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Abstract: Numerous learning-based techniques for effective human activity
recognition (HAR) have recently been developed. Wearable inertial sensors are
critical for HAR studies to characterize sport-related activities. Smart wearables
are now ubiquitous and can benefit people of all ages. HAR investigations typi-
cally involve sensor-based evaluation. Sport-related activities are unpredictable
and have historically been classified as complex, with conventional machine
learning (ML) algorithms applied to resolve HAR issues. The efficiency of
machine learning techniques in categorizing data is limited by the human-crafted
feature extraction procedure. A deep learning model named MBiGRU (multimo-
dal bidirectional gated recurrent unit) neural network was proposed to recognize
everyday sport-related actions, with the publicly accessible UCI-DSADS dataset
utilized as a benchmark to compare the effectiveness of the proposed deep learn-
ing network against other deep learning architectures (CNNs and GRUs). Experi-
ments were performed to quantify four evaluation criteria as accuracy, precision,
recall and F1-score. Following a 10-fold cross-validation approach, the experi-
mental findings indicated that the MBiGRU model presented superior accuracy
of 99.55% against other benchmark deep learning networks. The available
evidence was also evaluated to explore ways to enhance the proposed model
and training procedure.

Keywords: Sport-related activity; human activity recognition; deep learning
network; bidirectional gated recurrent unit

1 Introduction

Recently, interest in human activity recognition (HAR) has significantly increased [1]. Physiotherapy,
elderly healthcare monitoring and exercise performance assessment of patients can all benefit from recent
studies on HAR [2,3]. Many applications based on HAR including recommendation systems, gait
analysis and rehabilitation monitoring have been developed [4]. Video-based HAR and sensor-based
HAR are different [5]. Video-based HAR, as low cost and easy to deploy, uses a video camera to capture
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human movement. Results are then processed to classify activities. However, video-based HAR is
susceptible to background noises such as illumination and camera angles that impact detection accuracy.
Accelerometers, gyroscopes and magnetometer sensors capture human movement in sensor-based HAR,
with data then split into separate parts and categorized. One significant aspect of this research field
involves wearable sensors [6].

Algorithms including decision trees, naïve Bayes and support vector machines (SVM) have all been
utilized in sensor-based HAR to develop classification models [7,8]. Efficient HAR models have been
built using machine learning (ML) techniques. However, these methods are constrained by the need for
manual feature extraction. Manual aspects have been studied in several ways including data averages,
variance and deviation. Problems can arise during handcrafted feature extraction because individual
expertise and experience may restrict the accuracy of individually derived characteristics. A vast number
of characteristics must be gathered to attain high recognition rates. Recently, deep learning algorithms
were developed to overcome this constraint [9]. The shortcomings of human hand-designed feature
extraction were avoided by using deep neural networks to learn features automatically.

This study focuses on the HAR of sensor-based wearables by employing deep learning (DL), model
construction and hyperparameter adjustment [10]. Previous research using deep learning methodologies
investigated complex psychological activities including cooking, writing and eating. These approaches
had flaws, with effectiveness restricted while handling multimodal HAR. Here, the identification
effectiveness of an existing sensor-based HAR model was enhanced and the impacts of different factors
on the detection of complicated activities such as sport-related movements were evaluated. The
effectiveness of various standard deep learning models was compared with our recommended deep
learning models across multiple learning environments. The key contributions of this study are listed below.

� An architecture for a multimodal bidirectional gated recurrent unit (MBiGRU) neural network was
proposed for daily sport-related activities.

� Different wearable sensors were studied to improve the performance of the proposed bidirectional
gated recurrent unit neural network.

� Performance of the proposed deep learning model of daily sport-related activity recognition was
investigated against the baseline performances established in the DSADS dataset.

The remainder of this paper is organized as follows. Section 2 provides results of related HAR studies.
Section 3 describes the proposed MBiGRU for daily sport-related activity recognition. Section 4 outlines the
experimental settings, dataset descriptions and results. Research findings are discussed in Section 5, with
conclusions and future proposed studies presented in Section 6.

2 Background and Related Studies

HAR from wearable sensor data has emerged as a popular study topic in recent years, with diverse
applications in professional and personal situations. HAR primarily focuses on recognizing motions or
operations in generally unrestricted surroundings using data from sensor-based wearable devices worn by
individuals while conducting various activities. These devices generate data on individual physical
activities using a mix of on-device processing and cloud servers, enabling users to access multiple
context-adaptive services [11,12].

HAR using sensors has demonstrated a high degree of accuracy and utility in specific or semi-controlled
environments. However, constructing effective classifiers capable of recognizing numerous actions is a
complicated process requiring a substantial quantity of labeled training data specific to the context of interest.
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2.1 Sensor-Based HAR

Previously published studies on HAR using inertial measurement units (IMUs) mostly focused on
acceleration signals. Accelerometers, as small, affordable and ubiquitous devices are often incorporated
into consumer items. Typically, previous studies on IMU-based sensors adopted a multi-step approach
involving aggregating and annotating a subset of the sensor signal, summarizing the information in the
subset using various signal features and instant classification of the physical activity using machine
learning [13,14].

The approaches used in different applications varied and were classified according to their learning
methodology (supervised and semi-supervised) and reaction time (real-time and offline) [15–18].
Depending on the feature extraction and summarization methodologies, HAR systems were built using
handcrafted or learned features. Handcrafted characteristics were selected independently, and often
comprised a wide variety of statistical data and features based on human motion models, referred to as
physical features [19]. By contrast, learned features were often based on feature selection procedures as
deep learning techniques. Support vector machines, Gaussian mixture models, tree-based classifiers such
as random forest, and hidden Markov models are all examples of standard classifiers [8]. Recent
developments in end-to-end systems incorporate numerous processes.

2.2 Recognized Activities in Professional Settings

HAR focuses on identifying everyday behaviors in outdoor and indoor situations including jogging,
traveling, relaxing and lying down. Considerable emphasis has been placed on sporting situations where
actions are combined with precise timing. Up until now, minimal attention has focused on professional
activities. Tracking the movements of healthcare professionals such as physicians and nurses [20] and, on
a lesser scale, activities such as cooking [21] are now gaining increased attention. A few small-scale
studies considered activity recognition in construction activities. Joshua et al. [22] investigated masonry
operations in a laboratory using accelerometers. Their investigation demonstrated a categorization
accuracy of up to 80% in moderately unrestricted situations, while Akhavian et al. [3] recreated a three-
class construction activity using two subjects who engaged in sawing, hammering and twisting a wrench
as well as loading and unloading operations. Their three-class model achieved near-90% accuracy, despite
the substantial unpredictability of users and activities. Other construction-related research concentrated on
instances without a human component, such as monitoring the actions of 191 specific pieces of
equipment or machinery. Sensor modality has a significant influence on the effectiveness of an activity
detection scheme [5]. Four ways to categorize sensor modalities include wearable, ambient, object and
other. These are discussed in detail below.

2.2.1 Wearable Sensors
Wearable sensors are most often employed for individual action detection because they can immediately

and effectively collect physical movements [23–25]. They include various gadgets ranging from mobile
phones to smartwatches to smart bands [26]. The accelerometer, gyroscope and magnetometer are the
three most often utilized innovative technologies in HAR studies.

� Accelerometer: The ratio at which the velocity of a moving object changes is measured using an
accelerometer as a motion sensor. Gravity forces (g) or meters per second squared (m = s2) are the
units of measurement. Sampling is often in the tens to hundreds of Hz frequency range.
Accelerometers can be attached to many body locations including the waist, arm, ankle and wrist.
A common accelerometer has three axes that can be used to generate a three-variate time series.
Tri-axial accelerometer signal outputs for the activity classes of standing, walking and leaping are
shown in Fig. 1a.
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� Gyroscope: Gyroscopes are instruments used to determine the speed and direction of rotation.
Degrees per second (deg/s) are used to express angular velocity, with tens to hundreds of Hz as
the sample rate. These sensors are generally incorporated into one another and attached to the
same region of the user’s body. There are three axes in a gyroscope. Gyroscope sensing movement
outputs are shown in Fig. 1b for standing, walking and leaping.

� Magnetometer: Magnetometers are wearable sensors typically used for motion identification by
monitoring the magnetic field movement in a specific area. Sampling rates range from tens to
hundreds of Hz in units of Tesla (T). A magnetometer has three axes. Movement outputs as the
sensor’s depiction of standing, walking and leaping are shown in Fig. 1c.

2.2.2 Sensor-Based HAR Framework
The HAR framework is shown in Fig. 2 as a sensor-based architecture. Data captured from wearable

sensors, data segmentation, feature extraction, model training and classification are all part of this process.

The initial step in the data collection procedure involves gathering sensor data as part of an activity
dataset based on sensors. These sensor datasets are then divided into “windows” with predetermined
sample intervals. A tiny window in each display represents the sensor signal. In Fig. 2, the windows are
divided into non-overlapping and overlapping categories, respectively. The extraction of features from
sensors in time-series data is critical before training a model, with categorization as the last step in the
HAR architecture operation.

Figure 1: Tri-axial signals representing (a) Accelerometer, (b) Gyroscope and (c) Magnetometer
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2.3 Convolutional Neural Network in HAR

Convolutional neural networks (CNNs) are commonly used for classification, voice recognition and
natural language processing tasks [27,28]. Existing studies [29,30] indicated that CNNs accurately
identified HAR. A CNN-based feature extraction approach was employed to extract the local dependence
and scale-invariant properties of the time-series data. Input, convolutional, pooling layers, flattening and
fully connected layers and an output layer comprised the structure of the CNN model, as depicted in Fig. 3.

The first layer of the CNN model receives sensor data as an input. The convolutional layers are layered
with appropriate max-pooling layers and ReLU activation functions. This level provides automatic feature
extraction. Flattened and ultimately linked layers contribute to the third segment of the design. When the
preceding layer (max-pooling layer) passes the feature maps to the flattening layer, the feature maps are
transformed into a single column vector and given to the fully connected layer. The fully linked layer

Figure 2: Sensor-based HAR architecture

Figure 3: Structure of the CNN model

IASC, 2022, vol.34, no.3 1911



carries out the categorization procedure. After the fully connected layer, the output layer, i.e., the Softmax
layer, receives the outputs and determines the probability distribution of each category.

2.4 Recurrent Neural Network in HAR

For applications requiring the computation of temporal correlations between neurons, such as natural
language processing and voice recognition, a recurrent neural network (RNN) varies from a CNN [31].
RNNs are sequentially fed, and previous inputs are less likely to impact the final prediction outcome.
Long short-term memory (LSTM) was designed to address this issue in RNNs by tackling the RNN
gradient vanishing issue, allowing more time steps of information than the RNN design. LSTM has a
distinctive gated method that enables it to store and access more information than other models to
represent extended time-series data [32,33]. Numerous studies have demonstrated that GRU outperforms
LSTM in several domains. The model has two gate techniques that can be used as multiple storage units
including the zt and zt gates for the initial LSTM model. The two gates and a storage unit of the GRU at
a time step t can be depicted as the following four mathematical formulae:

zt ¼ rðWzxt þ Uzht�1 þ bzÞ (1)

rt ¼ rðWrxt þ Urht�1 þ brÞ (2)

ct ¼ tanhðWcxt þ UcRcht�1 þ bcÞ (3)

ht ¼ ð 1� ztÞ � ht�1 þ zt � bcÞ (4)

where xt, ht, and ct denote the input vector, the hidden state and the storage unit state, respectively. Wt, Wr,
Wc, Uz, Ur, and Uc denote the weight matrices, bz, br, and bc denote the bias vector and σ represents the
sigmoid function.

A full description of feature representations cannot be represented using the GRUmodel since the input series
can only be considered in one way [34,35]. Thus, the BiGRU architecture is created by modeling the input series
in forward and reverse orientations. The mathematics of the BiGRU model can be described as:

ht
!¼ GRUt

���!ðxt; ht�1Þ (5)

ht
 ¼ GRUt

 ���ðxt; htþ1Þ (6)

The final output of the BiGRU network can be concatenated as follows:

Yt ¼ ½ht;�!
ht
 � (7)

3 Proposed Methodology

Data acquisition, data segmentation, model training and model assessment are all part of the proposed
DL-based HAR technique, as shown in Fig. 4. A detailed description of each process is given below.

3.1 UCI-DSADS Dataset Description

The University of California (UC) Irvine machine learning repository introduced a dataset called “Daily
and Sports Activities Dataset” (UCI-DSADS dataset) that was utilized here to evaluate the proposed model.
The UCI-DSADS dataset used 5 MTx with 2-DOF models of orientation monitors to collect movement
sensor data from eight participants as they performed 19 tasks in five distinct body postures (see Fig. 5).
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Each of the eight participants (four female and four male aged 20 to 30) was allowed five minutes to
complete each task. The eight participants were responsible for completing the prescribed duties. Activity
data were captured at 25 Hz using the sensor components, with five-second portions of the five-minute
signals used to generate features. A total of 480 signal segments were captured for each task. The
Machine Learning Repository at the University of California, Irvine as the UCI-DSADS collection
contains the sensor data shown in Tab. 1.

The 3Dmotion monitor was used to capture tri-axial IMU data at a 25 Hz sample rate at five locations on
the body of each participant. Eight participants performed 19 different activities during the five minutes
allotted (such as sitting, running at varying speeds, bicycling and rowing). A total of
1,140,000 acceleration, gyroscope and magnetometer samples were included in the collection, and the
UCI-USADS dataset was relatively balanced, as shown in Fig. 6.

Figure 4: Deep learning-based HAR methodology

Figure 5: Unit positions on the participant’s body
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Table 1: Daily sport-related activities in the UCI-DSADS dataset

Type Detail Abbreviation

Total subjects 8 S1, S2, …, S8

Total activities 19 –

Activities Sitting ADL 1

Standing ADL 2

Lying on the back ADL 3

Lying on the right side ADL 4

Ascending stairs ADL 5

Descending stairs ADL 6

Standing still in an elevator ADL 7

Moving around in an elevator ADL 8

Walking in a parking lot ADL 9

Walking on a treadmill at 4 km/h on the flat SP 1

Walking on a treadmill with 15 inclined pos. SP 2

Running on a treadmill at 8 km/h SP 3

Exercising on a stepper SP 4

Exercising on a cross-trainer SP 5

Cycling on an exercise bike in horizontal pos. SP 6

Cycling on an exercise bike in vertical pos. SP 7

Rowing SP 8

Jumping SP 9

Playing basketball SP 10

Body locations Torso T

Right arm RA

Left arm LA

Right leg RL

Left leg LL

Motion sensors Tri-axial accelerometer (m/s2) 3D-Acc

Tri-axial gyroscope (deg/s) 3D-Gyro

Tri-axial gyroscope (deg/s) 3D-Mag

3.2 Proposed Architecture of MBiGRU

Fig. 7 shows the proposed architecture of the multimodel bidirectional gated recurrent unit deep learning
model (MBiGRU), comprising the CNN structure for feature extraction and bidirectional GRU layers for time
series prediction across five channels that were eventually coupled. Three layers comprised each track as an
input layer, a one-dimensional convolutional neural network (1DCNN) layer and a BiGRU layer. The
Conv1D layers offered a direct mapping and abstract representation of sensor inputs utilizing a 64-filter
configuration for feature extraction. Convolution operators were used to extract the features from kernels. A
Conv1D layer with a kernel size of 5 was used for the appropriate channels. Max-pooling condensed the
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learned features into distinct parts without significantly degrading each Conv1D outcome. Conv1D layers n and
max-pooling layers were fed into a bidirectional GRU layer with 128 units and a dropout ratio of 25%. Due to its
forward and backward repetitions, the BiGRU adjusted effectively to the inner state. Flattening and combining the
outputs of five channels was performed in the model. An additional layer of connectivity enabled data to be sent in
ways interpreted as different activity types. The softmax activation function established the probability distribution
throughout the predicted scenarios in the dense layer of the model.

Figure 6: Number of sensors in each position of the UCI-DSADS dataset
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3.3 Model Assessment Criteria

Various metrics such as the F1-score and confusion matrix were used in the HAR research to evaluate
multiple aspects. In most cases, HAR models are assessed according to these criteria. The TP (true positive)
and TN (true negative) signify proper classification (true negative). False forecasting occurs when the
projected conclusion is “yes”, but the true answer is “no” (FP or false positive). A FN (false negative)
occurs when the expected outcome is “no”, but the actual product is “yes” (false negative). The overall
performance of accuracy can be represented as:

Accuracy ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ (8)

Measurements with a wide variety of applications including recall and F1-score were also used, while
the precision of Eq. (9) was employed to determine how many attributes of a particular class were properly
allocated and how many were incorrectly assigned.

Precision ¼ TP

TP þ FP
(9)

Recall can be defined as the percentage of accurately anticipated positives to the total number of
positives observed.

Recall ¼ TP

TP þ FN
(10)

Figure 7: Proposed MBiGRU model
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Two components for calculating an F1-score are precision (the proportion of adequately predicted
positive observations to complete anticipated positive investigations) and recall (the proportion of
correctly forecasted positive studies to actual observed positive experiments).

F1� score ¼ 2 � Precision � Recall

Precisionþ Recall
(11)

A confusion matrix, as a square matrix of order n classes, is often used to display the results of multiclass
classification to better understand the classification levels of each category. Matrix component c represents the
number of times a class i is classed as a class j. The confusionmatrix c focuses primarily on errors in classification.

4 Research Experiments and Findings

Aspects of the proposed MBiGRU model evaluation included the experimental setup, performance
measures and outcomes.

4.1 Experimental Setting

The model environment was implemented by utilizing Python programming language with various
libraries such as Tensorflow, Keras and Scikit-learn to develop the introduced MBiGRU model. A Google
Colab-Pro platform with a GPU Tesla P100-PCIE-16GB was employed to execute all algorithm
implementations. Several experiments were performed on the UCI-DSADS dataset to evaluate the
optimal approach. The experiments employed a 10-fold cross-validation methodology, with three distinct
physical activity scenarios in the UCI-DSADS dataset as follows:

� Scenario I: Using only sport-related activities (SPT)

� Scenario II: Using only activities of daily living (ADL)

� Scenario III: Using all sport-related and daily living activities in the UCI-DSADS dataset

Results in Tabs. 2–4 showed that the proposed MBiGRU gave optimal accuracy and F1-score for sport-
related activities in all experimental scenarios. Highest accuracy was 99.92%, with F1-score 99.92%. When
comparing the two baseline models, CNN achieved better performance than GRU in scenario I, while the
opposite results were found in scenarios II and III.

Table 2: Comparison of recognition performance results for scenario I

Model Recognition performance (Mean ± Std.)

Accuracy Precision Recall F1-score

CNN 99.79% (±0.260%) 99.80% (±0.245%) 99.79% (±0.260%) 99.79% (±0.259%)

GRU 99.51% (±0.127%) 99.91% (±0.122%) 99.91% (±0.127%) 99.91% (±0.127%)

MBiGRU 99.92% (±0.126%) 99.93% (±0.124%) 99.92% (±0.126%) 99.92% (±0.126%)

4.2 Experimental Results

The proposed MBiGRU model was trained on a variety of datasets in each of the three scenarios, and
then compared to two other standard deep learning models. Accuracy, precision, recall and F1-score as the
four traditional metrics were used to assess each classifier, with results shown in Tabs. 2–4.

Training progress for the baseline CNN and GRU and the proposed MBiGRU are shown in Figs. 8–10.
Accuracy and loss trends were tracked for up to 200 epochs. Stability of the proposed MBiGRU model after
ten epochs was better than the two benchmark models. Furthermore, the MBiGRU model indicated that
overfitting did not occur.
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Table 3: Comparison of recognition performance results for scenario II

Model Recognition performance (Mean ± Std.)

Accuracy Precision Recall F1-score

CNN 99.00% (±0.835%) 99.03% (±0.827%) 99.00% (±0.835%) 99.00% (±0.835%)

GRU 99.07% (±0.954%) 99.12% (±0.851%) 99.07% (±0.954%) 99.06% (±0.990%)

MBiGRU 99.21% (±0.362%) 99.23% (±0.351%) 99.21% (±0.362%) 99.21% (±0.363%)

Table 4: Comparison of recognition performance results for scenario III

Model Recognition performance (Mean ± Std.)

Accuracy Precision Recall F1-score

CNN 98.73% (±0.773%) 98.78% (±0.725%) 99.00% (±0.773%) 98.72% (±0.777%)

GRU 99.51% (±0.210%) 99.52% (±0.196%) 99.07% (±0.209%) 99.50% (±0.212%)

MBiGRU 99.55% (±0.279%) 99.56% (±0.277%) 99.21% (±0.279%) 99.55% (±0.281%)

Figure 8: Accuracy and loss trends of the deep learning models using the dataset in scenario I: (a) CNN, (b)
GRU and (c) MBiGRU
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5 Discussion

The study findings detailed in Section 4 were examined.

5.1 Impact of Different Types of Activities

Experiments were conducted to further understand how diverse sensory inputs affected recognition by
evaluating the UCI-DSADS dataset for the three types of activities as sport-related activities, activities of
daily living and both these activities. Mobile sensing data were used to assess sports activities, as shown
in Fig. 11. Performance results of the three deep neural networks are shown in Tabs. 2–4 for each
scenario. The proposed MBiGRU functioned effectively, with accuracy of 99.92% for sport-related
sensor data.

For sport-related activities, the performance of the proposed MBiGRU revealed that the model was
efficient, as illustrated in Fig. 12. However, Figs. 12b and 12c show that certain behaviors in actual life,
such as standing and traveling in an elevator, confounded the suggested model.

Figure 9: Accuracy and loss trends of the deep learning models using the dataset in scenario II: (a) CNN, (b)
GRU and (c) MBiGRU
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5.2 Training Process

The CNN, GRU and MBiGRU models were used to analyze the sensor data from the UCI-DSADS.
First, raw tri-axial data from the accelerometer, gyroscope and magnetometer were used to classify
activities. Fig. 13 shows how deep learning models may be used to learn from raw sensor data. The loss

Figure 10: Accuracy and loss trends of the deep learning models using the dataset in scenario III: (a) CNN,
(b) GRU and (c) MBiGRU

Figure 11: Results of different activity types in the UCI-DSADS dataset

1920 IASC, 2022, vol.34, no.3



rate decreased dramatically, while the accuracy rate steadily improved. There was no sign of a problem. In
other words, no overfitting issues were found with network learning. The testing set had an average accuracy
of 99.92%, 99.21% and 99.55%.

5.3 Limitations of the Proposed Model

This study had limitations because the deep learning models were trained and evaluated using laboratory
data. Previous research demonstrated that the effectiveness of classification methods in laboratory
circumstances does not always correctly represent their performance in real-world situations [36]. Also, this
research did not tackle the difficulty of transitional behaviors (Sit-to-Standing, Sit-to-Lay and so on). This is

Figure 12: Confusion matrices of different activity types in the UCI-DSADS dataset: (a) SPT, (b) ADL and
(c) All (SPT and ADL)
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a topic for future study. Nevertheless, the recommended HAR framework showed high efficiency as a deep
learning model and can be applied for various practical applications in smart homes, including fall detection.

5.4 Applications of the Proposed Model

The proposed MBiGRU model was designed to detect complicated psychological actions such as sport-
related activities, eating activities and other tasks involving the use of hands. These human physical behaviors
were assessed using movement data from multimodal sensors attached at various body positions. This model
used multimodal processes to extract temporal information and concatenate them to categorize complicated
actions in parallel computing. Numerous HAR applications, including fall detection and identification of
construction worker activity, can be implemented using the proposed approach.

6 Conclusions and Future Studies

Wearable sensors and a deep learning model named MBiGRU were used to identify everyday sporting
activities. Standard deep learning algorithms were assessed against our proposed approach using the UCI-
DSADS wearable dataset. A 99.55% accuracy rate and a 99.55% F1-score indicated that our proposed
MBiGRU model surpassed the baseline deep learning models in the experiments. The proposed model

Figure 13: Accuracy and loss trends of the MiGRU model in different scenarios: (a) SPT, (b) ADL and (c)
All (SPT and ADL)

1922 IASC, 2022, vol.34, no.3



boosted the effectiveness of sensor-based HAR using the recommended MBiGRU paradigm. The influence
of various forms of physical activities was also investigated by classifying them into three categories. Results
demonstrated that our proposed model accurately recognized complicated activities. The multi-channel
blocks comprised of CNN and BiGRU layers offered primary benefit over existing frameworks for
complicated HAR.

In the future, we intend to develop and investigate the MBiGRU model using a variety of
hyperparameters including learning rate, batch size and optimizer. We also plan to apply our model to
more complex actions to address concerns about other deep learning techniques and sensor-based HAR
by evaluating other publicly available complex activity datasets such as UT-Complex and WISDM.
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