Control (SMC) method can be used to control the stator and rotor currents with respect to
rotor speed [3]. A number of new control strategies were examined to improve the operational
performance of the DFIG. In addition a proportional derivative regulator (PD) is added to the Rotor Side
converter (RSC) DFIG power [4] and the output varies for the changing error [5]. Kinetic energy is
utilized to support grid frequency from serious actuations [6], but the medication of power reference will
lead to severe frequency secondary drop [7], which is determined by the sudden loss of active power
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support since DFIG rotor speed has reached its permitted limit [8]. In the traditional control scheme of DFIG
systems, two proportional-integral (PI) controllers were applied in the current control loop [9]. On the basis
of the decomposition of positive and negative sequence components in and out frames are created [10]. The
current controllers were implemented in the positive and negative synchronous reference frames,
respectively [11]. Due to timing and control errors introduced through the decomposition of positive and
negative components of the sequence, the dynamic performance and stability of the system could be
degraded [12]. Considering the consumer loads that are located at a considerable distance away from the
wind farm, a long-distance transmission line will be needed to link the wind farm and the grid [13]. The
overall network reactance increases for long-distance transmission lines resulting in a reduction in power
transfer capacity leading to voltage drop and hence the power factor of the system decreases which is
explained using Eq. (1).

P ¼ v1v2
Xnet

sin h (1)

where P is the actual power flow through-line, v1 and v2 are the voltages at the transmitting and receiving
ends and Xnet is the entire network reactance [14]. However, previous work also has some disadvantages
which would be beneficial to practical applications.

i) In order to achieve the specified control objectives in the non-ideal grid condition, the
fundamental, negative and harmonic components of the grid tension must be extracted. The
extraction process would use numerous notch and low pass filters; therefore, phase delay and
control error would be unavoidable [15].

ii) In order to implement the different control targets by employing voltage oriented control (VOC) or
direct power control (DPC) strategy, the control reference calculation of rotor current in VOC or
active/reactive power in DPC is always complicated and time-consuming. Furthermore, the
deviation between the DFIG parameters and the fundamental, negative and harmonic change in
the grid voltage would also affect the accuracy of the baseline calculation of control target [16].

iii) Some DFIG characteristics, such as the lack of short circuit capacity, low inertia, and uncertainty
of damping, are likely detrimental to overall system voltage stability, frequency stability, and
oscillation damping in actual operation [17].

iv) To achieve a smooth active power output of the DFIG system to the grid, the conventional control
strategy, similar as, would allow the existence of active power pulsed in the RSC, while the grid
side converter (GSC) is controlled to generate the opposite active power pulsation of the same
quantity as RSC [18].

v) This paper proposes the machine learning algorithm strategy for both DFIG’s RSC and GSC under
the unbalanced grid voltage, which can achieve the different control targets for the overall DFIG
system [19].

The following are the core contributions of this paper: Section 2 explains the design of DFIG based wind
energy conversion system. Section 3 explains the Machine learning algorithm with the simulation using the
MATLAB environment. Section 4 draws several conclusions.

2 Design of DFIG

The doubly-fed induction generator (DFIG) system is a popular system in which the power electronic
interface controls the rotor currents to achieve the variable speed necessary for maximum energy capture
in variable winds. As power electronics only process the rotor power, typically less than 25% of the
overall output power, the DFIG offers the advantages of speed control with reduced cost and power
losses. In the steady-state analysis, the derivatives of flow linkages are equal to zero, since the system is
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stable. In contrast, derivatives of flow connections are taken into account for the dynamic analysis. The
magnetization circuit is represented by the shunt inductance Lm, which is calculated without taking into
account R0. The voltages of the stator and rotor are converted from the back frame to the synchronously
spinning direct quadrature (DQ) frame, and they are defined by Eqs. (2)–(5).

Vds ¼ �Rsids þ 1

xs

d

dt
wds � wqs (2)

Vqs ¼ �Rsiqs þ 1

xs

d

dt
wqs þ wds (3)

Vdr ¼ �Rridr þ 1

xs

d

dt
wdr � swqr (4)

Vqr ¼ �Rriqr þ 1

xs

d

dt
wqr þ swdr (5)

where s ¼ xs�xg

xs
; sxs ¼ xs � xg and xs � sxs ¼ xg

The modified voltage equations can be represented as Eq. (6)

Vds ¼ �Rsids þ 1
xs

d
dt � Xsids þ Xmidrð Þð Þ � � Xsiqs þ Xmiqr

� �� �

Vqs ¼ �Rsiqs þ 1
xs

d
dt � Xsiqs þ Xmiqr

� �� �þ � Xsids þ Xmidrð Þð Þ
Vdr ¼ �Rridr þ 1

xs

d
dt � Xridr þ Xmidsð Þð Þ � s � Xriqr þ Xmiqs

� �� � (6)

The situation and organize matrix of the DFIGs can be expressed as XDFIG ¼ ids iqs idr iqr½ �T &
UDFIG ¼ xg Vds Vqs Vdr Vqr½ �T where XDFIG and UDFIG designate the system and control matrix of
the DFIG respectively. The system model includes a mechanical model of the blades, hub & shaft, a
back-to-back converter including thermal loss calculations, a magnetic model of the three-phase
transformer, and the transmission line with the grid. Fig. 1 depicts the block diagram of DFIG.

The DFIG wind energy system features two main controllers such as the grid-side converter controller
and the rotor-side converter controller. Both converters play important roles in wind energy systems based on
the DFIG. The grid side converter has two major controllers which are the voltage regulator and current
regulator. The DFIG-based 1.5 MW wind energy conversion system was simulated in the MATLAB
environment as shown in Fig. 2.

The voltage and current regulator have been developed in MATLAB and the controller by Machine
learning algorithm is shown in Figs. 3 and 4.

Figure 1: Block diagram
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3 Machine Learning Algorithm Simulation and Results

The ML algorithm is a very powerful tool for the design and management of nonlinear problems. The
ML algorithm treats machine learning by using input and output data collection and then predicting future
values. These are two types of learning algorithms commonly used for engineering applications such as
supervised learning and unsupervised learning. In this research work, supervised learning was used for
power neural networks and analyses with various hidden layer sizes and activation functions. In the ML
representation of the DFIG model, the electromagnetic torque of wind turbine generator (WTG) is
obtained by sending feedback signals to the control system. The DFIG is controlled by the signals (−g)

Figure 2: A simulation model of DFIG based wind energy system

Figure 3: Machine learning-based grid side converter control system
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from the wind turbine, regulated voltages (Vdr;Vqr) from the RSC controller and the stator voltages in the d
and q axes (Vds;Vqs) of the generator.

3.1 Two Hidden Layers–Rotor Side

This model has been modeled for rotor side converter control and it has two hidden layers used to
develop a machine learning algorithm with a sigmoidal activation function. The feedforward network has
2 input layers such as direct axis current (Id) and quadrant axis current (Iq). Two hidden layers are
developed with 20 and 25 neurons and it is connected to output layers which have two output parameters
such as direct axis voltage Vd and quadrant axis voltage (Vq) as shown in Fig. 5.

Then network has been trained been observed data collected from the simulation model and it is feed
into ML algorithm to provide training of feedforward network. The network best performance and
validation check data are presented in Figs. 6 and 7.

The best performance of the network model is 4.1722 e−12 at epoch 216 and gradient 9.917e−4 at disclose
at the submission stage any restrictions on the availability of materials or information.

3.2 Two Hidden Layers–Grid Side

This model has been modeled for grid side converter control and it has two hidden layers used to develop
a machine learning algorithm with a sigmoidal activation function. The feedforward network has 2 input

Figure 4: Machine learning-based rotor side converter control system

Figure 5: Rotor side controller using two hidden Machine learning networks
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layers such as direct axis current (Id) and quadrant axis current (Iq). Two hidden layers are developed with
20 and 25 neurons and it is connected to output layers which have two output parameters such as direct axis
voltage Vd and quadrant axis voltage Vq as shown in Fig. 8.

Figure 6: Best performance of machine learning network

Figure 7: Validation check data

Figure 8: Grid side controller using two hidden machine learning networks
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Then network has been trained been observed data collected from the simulation model and it is fed into
ML algorithm to provide training of feedforward network. The network best performance and validation
check data are presented in Figs. 9 and 10.

The best performance of the network model is 2.1875 e−7 at epoch 3579 and gradient 9.9957 e−8 at
epoch 3579. After the design and training of the machine learning algorithm, the Simulink model has
been developed in MATLAB environment. This Simulink controller block has been used for the grid side
converter controller and rotor side converter controller. The proposed DFIG based wind energy system
has been simulated for up to 7 s. The simulation results are presented for the real and reactive power of
DFIG based wind energy system with the grid as shown in Fig. 11.

Figure 9: Best performance of machine learning network

Figure 10: Validation check data
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Fig. 12 presents the details of the direct current (DC) voltage of the converter side. Based on the
simulation results there are many disturbances and fluctuations in the waveform.

Figure 11: Real and reactive power

Figure 12: DC voltage
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3.3 Four Hidden Layers–Grid Side

This model has been modeled for the grid-side converter control and has two hidden layers used to
develop a machine learning algorithm with a sigmoid activation function. The feedforward network has
2 input layers such as direct axis current (Id) and quadrant axis current (Iq). Four hidden layers are
developed with 20, 30, 35 and 25 neurons, respectively, and it is connected to output layers which have
two output parameters such as direct axis voltage Vd and quadrant axis voltage Vq. Then the network was
formed was observed the data collected from the simulation model and it is input into the ML algorithm
to provide the formation of the feedback network. The best performance control and network validation
data are presented in Figs. 13 and 14.

Figure 13: Best performance of machine learning network

Figure 14: Validation check data
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The best performance of the network model is 2.1875 e−7 at epoch 3413 and gradient 9.719e−8 at
epoch 3413.

3.4 Four Hidden Layers–Rotor Side

This model has been modeled for the rotor side converter control and it has two hidden layers used to
develop a machine learning algorithm with a sigmoid activation function. The feedforward network has
2 input layers such as direct axis current (Id) and quadrant axis current (Iq). Four hidden layers are
developed with 20 30, 35 and 25 neurons, respectively, and it is connected to output layers which have
two output parameters such as direct axis voltage Vd and quadrant axis voltage Vq. Then network has
been trained been observed data collected from the simulation model and it is fed into ML algorithm to
provide training of feedforward network. The best performance control and network validation data are
presented in Figs. 15 and 16.

The best performance of the network model is 2.1875 e−7 at epoch 3884 and gradient 9.9504 e-8 at epoch
3384.

3.5 Four Hidden Layers with Linear Activation Function – Rotor Side

This model has been modeled for rotor side converter control and it has two hidden layers used to
develop a machine learning algorithm with a linear activation function. The feedforward network has
2 input layers such as direct axis current (Id) and quadrant axis current (Iq). Four hidden layers are
developed with 20, 30, 35 and 25 neurons respectively and it is connected to output layers which have
two output parameters such as direct axis voltage Vd and quadrant axis voltage Vq as shown in Fig. 17.

Then network has been trained been observed data collected from the simulation model and it is fed into
ML algorithm to provide training of feedforward network. The network best performance and validation
check data are presented in Figs. 18 and 19.

Figure 15: Best performance of machine learning network

390 IASC, 2023, vol.35, no.1



The best performance of the network model is 2.4801 e−14 at epoch 321 and gradient 9.9949 e−8 at
epoch 321. Compared to the previous network size and activation function proposed network and
activation model provide good results.

Figure 17: Rotor side controller using two hidden machine learning networks

Figure 18: Best performance of machine learning network

Figure 16: Validation check data
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3.6 Four Hidden Layers with Linear Activation Function

This model has been modeled for grid side converter control and it has two hidden layers used to develop
a machine learning algorithm with a sigmoidal activation function. The feedforward network has 2 input
layers such as direct axis current (Id) and quadrant axis current (Iq). Four hidden layers are developed
with 20, 30, 35 and 25 neurons respectively and it is connected to output layers which have two output
parameters such as direct axis voltage Vd and quadrant axis voltage Vq as shown in Fig. 20.

Then network has been trained been observed data collected from the simulation model and it is fed into
ML algorithm to provide training of feedforward network. The network best performance and validation
check data are presented in Figs. 21 and 22.

The best performance of the network model is 7.090 e−12 at epoch 1621 and gradient 9.9851 e−8 at
epoch 1621. Compared to the previous network size and sigmoidal activation function the proposed
4 hidden layer networks and linear activation function provide better performance.

Various wind speeds and compensation levels are shown in Tab. 1, which correspond to modes with
super synchronous frequencies higher than 50 hertz (198 Hz). The Eigenvalues (_1 _2) are associated
with the super synchronous mode of oscillations, which has frequencies that are higher than the system
frequency. Unlike other modes of operation, these modes are always stable and do not become unstable
when the operating circumstances vary. Considering that the mechanical system frequencies are always
below 50 Hz, the super synchronous frequencies are never in sync with the mechanical system
frequencies. As a result, these modes are never unstable. Because of the differences in wind speeds and

Figure 19: Validation check data

Figure 20: Grid side controller using two hidden machine learning networks
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correction levels, the frequency of these modes remains unchanged. Increasing wind velocity has a smaller
effect on the real portion of the Eigenvalues than decreasing wind velocity.

Variations in the operating circumstances have an important impact on the stability of the system in
question. Due to the possibility of negative consequences caused by the existence of low-frequency
modes, it is necessary to investigate them using the tiny indicator firmness examination using the Eigen
cost method. The Eigen assessment examination is agreed out for a variety of wind speed circumstances,
compensation levels, and stiffness coefficients, among other parameters. The value of the stiffness
coefficient varies as a result of the age of the machine, and this may have a significant effect on the
machine’s stability.

After designing and training the machine learning algorithm the Simulink model has been developed in
MATLAB environment. This Simulink controller block has been used for the grid side converter controller

Figure 21: Best performance of machine learning network

Figure 22: Validation check data
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and rotor side converter controller. The proposed DFIG based wind energy system has been simulated for a
period of 7 s. The simulation results are presented for the real and reactive power of DFIG based wind energy
system with the grid as shown in Fig. 23.

Table 1: Compensation levels for different wind speed

Wind
Speed

% Series compensation level

50% 60% 70%

7 m=s �0:01þ 198:61i
�0:01� 198:61i

�0:01þ 198:61i
�0:01� 198:61i

�0:01þ 198:61i
�0:01� 198:61i

�0:05þ 198:86i
�0:05� 198:86i

�0:05þ 198:86i
�0:05� 198:86i

�0:05þ 198:86i
�0:05� 198:86i

12 m=s �0:06þ 198:91i
�0:06� 198:91i

�0:06þ 198:91i
�0:06� 198:91i

�0:06þ 198:91i
�0:06� 198:91i

Figure 23: Real and reactive power
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Fig. 24 presents the details of the DC voltage of the converter side. Based on the simulation results there
are many disturbances and fluctuations in the waveform. Hence the next section the machine learning
algorithm network hidden layer size remains the same and changes the activation function from sigmoidal
to linear activation function.

The rotor and grid side convertors are simulated using a machine learning algorithm using the hidden
layer network. Two types of activation function namely linear activation function and sigmoid activation
function were used and the results are examined.

4 Conclusion

This paper examined the operation and the different control techniques used in the DFIG system. The
DFIG was modeled in MATLAB’s simulation atmosphere and analyzed its performance as a function of
wind speed and other operating conditions. Based on the analyses and evaluation of simulation results the
machine learning algorithm has been developed for a wind power conversion system to generate
maximum power under different conditions of wind speed. In this document, the DFIG wind power
conversion system was developed in MATLAB and the machine learning algorithm design for the rotor
side and converter side grid. Different kinds of neural networks have been developed such as two layers
and four network layers under different activation functions. The ML algorithm was developed and
trained in a MATLAB environment and controls the converter at the rotor end and the converter at the
grid end. Finally, the simulated outcomes are assessed and demonstrate the effectiveness of the proposed
system.

Figure 24: DC voltage
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