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Abstract: Deep neural network (DNN) based computer-aided breast tumor diag-
nosis (CABTD) method plays a vital role in the early detection and diagnosis of
breast tumors. However, a Brightness mode (B-mode) ultrasound image derives
training feature samples that make closer isolation toward the infection part.
Hence, it is expensive due to a meta-heuristic search of features occupying the
global region of interest (ROI) structures of input images. Thus, it may lead to
the high computational complexity of the pre-trained DNN-based CABTD meth-
od. This paper proposes a novel ensemble pre-trained DNN-based CABTD meth-
od using global- and local-ROI-structures of B-mode ultrasound images. It
conveys the additional consideration of a local-ROI-structures for further enhan-
cing the pre-trained DNN-based CABTD method’s breast tumor diagnostic per-
formance without degrading its visual quality. The features are extracted at
various depths (18, 50, and 101) from the global and local ROI structures and feed
to support vector machine for better classification. From the experimental results,
it has been observed that the combined local and global ROI structure of small
depth residual network ResNet18 (0.8 in %) has produced significant improve-
ment in pixel ratio as compared to ResNet50 (0.5 in %) and ResNet101 (0.3 in
%), respectively. Subsequently, the pre-trained DNN-based CABTD methods
have been tested by influencing local and global ROI structures to diagnose
two specific breast tumors (Benign and Malignant) and improve the diagnostic
accuracy (86%) compared to Dense Net, Alex Net, VGG Net, and Google Net.
Moreover, it reduces the computational complexity due to the small depth residual
network ResNet18, respectively.

Keywords: Computer-aided diagnosis; breast tumor; B-mode ultrasound images;
deep neural network; local-ROI-structures; feature extraction; support vector
machine

1 Introduction

In the last 5 years, the diagnosis of breast tumor patient rate is going way high beyond the considerable
number. Significantly, countries like America, Europe, Russia have launched many live screening centers to
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identify disabilities and also provide necessary treatment for patients carrying abnormalities. A breast tumor
is a lump or mass in the breast which may happen due to irregular health issues includes late menopause,
early menarche, obesity, etc. are common risk factors for breast cancer [1]. In 2020, the number of total
cancer incidents was 32.1 million, of which 11.6% is due to breast cancer [2]. The estimated global
burden of top-5 cancers has shown in Fig. 1. It covers significant women cancer types are breast,
colorectum, lung, cervix uteri, and thyroid. It is inferred that breast cancer is the leading cancer type in
women worldwide [3]. If one can detect nonmetastatic breast cancer early, then it is possible to cure
breast cancer in almost 70 to 80% of the cases [4]. Hence, early diagnosis of breast cancer is needed to
achieve potential benefits that are widely acceptable by combining physical examinations, imaging, and
biopsy [5].

There are possible breast tumor screening methods are available such as magnetic resonance imaging
(MRI), digital mammography, ultrasound, computerized tomography, breast-specific gamma imaging,
positron emission tomography, and also thermography [6]. Initially, the standard screening method is
adapted for breast cancer was mammography. However, it is ineffective for women with dense breasts
[7]. Subsequently, MRI ultrasounds are often used with mammography to ensure better diagnostic
performance [8]. Moreover, it is less expensive, convenient as well as less time-consuming in daily
clinical practice. Still, it needs high human interactions to capture B-mode ultrasound images in a
different position to acquire their desired structural content [9]. The acquisition process of such photos
involves noise in the form of speckles as a consequence the quality of the acquired ultrasound image is
mostly operator dependent. Recently, the computer-aided breast tumor diagnosis (CABTD) method has
been used for the anomaly diagnostic process [10]. Later, Zonderland et al. [11] have concentrated only
on specific growing regions with the help of the quasi-Monte Carlo method, which is a type of nonlinear
mapping. It includes local adaptive algorithm operated under seed selection process collects the feature
extraction by mapping fuzzy sets along with extended into accessing coordinate of the probability model
involved in the expectation-maximization (EM) algorithm performs clustering operation [12]. However,
its captures low-quality B-mode ultrasound images degrade the system performance that may be
considered a limitation. To resolve this problem, machine learning-based CABTD methods are often
preferred to achieve better diagnostic performance [13]. It is mainly target-oriented, classifying the given
input ultrasound breast tumor image into either benign or malignant. Fig. 2 shows the sample of B-mode
ultrasound images with benign and malignant lesions. It is noticed that the benign lesions have
homogenous texture as well as border, but malignant lesions have heterogeneous textures also fuzzy
borders [14]. However, it undergoes nonlinear adjustment of pixel intensity, which leads to appearing
artifacts more over degrade the image’s visual quality. Currently, the use of deep neural networks (DNN)
in CABTD methods has been increased. It has a transfer learning approach that is advantageous due to

Figure 1: The global burden of cancer worldwide [2,3]
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the minimum over-fitting issues in small datasets. However, more expensive computational resources for
training (fine-tuning) have become a significant limitation to DNN-based CABTD methods [15]. It is
observed that the depth of DNN in CABTD methods has been increasing to enhance the diagnostic
performance [16–18]. However, increasing the depth of DNN further increases the computational
complexity and the accuracy is strongly dependent on the depth of DNN. Therefore, developing a DNN-
based CABTD method is required to improve accuracy without increasing the network depth. It is
addressed by a possibility-based fuzzy approach that minimizes the noisy occupancy levels at the end of
classification [19,20]. It improves the neighboring pixel intensity, which maintains the quality of the
segmented portion. Further, enhanced the support vector machines (SVM) classification operation, fuzzy
C-means (FCM) algorithm is presented along with updates its membership function by evaluating fuzzy
factor and kernel weigh metric [21]. This paper presents a pre-trained DNN-based CABTD method using
the state-of-art residual network with fewer layers (ResNet18). In contrast to existing CABTD methods
[10,15,16], the proposed method combines local and global region of interest (ROI) structures to improve
diagnostic accuracy. It consists of three stages, namely preprocessing, feature extraction, and
classification. First, extract the local and global ROI structure from the preprocessing stage, followed by
image resizing operation. The features are extracted from global- and local-ROI-structures using pre-
trained ResNet18. The extracted features are then given to the support vector machine (SVM) for better
classification. Effectively analyzing the proposed pre-trained DNN-based CABTD method is considering
two publicly available ultrasound image class-balanced datasets such as BUSI [22] and UDIAT [23]
datasets. The components are removed from the global and local ROI structures at various depths (18, 50,
and 101) fed to support vector machine (SVM) for better classification.

The main contribution of this paper is stated as follows: (i) It reduces the false-negative and false-
positive problems while doing mammography screening tests. (ii) The pre-trained DNN-based CABTD
method holds effective decomposition of the foreground as well as background region separation carried
by DNN layers. Hence, it supports for early detection of breast cancer cell deformity levels. (iii) It is
suitable for all the abnormal structural problems, especially, Benign and Malignant, associated with a
mammography screening test. (iv) It provides an enhanced image of mammograms that accurately
measures the abnormalities by extracting a feature vector from local and global ROI structures in B-mode
ultrasound images. (v) It has a high capability of measuring infection spread. Moreover, it takes a quick
recovery time to establish the newly infected parts compared with a previous track recorded. (vi) It

Figure 2: The B-mode ultrasound images with benign and malignant lesions. (a) Benign lesions from BUSI
dataset [24], (b) Benign lesions from UDIAT dataset [25], (c) Malignant lesions from BUSI dataset [24] and
(d) Malignant lesions from UDIAT dataset [25]
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contains hyperbolic regularization, which provides the suitable fuzzy sets for obtaining the best possible
solution for pixel adjustment and image visual quality enhancement to standardize the predefined attribute
levels. (vii) It induces membership grade modification by intuitionist fuzzy logic sets for accurate
detection of infection spreads.

The rest of the paper is organized as: Section 2 describes the recent methodology adapted for breast
tumor diagnostic analysis. In Section 3, the authors elaborate on the preprocessing, image resizing,
feature extraction, and classification technique proposed in the research. Section 4 briefs the proposed
method’s performance compared to two publicly available ultrasound image class-balanced datasets such
as BUSI [22] and UDIAT [23] datasets availed in the literature. Finally, discussion, conclusion, and future
scope are given in Sections 5 and 6, respectively.

2 Related Works

The research on the computer-aided diagnosis of breast tumors using B-mode ultrasound images has
been performed by several researchers. A detailed description of various CABTD methods from the last
two decades is available [25,26]. The existing CABTD methods are broadly divided into two categories:
traditional machine learning-based and pre-trained DNN-based strategies. The description of existing
CABTD methods is as follows:

2.1 Traditional Machine Learning-Based CABTD Methods

The features are extracted manually from the input B-mode ultrasound images in traditional machine
learning-based CABTD methods [10,19–23]. Then, the extracted features have been used to design classifiers
such as SVM, backpropagation neural network (BPNN), etc. In Ref. [19,20], the authors used fractal analysis
and k-means classification to diagnose breast tumors. The performance obtained in Ref. [19,20] is improved
further by combining k-means classification with BPNN [10]. The independent morphological features have
been extracted using principal component analysis (PCA) in Ref. [21]. It is observed that the extraction of
morphological features is computationally expensive. To reduce computational complexity, the morphological
solidity features associated with auto-covariance texture features have been extracted and then given to the
SVM classifier for better classification [22]. In Ref. [23], the optimal set of textural, fractal, and histogram-
based features are selected based on the stepwise regression method. The fuzzy SVM is then used to achieve
better diagnostic performance. The genetic algorithm has been used to determine the significant auto-
covariance texture and morphological features obtained from input ultrasound images [26]. The multiple
instances learning-based CABTD method is proposed in [27].

The distribution of frequency components is analyzed using 1-D discrete wavelet transform to identify
malignancy of breast tumor lesions in Ref. [28]. In Ref. [29], the authors have proposed a CABTD method
using shear let-based texture features. The congruency-based binary patterns are extracted as features and
then given to SVM in Ref. [30]. In Ref. [31], the authors have performed decision fusion using multiple-
ROI nonoverlapping patches combined with morphological features obtained from input ultrasound
images. The feature extraction methods such as textural-, fractal-, and morphological-based methods are
combined to improve the diagnostic performance of CABTD methods in [32–34]. The multifractal
dimension features are given to BPNN for better classification in Ref. [35]. In Ref. [36], the ROI regions
segmented from the active contour-based and segmentation-based methods are then used to extract
texture features.

2.2 Pre-Trained DNN-Based CABTD Methods

The use of manual feature extraction techniques in traditional machine learning-based CABTD
methods [10,19–33] often requires domain expertise. In contrast to manual feature extraction techniques,
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the pre-trained DNN-based CABTD methods [16–18,37–43] extract the features automatically are effective
and accurate when compared with traditional machine learning-based CABTD methods.

Several authors have proposed various CABTD methods using different DNN architectures [37]. The
commonly used DNNs in B-mode ultrasound image-based CABTD methods are Alex Net, VGG, Google
Net, ResNet, and Dense Net [37]. The transfer learning-based CABTD approach is proposed in Ref. [38].
In Ref. [39], histogram equalization has been used to enhance the input ultrasound images. Then the pre-
trained Google Net is fine-tuned for better breast tumor diagnosis [39]. In Ref. [16], fine-tuned
ResNet152 has been used to diagnose breast cancer using ultrasound images. The automatic feature
extraction technique using pre-trained Google Net followed by the adaptive neuro-fuzzy classification is
used for breast tumor diagnosis [40]. In Ref. [41], the effectiveness of the CABTD method using fine-
tuned inception v2 has been verified subjectively in association with three human readers. The computer-
aided diagnosis of breast cancer using an ensemble of DNNs such as VGG-like network, ResNet, and
Dense Net is proposed [17]. In Refs. [42–49], the features extracted from the last three layers of pre-
trained Alex Net are combined and then given an SVM classifier to improve the accuracy of the CABTD
method. In Ref. [18], the features extracted from the global average pooling layer of pre-trained
ResNet101 are then given to SVM for better diagnostic performance. Unlike existing DNN methods, a
custom DNN-based CABTD method using a single convolutional layer has been proposed [42].

3 Materials and Methods

In this section, the proposed CABTD method is explained. The presented method consists of
preprocessing, feature extraction, and classification stages, as shown in Fig. 3. The detailed description
and illustration of each step involved in the proposed CABTD method are explained as follows:

Let us consider two distinct and class-balanced datasets “and.”Where “and” represents the ROI B-mode
ultrasound images of breast tumor in the spatial coordinates “u and.” Here, M and N denote the number of
images in the datasets P and Q, respectively. In this work, datasets P and Q consist of ROI images (called

Figure 3: The framework of the proposed CABTD method
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global-ROI-structures) of size 224 × 224. Thereby, hidden information is continuously traced out and
extracted feature vector sets from the hidden layers of the pre-trained DNN.

3.1 Dataset

This work collected 520 B-mode ultrasound images from the publicly available datasets BUSI [22] and
UDIAT [23]. In the preprocessing stage, extraction of ROI and image resizing are performed. The
preprocessed ultrasound images are divided into 5-folds in which 4-folds are used in training (denoted
with P) and the remaining 1-fold is used in the testing phase (indicated with Q). The details of datasets
used in this work are presented in Tab. 1.

3.2 Preprocessing

The preprocessing stage consists of ROI extraction (global-ROI-structure), image resizing, and the
generation of local-ROI-structures from global-ROI-structures. The preprocessing steps involved in the
proposed CABTD method are explained as follows:

3.2.1 Extraction of Global-ROI-Structure
The global-ROI structure is the ROI of a breast tumor cropped from the original ultrasound image, as

shown in Fig. 4. The resolution of the original B-mode ultrasound images in the datasets BUSI [24] and
UDIAT [25] are comparatively large compared to the exact ROI of breast tumors. As the detection of
ROI from the original ultrasound image is crucial for better tumor diagnosis. However, in this paper, we
focused mainly on breast tumor diagnosis and not on ROI detection. So, the ROIs from the original
ultrasound images are extracted manually concerning available mask images using MATLAB crop tools.
The process of removing the global-ROI structure is illustrated in Fig. 4.

3.2.2 Extraction of Local-ROI-Structures
The global-ROI-structure extracted from the original ultrasound image concerning mask image is further

divided into multiple sub-ROIs called local-ROI-structures. Initially, the extracted global-ROI structure is
resized to 128 × 128 for uniform analysis. Then, the 128 × 128 global-ROI structure is divided into
multiple 64 × 64 ROIs overlapping as shown in Fig. 4. The extracted 64 × 64 sub-ROIs from the global-
ROI-structures are termed as local-ROI-structures. In this work, each global-ROI structure consists of
nine local-ROI structures, as illustrated in Fig. 4.

3.2.3 Image Resizing
The extracted 128 × 128 global-ROI-structures and 64 × 64 local-ROI-structures are resized to 224 ×

224 to meet the input image size requirement of the proposed CABTD approach. The extracted local-ROI
structures from the corresponding global-ROI structure are then formed as datasets “and.” The dataset

Table 1: The details of breast ultrasound images considered in this work

Dataset Category Number of images

Training (P) Testing (Q) Total

BUSI Benign 168 42 210

Malignant 168 42 210

UDIAT Benign 40 10 50

Malignant 40 10 50

Total 416 104 520
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consists of local-structures corresponding to global-structures present in the dataset. Similarly, the dataset
consists of local-structures corresponding to global-structures present in the dataset.

3.3 Feature Extraction

The proper feature extraction technique is highly required to solve problems like CABTD. In this work,
the pre-trained residual network with 18 layers (ResNet18) [50] is considered for feature extraction. The pre-
trained ResNet18 is initially trained with the ImageNet [51] natural image database against 1000 classes. The
weights or activations of the pre-trained ResNet18 are used as features in the proposed CABTD method. The
pre-trained ResNet18 consists of 18 layers, including convolutional layers and the global average pooling
(GAP) layer. The architecture of the ResNet18 is shown in Fig. 5.

The GAP layer in the ResNet18 contains 512 activations, which are used as features in this work. The
features that are extracted from datasets P and P0 using GAP layer are given SVM classifiers for better
classification as shown in Fig. 3.

Figure 4: The process of extracting global- and local-ROI-structures

Figure 5: The architecture of ResNet18
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3.4 Classification

In this work, two SVM classifiers such as CG and CL are used to classify global- and local-ROI-
structures, respectively, as shown in Fig. 3. The SVM classifier CG is trained with the features that are
extracted from the dataset P. Whereas the SVM classifier CL is trained with the features that are extracted
from the dataset P0. The training process of the SVM classifiers CG and CL is shown in Fig. 6.

In the classification stage, the binary SVM classifier [49] is used. The binary SVM classifier is designed
by solving the optimization problem is:

min x; b; f ið Þ
n o 1

2
xTxþ �

XM
i¼1

f ið Þ (1)

Subject to

y ið Þ x Tð Þf f ið Þ
� �

þ b
� �

� 1� f ið Þ (2)

f ið Þ > 0; for i ¼ 1; 2; ::M (3)

Here, the weight vector is denoted by x and bias is denoted with b. The feature vector is represented
with f ið Þ 2 R512. The regularization constant is denoted with �. The function f :ð Þ represents mapping
function and it is used to map the training sample to feature space.

3.5 Evaluation

The proposed CABTD method is evaluated using the datasets “and.” In Fig. 3, the global-ROI structure
is applied to the proposed CABTD method, along with its local-ROI structure. Then, the global-ROI-
structure is classified using and the corresponding local-ROI-structures are classified using CABTD. The
average of decision scores obtained from local-ROI structures is added with the decision score obtained
from the corresponding global-ROI structure to get the final decision, as shown in Fig. 3. The evaluation
metrics such as accuracy, precision, and recall are used in the evaluation. The expressions of the
evaluation metrics are given as.

Figure 6: The training process of SVM classifiers CG and CL
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Precision ¼ TP

TP þ FP
(4)

Recall ¼ TP

TP þ FN
(5)

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(6)

where, TP; TN ; FP; FN represents true positive, true negative, false positive, and false negative,
respectively.

4 Results

In this section, we describe the experimental setup, data characteristics, and performance of the proposed
method. The effectiveness of the proposed method is illustrated by comparing the proposed method with pre-
trained DNN-based CABTD methods and existing methods in the literature.

4.1 Experimental Setup

All the experiments are performed using a personal computer with specifications; Intel Core-i7, 16 GB
RAM, and 64-bit operating system. The software platform MATLAB R2019b is chosen to validate
experiments. Using deep learning toolboxes and statistics and machine learning toolboxes, the proposed
method is implemented and then executed. The existing CABTD methods are re-executed using the same
dataset used in this work without changing the hyperparameter setting.

4.2 Characteristics of the Dataset

In this paper, the proposed method is evaluated using two open-access available datasets such as BUSI
[24] and UDIAT [25]. The original images in the datasets are initially cropped exactly to match breast lesions,
using mask images available with the collected dataset and the class balance is maintained by randomly
considering the equal number of images per class from each dataset to evaluate the proposed method
effectively. The details of the collected dataset are presented in Tab. 2.

4.2.1 BUSI Dataset
The dataset BUSI [22] contains 780 B-mode ultrasound images in total, in which 487 images with a

benign tumor, 210 images with a malignant tumor, and 133 normal (no tumor) images. The ultrasound
systems used for this dataset are LOGIQ E9 and LOGIQ E9 Agile with 1–5 MHz ML6-15-D Matrix

Table 2: Details of B-mode ultrasound datasets

Dataset Category Number of images

Before ROI extraction After ROI extraction Considered for this work

BUSI Benign 487 487 210

Malignant 210 210 210

UDIAT Benign 110 110 50

Malignant 53 53 50

Total 860 860 520
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linear probe transducer [52]. The original resolution of the images using the LOGIQ E9 and LOGIQ E9 Agile
ultrasound systems is 1280 × 1024. However, dataset images are saved in portable network graphics format
with an average resolution of 500 × 500.

4.2.2 UDIAT Dataset
Another dataset considered in this work is UDIAT [23], consisting of 53 malignant and 110 benign B-

mode ultrasound breast tumor images. The ultrasound system used for this dataset is Siemens ACUSON.
This dataset has belonged to the UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell
(Spain). The principal authors, Dr. Robert Marti and Dr. Moi Hoon Yap used this dataset to develop a
deep-learning-based method for breast tumor segmentation [53,54]. The request has been made to these
authors to permit the use of this dataset for this work.

4.3 Performance of Proposed Method

The proposed CABTD method intends to improve the diagnostic accuracy using residual networks with
small depth. For this purpose, the residual network ResNet18 is chosen in this work. To achieve enhanced
performance, local-ROI structures are incorporated into the design. The performance of the proposed
approach using residual networks at depths 18, 50, and 101 are analyzed using global-ROI-structure and
local-ROI-structures exclusively, as shown in Tab. 3.

From Tab. 3, it is clear that the performance of global-ROI-based CABTD methods in terms of accuracy
is increasing with respect to the depth of the residual network. The proposed CABTD approach is evaluated
using 5-fold cross-validation and the confusion matrices for each fold are provided in Fig. 7 for reference.

Similarly, the performance of CABTD methods using local-ROI-structures is significantly good when
compared with global-ROI-structure-based methods. However, the combination of global- and local-ROI-
structures improved the performance considerably for small-depth networks compared to higher-depth
networks. It is observed that there is no significant improvement in the performance of the proposed
method using ResNet101. However, the proposed method using ResNet18 showed better performance
than global-ROI-based methods and achieved effectiveness in terms of computational complexity and
accuracy.

4.4 Comparison with Existing Methods

The proposed method is compared with pre-trained DNN-based CABTD methods such as ResNet [50],
Dense Net [52], Alex Net [53], VGG Net [54], and Google Net [55]. The comparison of the proposed
CABTD method with pre-trained DNN-based CABTD methods is shown in Tab. 4.

The proposed CABTD method is compared with existing methods in the literature. The performance
comparison in terms of precision, recall, and accuracy with the existing CABTD methods is shown in Tab. 5.

Table 3: The performance of residual networks against global- and local-ROI-structures

Method Residual Networks

ResNet18 ResNet50 ResNet101

Global-ROI-Structures 83.26 ± 4.07 83.28 ± 2.22 85.40 ± 2.18

Local-ROI-Structures 83.88 ± 1.97 87.50 ± 2.45 83.06 ± 2.40

Global + Local-ROI-Structures 86.72 ± 0.80 86.90 ± 2.58 85.00 ± 1.45
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4.5 Computational Complexity

The computational complexity of the proposed CABTD technique is evaluated for residual networks
ResNet18, ResNet50, and ResNet101 in terms of depth, disc size, parameters, and execution time per
feature vector, as shown in Tab. 6. ResNet18’s computational complexity is minimal when compared to
ResNet50 and ResNet101, as seen in Tab. 6. As a result, the suggested CABTD approach takes into
account the residual network ResNet18.

Figure 7: The confusion matrices of the proposed method in (a) Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold 4, and
(e) Fold 5

Table 4: The comparison of the proposed method with pre-trained DNN-based CABTD methods

Method Benign Malignant Accuracy

Precision Recall Precision Recall

VGG16 [54] 78.38 ± 4.71 81.14 ± 2.52 80.34 ± 2.45 77.30 ± 6.44 79.22 ± 3.50

VGG19 [54] 82.24 ± 1.23 81.52 ± 5.69 81.94 ± 4.09 82.30 ± 2.51 81.92 ± 1.88

Dense Net [52] 85.10 ± 6.39 81.16 ± 3.70 81.90 ± 3.25 85.38 ± 7.51 83.26 ± 4.38

ResNet18 [47] 82.88 ± 4.23 84.22 ± 8.21 84.44 ± 6.68 82.32 ± 5.83 83.26 ± 4.07

ResNet50 [47] 83.54 ± 3.63 83.08 ± 2.48 83.16 ± 2.05 83.44 ± 4.45 83.28 ± 2.22

Alex Net [53] 84.10 ± 2.97 83.48 ± 6.18 83.82 ± 5.28 84.24 ± 2.86 83.84 ± 3.67

Google Net [55] 84.12 ± 6.16 84.24 ± 3.16 84.18 ± 2.08 83.46 ± 8.47 83.86 ± 3.36

ResNet101 [47] 85.72 ± 2.65 84.98 ± 3.72 85.20 ± 2.94 85.78 ± 3.22 85.40 ± 2.18

Proposed 87.02 ± 4.99 86.94 ± 4.79 87.18 ± 3.25 86.54 ± 6.21 86.72 ± 0.80
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5 Discussions

The manual feature extraction techniques often extract texture-, fractal-, and also morphological-based
features from medical ultrasound images [10,19–33,46]. However, the use of manual feature extraction
techniques involves the knowledge of expertise. Hence, DNN-based CABTD methods [39] are preferred.
In DNN-based CABTD methods, the features are extracted automatically compared to manual feature
extraction, thereby achieving better diagnostic performance. The DNN-based CABTD methods are only
effective with the following major requirements.

1. Large annotated image dataset to avoid over-fitting and convergence issues.

2. Huge computational resources for the training process.

In practice, the collection of a large annotated dataset is tedious and costly. The pre-trained DNN-based
CABTDmethods [16–18,34–38,40] use the pre-trained networks with a large dataset such as ImageNet. This
strategy is known as transfer learning. The training of pre-trained DNN (transfer learning with fine-tuning)
requires a sufficient amount of training data for proper convergence with less error rate. Using pre-trained
DNN directly (transfer learning without fine-tuning) as a feature extraction technique followed by a
traditional classifier such as SVM is beneficial and more applicable to the problem of breast tumor
diagnosis where the availability of a dataset is scarce.

The use of local-ROI-structures in association with the networks of small depth such as ResNet18 is
advantageous in terms of accuracy and computational complexity. Hence, the proposed CABTD method
extracts feature from global- and local-ROI-structures using pre-trained ResNet18, thereby achieving
better diagnostic performance with less computational resources.

Fig. 8 shows the ROC interpretation curve of the proposed pre-trained DNN-based CABTD method on
B-mode ultrasound image ResNet18 datasets matched with BUSI [22] and UDIAT [23], respectively. It is
identified that the ROC value of 0.7906 is obtained by comparing both the expected and predicted
threshold value (true-positive rate [TPR] and false-positive rate [FPR]) of the PSO-RNN. It is observed in

Table 5: The comparison of the proposed method with existing CABTD methods in the literature

Method Benign Malignant Accuracy

Precision Recall Precision Recall

[39] 86.18 ± 7.49 75.40 ± 16.86 79.38 ± 10.49 86.94 ± 7.64 81.16 ± 7.10

[40] 83.04 ± 5.55 82.30 ± 4.37 82.42 ± 4.40 83.08 ± 5.83 82.68 ± 4.75

[35] 83.46 ± 3.62 84.62 ± 7.56 84.82 ± 6.21 83.08 ± 4.40 83.86 ± 3.75

[18] 84.74 ± 2.79 83.06 ± 4.16 83.46 ± 3.43 85.00 ± 3.15 84.02 ± 2.77

[36] 85.98 ± 7.02 85.78 ± 7.02 86.24 ± 4.51 85.00 ± 8.98 85.40 ± 1.42

Proposed 87.02 ± 4.99 86.94 ± 4.79 87.18 ± 3.25 86.54 ± 6.21 86.72 ± 0.80

Table 6: Computational complexity of residual neural networks

Residual network Depth Disk size Parameters Execution time per feature vector

ResNet18 18 44 MB 11.7 million 0.0418 sec

ResNet50 50 96 MB 25.6 million 0.0954 sec

ResNet101 101 167 MB 44.6 million 0.1581 sec
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Fig. 8(c). Similarly, the ROC values of 0.7407 and 0.7889 are obtained for BUSI [22] and UDIAT [23]. It is
conveyed that TPR and FPR show significant improvement. The trade-off ratio between two publicly
available ultrasound image class-balanced datasets is observed in Figs. 8(a) and 8(b), respectively.

6 Conclusion

The computer-aided diagnosis method for breast tumors using B-mode ultrasound images is proposed in
this paper. The presented method effectively utilized the global- and local-ROI structures achieved better
accuracy and computational complexity. The analysis of residual neural networks at various depths 18,
50, and 101 are performed and tabulated exclusively. The performance of the proposed CABTD method
is evaluated experimentally verified using a class-balanced dataset. From the experimental results, it is
clear that the proposed CABTD method is effective in terms of accuracy and computational complexity
compared with existing literature methods.
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