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Abstract: The surveillance applications generate enormous video data and present
challenges to video analysis for huge human labor cost. Reconstruction-based
convolutional autoencoders have achieved great success in video anomaly detec-
tion for their ability of automatically detecting abnormal event. The approaches
learn normal patterns only with the normal data in an unsupervised way due to
the difficulty of collecting anomaly samples and obtaining anomaly annotations.
But convolutional autoencoders have limitations in global feature extraction for
the local receptive field of convolutional kernels. What is more, 2-dimensional
convolution lacks the capability of capturing temporal information while videos
change over time. In this paper, we propose a method established on Criss-Cross
attention based AutoEncoder (CCAE) for capturing global visual features of
sequential video frames. The method utilizes Criss-Cross attention based encoder
to extract global appearance features. Another Criss-Cross attention module is
embedded into bi-directional convolutional long short-term memory in hidden
layer to explore global temporal features between frames. A decoder is executed
to fuse global appearance and temporal features and reconstruct the frames. We
perform extensive experiments on two public datasets UCSD Ped2 and CUHK
Avenue. The experimental results demonstrate that CCAE achieves superior
detection accuracy compared with other video anomaly detection approaches.

Keywords: Video anomaly detection; bi-directional long short-term memory;
convolutional autoencoder; Criss-Cross attention module

1 Introduction

The ubiquitous surveillance cameras in public areas such as streets, banks and malls have produced
massive amount of video data. It is time consuming and infeasible for human observers analyzing and
monitoring every video stream. Video Anomaly Detection (VAD) is important in intelligent surveillance
systems which can automatically detect appearance and motion anomaly of objects that deviate
significantly from the normality [1]. VAD aims to associate each frame with an anomaly score for the
temporal variation, a spatial score to localize the anomaly in space, and identify the type of anomaly [2].
Although VAD has been studied for several decades, the task still remains challenging. (1) The anomaly
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events are much less than normal ones in real-world scenarios [3]. (2) The definition of abnormal samples is
not clear. For example, crowd gathering is normal in supermarket while abnormal in the context of epidemic
prevention. (3) Anomalous behaviors and items are diverse and the distribution of anomaly patterns is
unknown in advance [4]. It is very difficult to detect all possible anomalous samples. The imbalance,
ambiguous and diversity characteristics of video data make it impractical to gather labeled data of all
types of possible anomalies. To address this problem, VAD is always treated as an unsupervised task by
exploiting the regular patterns only with the normal data.

Reconstruction-based models are the most common strategies in unsupervised learning. The basic idea
is to reconstruct normal data with low reconstruction error in the training phrase. During testing, the
distinctive encoded patterns are detected as anomalies. Early anomaly detection methods are mainly relied
on handcrafted feature engineering with machine learning techniques [5]. In recent years, deep learning-
based reconstruction models are popular for the capability of extracting features and training models in a
unified framework. Videos are high dimensional signals with both spatial structure and temporal
variations [2]. For unsupervised representation learning, a variety of models have been proposed to
combine Convolutional Neural Network (CNN) and autoencoder to automatically model both the
appearance and motion features. However, these methods have limitations in global information
extraction, because CNN concentrates on local information and will lead to information loss on remote
features. In addition, 2-dementional CNN is suitable for images, but it is incapable to capture the
temporal information for consecutive video frames.

Surveillance videos change over time. The chain-like building blocks of Long Short-Term Memory
(LSTM) with forget, input and output gates can regulate long-term sequence pattern recognition [6]. The
variant of convolutional LSTM (ConvLSTM) models have been proposed with autoencoder to reconstruct
and predict temporal features for sequential video frames [7]. Although deep convolutions are strong in
visual features learning and LSTM can capture temporal information, the ConvLSTM models are limited
in local receptive fields of CNN which only provide a few surrounding contextual information.

To better capture long-range global dependencies, many researches optimize the encoder and decoder
through an attention mechanism [8]. Self-attention [9] is an efficient mechanism which allows each query
position in the input sequence to perceive all positions and take their weighted average. The model
implies the importance to the effective areas and suppresses other irrelevant areas. In this way self-
attention module can obtain full-image contextual information. But the generation of attention maps leads
to a very high computational complexity, because we have to measure the relationships for each pair of
pixels. Recently, Criss-Cross attention [10] is put forward as an efficient way to harvest full-image
contextual information for all the pixels only on its criss-cross path.

To handle the issues mentioned above, we propose a novel method which combines Criss-Cross
attention module with bi-directional ConvLSTM and autoencoder for video anomaly detection. The
method utilizes an encoder with Criss-Cross module to extract global appearance features. Global
temporal features are then calculated by adding a Criss-Cross based bi-directional ConvLSTM network
between the encoder and decoder. A decoder is used to fuse the two kinds of features and reconstruct
frames for the goal of capturing global features in spatial and temporal space simultaneously. Given
several consecutive frames, the method learns the normal patterns well, while the anomaly frame is
expected to be distorted and blurry.

The main contributions of this paper are summarized as follows:

1. We propose a novel CCAE method for video anomaly detection. By combining Criss-Cross attention
module with bi-directional ConvLSTM and autoencoder, the method is able to learn global
appearance features and global temporal features.
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2. A smooth L1 loss is utilized as intensity loss to compare two video frames pixel by pixel for
reconstruction. Smooth L1 loss is smoother near zero than L1 loss, and can prevent from
exploding gradient compare to L2 loss.

3. CCAE can accurately detect abnormal events with frame level AUC of 95.3% for UCSD
Ped2 dataset and 84.0% for CUHK Avenue dataset. The experimental results show that the
proposed method attains competitive detection accuracies compared with other VAD methods.

The rest of the paper is organized as follows. Section 2 discusses the brief review of related works on
video anomaly detection and attention mechanism. Section 3 describes the details of the proposed CCAE
method. The evaluation of experimental results and comparison with existing methods are presented in
Section 4. At the end of this paper we conclude our work and discuss the future research directions.

2 Related Works

2.1 Video Anomaly Detection

Due to the scarce of anomaly data and difficulties of annotations, video anomaly detection has been
formulated mainly in unsupervised settings. Previous anomaly detection methods are mainly based on
handcrafted feature engineering. Kim et al. [11] capture the distribution of local optical flow patterns with
a Mixture of Probabilistic Principal Component Analyzers (MPPCA) [12], then use Markov Random
Field (MRF) graph to detect abnormal patterns in incoming video clips. Mahadevan et al. [13] model
normal crowd behavior for each spatial-temporal block using Mixtures of Dynamic Textures (MDT) [14],
then temporal anomalies are equated to events of low-probability, while spatial anomalies are handled
using discriminant saliency. Mehran et al. [15] detect and localize abnormal crowd behavior using the
social force (SF) model. Adam et al. [16] detect abnormal events by multiple monitors which utilize
histograms to measure the probability of optical flow in a local patch. The handcrafted features can
accurately model both spatial and temporal information. However, they are task-specific and require prior
knowledge for feature designing. Therefore, the handcrafted features are difficult to adapt to other
scenarios [17] and are impractical in real scenarios.

Nowadays, deep learning models have been shown to perform well in video anomaly detection tasks.
For example, CNN can effectively extract high-level features by local kernels. Sabokrou et al. [18] use
Fully Convolutional Neural Network (FCNN) for detecting and localizing anomalies. Some researchers
also train CNN on large-scale ImageNet to obtain the feature representation in video object tracking to
solve the problem of insufficient training data [19]. Recently, many unsupervised video anomaly
detection models are proposed based on deep autoencoder architecture, which is composed of an encoder
to compress the input vector into a low-dimension embedding, and a decoder to reconstruct the dense
vector back to the input vector [20]. Hasan [21] build a 2-dimentional Convolutional AutoEncoder
(ConvAE) to model the normal videos by stacking the frames. U-net [22] is and end-to-end encoder-
decoder architecture for biomedical image segmentation. Sabokrou et al. [23] introduce a novel cubic-
patch-based model based on autoencoder to reconstruct input video patch. But 2-dimentional
convolutional operation fails to capture temporal cues of video frames. Although Deepak et al. [24] try to
capture information on the temporal dimension by using 3-dimentional kernels, it is still inadequate to
accurately detect the sequential anomalous samples. Modeling temporal patterns in a timely manner has
remained challenging.

Learning temporal features in VAD has attracted many researchers. Inspired by the temporal capability
of LSTM for sequential video frames, some works combine ConvAE and LSTM to model spatial and
temporal normal patterns simultaneously. Chong et al. [25] use a stack of ConvAE to capture spatial
structures, and then the video representation is fed into a stack of ConvLSTM in autoencoder architecture
for temporal patterns. Luo et al. [26] design a parse coding inspired deep recurrent neural network
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autoencoder framework for alleviating the hyper-parameters selection and dictionary training in temporally-
coherent sparse coding. While effective, ConvLSTM is constrained by the size of convolution kernels of
CNN. The models focus on the local information and cannot fuse the remote features.

2.2 Attention Mechanism

Attention module has achieved great success in many computer vision tasks to aggregate global
contextual information for better feature representation. The methods can be classified as channel-wise
attention [27] and spatial-wise attention [28]. Hu et al. [27] propose a Squeeze-and-Extraction (SE) block
to calculate the channel-wise feature maps. Gong et al. [28] propose a Memory-augmented AutoEncoder
(MemAE) to encode the latent vector as query to obtain the soft addressing weights. Sun et al. [29]
propose a multi-feature learning model with global feature and enhanced local attention for vehicle re-
identification in video surveillance. We have known that convolutions and recurrent operations process
the local neighborhood at a time, either spatially or temporally; then the long-term dependencies are
modeled by repeatedly applying the local operations. In contrast to these ineffective local models, Wang
[30] propose a non-local module to capture long-range dependencies by computing interactions between
any two positions. The model guarantees that a pixel at any position can perceive contextual information
of all other pixels. The non-local modules can be combined with other models easily. However, the non-
local methods are always with huge attention maps and thus are computational complexity. To address
this problem, a more efficient Criss-Cross attention [10] is proposed to aggregate the contextual
information of each pixel only in its horizontal and vertical directions. By stacking two consecutive
Criss-Cross modules, each position of input can collect contextual information from all other pixels.

3 Method

In this section, we employ the proposed CCAE to learn the normal patterns of normal videos. The
diagram of video anomaly detection process is illustrated in Fig. 1. A sequence of frames
ft�3; ft�2; ft�1; ft are given, we adopt CCAE to reconstruct the last frame ft as frec. In the training stage,
CCAE is trained by minimizing the loss function calculated between the reconstructed frame frec and the
real frame ft. In this way the normal patterns are learned from normal training samples. During testing,
we calculate the regularity score of testing frame ft based on the reconstructed frame frec and the ground
truth ft. Testing frame ft will be regarded as abnormal if it deviates significantly from the normal pattern.

Figure 1: The diagram of video anomaly detection process
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3.1 Criss-Cross Attention Based Auto Encoder (CCAE)

The proposed CCAE is shown in Fig. 2. The method is composed of Criss-Cross attention encoder,
Criss-Cross attention based Bi-directional ConvLSTM (CCBiLSTM) and a decoder. The Criss-Cross
attention encoder extracts continuous appearance features with an encoder and obtains the global
appearance features with Criss-Cross attention module; then the continuous appearance features are fed
into the CCBiLSTM to capture global temporal features; the extracted global appearance features and
global temporal features are fused together and used to reconstruct the frames. Inspired by U-net [22],
each layer of the encoder-decoder in CCAE is added with a skip connection to obtain the features of the
same layer, which can retain more context semantic information.

3.1.1 The Criss-Cross Attention Module
We first introduce the Criss-Cross attention module [10] which is utilized to aggregate global contextual

information of video appearance and temporal features in CCAE. The module can capture the contextual
information of each pixel in its horizontal and vertical directions which is very effective. For example, if
an input feature map H is fed into the Criss-Cross module, a new feature map H 0 will be generated by
collecting the contextual information for each pixel in its criss-cross path.

The details of Criss-Cross Attention module are shown in Fig. 3. Given a local feature map H , the module
first applies two convolutional layers with 1� 1 filters on H 2 RC�H�W to generate two feature maps
Q 2 RC0�H�W and K 2 RC0�H�W . We further generate an attention map A 2 R HþW�1ð Þ�H�W via Affinity
operation. At each position u in the spatial dimension of Q, we can obtain a vector Qu 2 RC0. Meanwhile, we

can also obtain the set �u 2 R HþW�1ð Þ�C0 by extracting feature vectors from K which are in the same row or
column with position u.�i;u 2 RC0 is the ith element of �u. The Affinity operation is then defined as follow:

di;u ¼ Qu�
T
i;u

where di;u is the degree of correlation between feature Qu and �i;u. Then a softmax layer is applied over the
channel dimension to calculate the attention map A.

Figure 2: The overview of CCAE

Figure 3: The details of Criss-Cross attention module
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The third convolutional layer with 1� 1 filters is applied on H to generate V 2 RC�H�W for feature
adaptation. We can obtain a vector Vu 2 RC and a set �u 2 R HþW�1ð Þ�H�W . The set �u is a collection of
feature vectors in V which are in the same row or column with position u. The contextual information is
collected by an Aggregation operation defined as follow:

H
0
u ¼

X
i2 �uj j

Ai;u�i;u þ Hu (2)

where H
0
u is a feature vector in H

0 2 RC�H�W at position u and Ai;u is a scalar value at channel i and position
u in A. The contextual information is added to local feature H to augment the pixel-wise representation.
Therefore, it has a wide contextual view and selectively aggregates contexts according to the spatial
attention map. Each position in the feature map is sparsely connected with others which are in the same
row and the same column in Criss-Cross attention module, leading to the global attention map only has
about 2

ffiffiffiffi
N
p

weights rather than N in non-local module. By stacking two consecutive Criss-Cross models,
each position can perceive the full contextual information from all the pixels of the input. In this way,
CCAE can effectively capture long-range global dependencies of video features through the Criss-Cross
attention mechanism.

3.1.2 Criss-Cross Attention Based Auto Encoder
In CCAE, the Criss-Cross attention encoder extracts the appearance features of the video frames by

convolution operation, and the size of feature map is reduced to 1/2 of the original size by maxpooling.
With the number of channels remaining consistent, totally four iterations are performed to obtain the
appearance features in different scales. Then, these appearance features are fed into Criss-Cross attention
module to obtain the global appearance features in different scales. The fourth extraction of the
appearance features is sent to CCBiLSTM to extract the global temporal features. In the final step, a
decoder fuses global appearance features and global temporal features by deconvolution and connection,
and generates high-quality reconstructed frames.

The details of CCBiLSTM is shown in Fig. 4. The Criss-Cross attention module not only captures the
global spatial relationship of a single video frame, but also captures the global temporal dependency between
consecutive video frames. In this way, attention can be allocated in the whole spatial region and time
dimension to improve the utilization of temporal and appearance features. The continuous appearance
features are input into bi-directional ConvLSTM to extract the temporal features between video frames,
and then the global temporal features are obtained by weighting the temporal features through the Criss-
Cross attention module. The bi-directional ConvLSTM network consists of forward ConvLSTM and
reverse ConvLSTM, which generate forward and reverse feature vectors, and these two vectors can be
connected to generate video frame feature. Then, the global temporal features are obtained by weighting
the features with Criss-Cross attention modules, as follows:

ht
! ¼ ConvLSTMf x1; x2; x3; . . . xt½ �ð Þ (3)

ht
 ¼ ConvLSTMb x1; x2; x3; . . . xt½ �ð Þ (4)

ht ¼ cat ht
!
; ht
 h i

(5)

hglobal t ¼ CCatt htð Þ (6)

where ht
!

represents the temporal features obtained by forward ConvLSTM ConvLSTMf , ht
 

denotes the
temporal features obtained by reverse ConvLSTM ConvLSTMb. x1; x2; x3; . . . xt½ � represents the video
frame features of consecutive t frames extracted by the encoder, ht is the time sequence feature which
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concatenates ht
!

and ht
 
. hglobal t represents the global temporal features obtained after Criss-Cross attention

operation.

3.2 Loss Function

Intensity loss and gradient loss are employed into loss function of CCAE so that the reconstructed video
frames can be closer to the real frames. The intensity loss Lint uses smooth L1 loss [31] to compare two video
frames pixel by pixel. Compared with L1 loss, smooth L1 loss is robust to outliers and is smoother near zero.
What is more, the smooth L1 loss can prevent from exploding gradient of L2 loss [32]. We define x as the
distance between the reconstructed frame pixel Îi;j and real frame pixel Ii;j, then the loss function is calculated
pixel by pixel as follow:

Lint ¼
1

2
x2 if xj j < 1

xj j � 1

2
otherwise

8><
>:

(7)

The purpose of gradient loss Lgd is to ensure that the gradients of the reconstructed frame and the real
frame are close. The gradient loss calculates the distance between the pixels in the reconstructed frame and
the adjacent pixels in the real frame, which is shown as follow:

Lgd ¼
X

i;j
k Î i;j � Î i�1;j
�� ��� Ii;j � Ii�1;j

�� ��k1 þ k Î i;j � Î i;j�1
�� ��� Ii;j � Ii;j�1

�� ��k1
� �

(8)

where i and j represent the horizontal and vertical coordinates of the pixels in the video frame.

In the training stage, we combine intensity constraint and gradient constraint to improve the
reconstruction ability of CCAE by minimizing the loss function Lre. The combined loss function is as
follow:

Lre ¼ kintLint þ kgdLgd (9)

where kint and kgd are used for weighted loss.

3.3 Regularity Score

For abnormal frames, there will be more reconstruction errors compared with the ground truth. In other
words, the probability of a frame to be abnormal impacts the quality of the reconstructed frame. It is intuitive

Figure 4: The details of CCBiLSTM
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to calculate the anomaly score by measuring image quality. We use the Peak Signal Noise Ratio (PSNR) for
image quality assessment.

PSNR I ; Î
� � ¼ 10log10

maxÎ
� �2

1

M

1

N

XM
i¼1

XN
j¼1

Ii;j � Î i;j
� �2

(10)

where Ii;j is the ground truth of pixel i; jð Þ , and Îi;j is the reconstructed pixel i; jð Þ.M and N are the height and
width of the frame.

A higher PSNR value indicates a higher quality of the frame, which means it is more likely to be normal.
We normalize the PSNR value into 0; 1½ � for frame t and the regularity score is calculated as follows:

Score tð Þ ¼ PSNRt � min PSNR

max PSNR� min PSNR
(11)

where PSNRt is its original PSNR value. max PSNR and min PSNR are the maximum and minimum PSNR
values in the current video. We predict a frame to be normal or abnormal based on its regularity score.

4 Experiments

4.1 Experiment Settings

To verify the effectiveness of CCAE, we implement the experiments in Pytorch with four NVIDIA
GPUs. Input frames are resized to the resolution of 256*256. In the training stage, the learning rate is set
to 0.0003 and batch size is set to 8. The number of training epochs is set to 200. The weighted
coefficients in the training loss are set as kint ¼ 1 and kgd ¼ 0:1.

The experiments are conducted on two public video anomaly detection datasets, UCSD Ped2 and
CUHK Avenue. The anomalies refer to objects and events that do not conform to expectations. The
UCSD Ped2 dataset contains 16 training videos and 12 testing videos. The videos are captured with a
stationary camera. The dataset contains people walking normally in a pedestrian sidewalk. The anomalies
are about appearance of non-pedestrian entities, such as riding a bike and driving a car in pedestrian area.
The CUHK Avenue dataset consists of 16 training videos with normal activities and 21 testing videos.
Anomalous events are related to people running, walking in the wrong direction and throwing objects.
The details of the two datasets are shown in Tab. 1.

4.2 Evaluation Metrics

The area under ROC curve (AUC) is adopted as metric to evaluate the detection accuracy of CCAE.
ROC curve is obtained by varying the threshold of the anomaly score for each frame-wise reconstruction.
A higher AUC value indicates that the detection performance is better. Besides, the equal error rate
(EER) is also reported as the percentage of misclassified frames.

Table 1: Details of two public video anomaly detection datasets

Datasets Scenarios Anomalies Resolution

UCSD Ped2 Sidewalk Appearance of non-pedestrian entities and anomalous
pedestrian behaviors

360 � 240

CUHK Avenue Campus Strange action, wrong direction and abnormal object 640 � 360
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4.3 Experimental Results

The examples of reconstructed frames and the actual frames are visualized in Fig. 5. It is shown that
CCAE has good reconstruction effect in the normal scenes, while in abnormal scenes the reconstructed
frames are blurry and distorted. The abnormal areas are circled in red. In this way, CCAE can judge
whether the frame is abnormal or not.

As shown in Figs. 6 and 7, the regularity score is calculated to visualize the performance on CUHK
Avenue and UCSD Ped2 datasets. The positions of normal and abnormal frames can be seen directly.
This means that the smaller the regularity score is, the higher the probability of abnormal frame is. The
red area in the graph represents anomalies when the exception occurs in the dataset.

Tab. 2 shows the AUC and EER of CCAE compared with other video anomaly detection methods. For
UCSD Ped2 dataset, we can see that deep learning based methods achieve higher AUC and lower EER than
handcraft based methods such as SF and MPPCA. The results verify the excellent learning ability of deep
models. Specifically, ConvAE and STAE perform better than handcraft based models, which implies that
the models can benefit from integrating deep CNN, autoencoder and convLSTM. Compared with
ConvAE and STAE, GMMAE is able to combine Gaussian mixture model and variational autoencoder.
The knowledge fusion helps to improve the anomaly detection accuracy. As expected, CCAE attains
competitive detection accuracy compared with other deep learning based methods. It is clearly that
utilizing only convolutional autoencoder and LSTM to learn spatial and temporal features is not adequate.

Figure 5: The comparison between reconstructed and actual frames

Figure 6: Regularity score visualization for CUHK Avenue dataset
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The experimental results show that the extraction of global appearance features and global temporal features
based on Criss-Cross attention module can effectively improve the anomaly detection performance.

4.4 Ablation Experiment

In order to analyze the effectiveness of Criss-Cross attention module, we compare CCAE with bi-
directional long short term memory autoencoder (BiAE). Unlike CCAE, BiAE only inputs local features
extracted by encoder and bi-directional long short term memory network directly into decoder for
reconstruction. The AUC and EER are listed in Tab. 3. We can see that Criss-Cross attention module can
achieve a positive effect on anomaly detection. Fig. 8 shows feature heatmap made by CCAE and BiAE
on the two datasets. We can see that capturing long-range global dependencies with Criss-Cross attention
module can enhance attention in key areas.

Figure 7: Regularity score visualization for UCSD Ped2 dataset

Table 2: Comparison with other anomaly detection methods

Methods UCSD Ped2 CUHK Avenue

AUC(%) EER(%) AUC(%) EER(%)

MPPCA [31] 69.3 30.0 – –

SF [15] 55.6 42.0 –

SF+MPPCA [11] 61.3 36.0 – –

ConvAE [21] 90.0 21.7 70.2 25.1

STAE [25] 91.2 16.7 80.9 24.4

GMMAE [17] 92.2 12.6 83.4 22.7

MemAE [29] 94.1 – 83.3 –

TSC [26] 92.21 83.48

Deep STAE [24] 83

CCAE 95.3 10.8 84.0 21.9
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Figs. 9 and 10 show ROC curves for UCSD Ped2 and CUHK Avenue datasets. As expected, CCAE
outperforms BiAE for both datasets. The experimental results confirm that Criss-Cross attention module
is effective, for its capability of capturing global dependencies during appearance encoding and temporal
sequential learning.

Table 3: Comparison of CCAE with BiAE

Methods UCSD Ped2 CUHK Avenue

AUC(%) EER(%) AUC(%) EER(%)

BiAE 92.3 15.4 80.8 23.4

CCAE 95.3 10.8 84.0 21.9

Figure 8: Feature heatmap of CCAE and BiAE on different datasets
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5 Conclusions

In this paper, we presented an efficient unsupervised method CCAE for anomaly events detection by
combining Criss-Cross attention and bi-directional ConvLSTM in autoencoder. The method employs
Criss-Cross attention module in encoder for global appearance features, and a Criss-Cross attention
module with bi-directional ConvLSTM for global temporal features. The two features are then fused by a
decoder to reconstruct frames. In addition, an intensity loss and a gradient loss are designed to enhance
normal pattern reconstruction. We perform extensive experiments on two public datasets UCSD Ped2 and
CUHK Avenue and achieve competitive results with frame level AUC of 95.3% and 84.0% respectively.
The experimental results validate the advantages of CCAE over other video anomaly detection methods.
In the future, we consider investigating spatial and temporal features by graph convolutional neural
networks to enhance feature representations of normal frames.
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