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Abstract: Energy is considered a valuable source in wireless sensor net-
works (WSN) for effectively improving the survivability of the network. The
non-uniform dispersion of load in the network causes unbalanced energy dissipa-
tion which can result in network interruption. The route selection process can be
considered as an optimization problem and is solved by utilize of artificial intelli-
gence (AI) techniques. This study introduces an energy efficient chaotic krill
herd algorithm with adaptive neuro fuzzy inference system based routing
(EECKHA-ANFIS) protocol for WSN. The goal of the EECKHA-ANFIS method
is for deriving a better set of routes to destination in such a way as to improve the
survivability in the wireless networks. Primarily, the ANFIS model utilizes the
models of fuzzy logic and neural networks (NN) to effectively select the relay
nodes for energy efficient communication. Besides, a group of fuzzy rules with
membership functions (MF) are designed for selecting the next hop node in wire-
less networks based on distinct input parameters. Moreover, the optimal selection
of MF takes place by the use of chaotic krill herd algorithm (CKHA). In order to
showcase the improved performance of the EECKHA-ANFIS approach, a series
of simulations are implemented and outcomes are inspected under several aspects.
The extensive result analysis demonstrates the betterment of the EECKHA-
ANFIS technique over the existing techniques interms of different measures.

Keywords: Energy efficiency; survivability; wireless networks; routing; fuzzy
logic; membership function tuning

1 Introduction

Wireless transmission is the key constituent of this technological breakthrough, especially while
considering the edge of the framework: wireless allows flexibility and mobility that minimizes the weight
and cost of equipment and often makes the system deployment simple [1]. For this reason, there has been
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a growing concern in adopting wireless networks to the strict requirement of different application fields, like
intelligent transportation, industrial automation, healthcare, and autonomous robotics [2]. Current
development in wireless and mobile networks have provided the basis for them to become an
indispensable form of technology viz. utilized by business, technology-savvy, and lay people, anytime
and anywhere [3]. Transmission in wireless sensor network (WSNs) consumes considerable amount of
energy than sensing and processing implemented by the network node. One of the main problems in
WSN is the reduction of power consumption because in almost all instances these nodes are placed in
harsh environments, where battery replacement becomes difficult. Also, the significance of power
utilization in WSN has been demonstrated in [4]. The general structure of WSN is shown in Fig. 1.

The researchers have proven that communication is the primary reason for power utilization. Such
features require the performance of routing policies which allow the sensors to effectively and efficiently
communicate with minimal energy utilization [5]. Therefore, the routing protocol for WSNs should
possess self-configuration property, which enables us to discover the best possible way to transmit data,
considering the energy level and guaranteed delivery amongst the network nodes [6]. When a sensor fails
because of insufficient energy, routes must be evaluated in such a way that the collected data could reach
the destination node. The transmission among the sensors needs to enhance the power utilization for
increasing the network lifetime.

1.1 Motivation

Routing using route-centric parameters is a supportive method used previously to address power
utilization balancing problems [7]. In this method, the routing is executed to a smaller network area, and
in all the regions, one sensor is carefully chosen as next hop that would transmit the information from
other sensors of sink [8]. Further, Parameter-centric routing employs geocast techniques to enhance the
packet delivery ratio and reduce delay [9]. Innovative sensor network has slowly become complex; thus,
conventional mathematical methods for the selection of next hop aren’t suitable [10]. Fuzzy inference

Figure 1: Architecture of WSN
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systems provide feasible solution to construct a model for next hop selection since it processes the complete
part of human apprehension in absence of mathematical models. There are some benefits with fuzzy
modelling such as simple augmentation rule through the extension of new postulates, apprehension of
outcome in natural rule portrayal way, usefulness of the system, and ability to convert immanent
indecisive of human features into linguistic variable [11].

1.2 Paper Contributions

This study develops an energy efficient chaotic krill herd algorithm with adaptive neuro fuzzy inference
system based routing (EECKHA-ANFIS) protocol for WSN in order to improve the survivability in the
wireless networks. The ANFIS model utilizes the concepts of fuzzy logic and neural networks (NN) to
effectively select the relay nodes for energy efficient communication. In addition, a set of fuzzy rules with
membership functions are designed to select the next hop node in wireless networks based on distinct
input parameters. Furthermore, the optimal selection of MF takes place by the use of chaotic krill herd
algorithm (CKHA). For investigative the enhanced outcomes of the EECKHA-ANFIS technique, a
comprehensive experimental analysis takes place and the outcomes are analysed under varying dimensions.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 offers the related works and Section 3 elaborates
the proposed model. Then, Section 4 provides the simulation analysis and Section 5 concludes the paper.

2 Related Works

Baluz et al. [12] presented a method to assist multipath routing systems in selecting the optimal route
based ant colony optimization (ACO) and Fuzzy Inference Systems. The ACO method is employed for
adjusting the rule base of fuzzy systems to enhance the classification approach of the routes, and thus
increase the survivability and the energy efficacy of networks. The Fuzzy System is utilized for
estimating the degree of the route quality, according to low energy levels amongst the nodes that form the
path and the number of hops.

Varun et al. [13] introduced an energy-effective routing using a fuzzy neural network (ERFN) to reduce
the power utilization when equally balancing power utilization amongst sensor nodes thus as to extend the
WSN lifetime. The process uses neural network and fuzzy logic concepts for the smart cluster head (CH)
selection will accurately use up equivalent energy of the sensor nodes. In the study, membership function
(MFs), fuzzy rules, and sets are proposed for making decisions about the next-hop selection. Zhang et al.
[14] developed an energy-effective distributed clustering method based fuzzy system using non-uniform
distribution (EEDCF). In CH selection, we considered neighbour node’s residual energy, nodes energy,
and degree as the input parameters.

Fu et al. [15] presented an environment fusion multi-path routing protocol (EFMRP) to offer sustainable
message transmitting service under harsh environments. The fundamental concept of this model is to instruct
messages to choose paths with the optimal trade-offs amongst routing survivability, latency, and energy
conservation. Fu et al. [16] proposed a sustainable multi-path routing protocol (SMRP), where the routing
decision is made based on a mixed potential field regarding environment, depth, and RE. The
fundamental concept of this model is for instructing data packets to choose routes with trade-offs
amongst delivery routing survivability, latency, and energy balance. While the environmental field was
updated and constructed by the sensing ability of WSN itself, the created multi-path could be protected
by evading passing through the hazardous area.

Huang et al. [17] designed a deep learning (DL) based link predictive method, that collectively uses
Weisfeiler-Lehman kernel and Dual Convolution Neural Networks (WL-DCNN) for light labelling and
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weight subgraph extraction. It can be leveraged to improve self-learning capacity of mining topological
features with stronger generalization. Selvi et al. [18] proposed two new heuristics methods such as a
clustered gravitational routing algorithm and gravitational approach based clustering method to offer an
optimum solution to effective routing and effective clustering. Furthermore, a fuzzy logic (FL) based
deductive inference model was developed and utilized to select the applicable nodes as CH nodes from
the node that exists in all the clusters. Hamzah et al. [19] presented a FL system for CH selective. The
presented method employs five descriptors to define the possibility for all the nodes to become a CH.
This descriptor includes location suitability, compacting, distance in base station (BS), and density. The
study uses FL method in suggesting the Fuzzy Logic-based Energy-Effective Clustering for WSN based
minimal separation Distance enforcement among CHs (FL-EEC/D).

3 The Proposed Model

In this study, a novel EECKHA-ANFIS technique has been derived for the optimum selection of routes
and to accomplish maximum survivability in wireless networks. The selection of routes mainly takes place
using the ANFIS model which involves multiple input parameters and produces an optimal route as output.
In addition, a collection of fuzzy rules with MFs are designed for the choice of succeeding hop node in
wireless networks depending upon varying input parameters and the selection of MF takes place using
the CKHA.

3.1 Network and Energy Model

Assume that there are N sensor nodes viz. arbitrarily located in network region for monitoring the
physical features and its location periodically. All the sensors have neighboring sensors, and they forward
information to most neighboring sensors. Consider immobile sensor with equivalent primary energy. The
computational abilities of all the sensors were similar. Symmetric radio connections are taken into
account among any 2 adjacent sensors. The sink is placed inside the network field. Assume the maximal
communication of every sensor is R. Adoptive communication is assumed by utilizing distance among
some 2 adjacent sensors. The 1st order radio to examine the energy utilization of presented method has
been discussed. Consider 7mm represent the size of packet from bits. The energy was desired to transmit
a m bits of packet across d unit distance among a sender sensor and their adjacent sensors is formulated
as follows

ETX ðm; dÞ ¼ m�Eelect þ m�efsp�d2 if d, do;
m�Eelect þ m�empf �d4 if d � do:

�
(1)

To obtain a m bits of packet, the energy requirement was expressed as follows

ERX ðmÞ ¼ m�Eelect (2)

In which ESelect signifies statistics about the energy dissipation to transmit electrons for each bit. Various
factors like digital coding, acceptable bit-rate, and modulation affects the ESelect. The ɛfsp and ɛmpf represents
the requirement of energy from the free-space path and multi-path environments, correspondingly. If
2 adjacent sensors to which energy utilization is evaluated are divided with distance lesser than or
equivalent to lo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efsp=Emp

p� �
, the radio model employs (1) or else (2) for evaluating the energy

required to transmit the information.

3.2 Design of ANFIS Based Routing Technique

Initially, the ANFIS model receives input parameters as residual energy, distance to BS, and distance to
neighbors for determining the optimal route to BS. The network topology is considered to be dynamic when
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it rapidly changes and that is named an adoptive network. In adoptive network, MFs and fuzzy rule base are
generated manually. A mapping of input with output pattern was made using ANFIS by integrating fuzzy
inference system (FIS) and neural network architecture. The parameter of the MFs is adjusted by ANFIS
using BP method or least square types of algorithms. The ANFIS consists of product, fuzzy, defuzzy,
summation, and normalized layers. An underlying structure of ANFIS contains two inputs ðx; yÞ, one
output f with nine rules. Fig. 2 illustrates the framework of ANFIS. Amongst various FIS systems, the
first order Sugeno fuzzy system is the commonly used adaptive method with higher interoperability and
computation efficacy for diverse challenges. During the 1st order of Sugeno fuzzy system, the FIS rule
set is formulated by:

When x is A1; and y is B1 then f1 ¼ p1xþ q1yþ r1 (3)

When x is A2; and y is B2 then f1 ¼ p2xþ q2yþ r2 (4)

Let Ai and Bi be the fuzzy set in the antecedent and pi; qi, and ri denotes the linear output parameter that is
defined at the time of the training. The explanation of nine rules and five layers of FIS of an ANFIS
framework are given in the following:

Layer 1: All the nodes from this layer is named adoptive node [20]. The fuzzy membership grade of
input of layer 1 was named outcome of the layer as:

O1;i ¼ lAiðxÞ for i ¼ 1; 2; 3

O1;i ¼ lBi�3ðyÞ; for i ¼ 4; 5; 6 (5)

whereas x and y represent input to node i, A and B denotes linguistic label of inputs. O1,i indicates the MF of
Ai and Bi.μAi(x) and μBi−3(y) could adapt fuzzy MF.

Figure 2: Structure of ANFIS
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lAiðxÞ; lBi�3ðyÞ ¼ exp �ðx� ciÞ2
ai

 !
(6)

In the equation, ci and ai denotes the variable group of MF and named as premise parameter.

Layer 2: Layer 2 was termed product layer. It multiplies the incoming signal in outcome of layer 1 and
transmits the multiplied product out.

Every node outcome signifies the firing strength of rule.

Layer 3: The nodes in this layer executes the normalized progression of firing strength in the preceding
layer as:

O3;i ¼ wi ¼ wi

w1 þ . . .w9
; i ¼ 1; 2 . . . 9 (7)

Layer 4: The node in these layers are denoted as square node. The function of this layer was same as
layer 2. In order to generate the output, it executes multiplication of the normalization firing strength
values with first order polynomial as follows:

O4;i ¼ wi:fi ¼ wiðpixþ qiyþ riÞ; i ¼ 1; 2 . . . 9 (8)

While wi represent the outcome of layers 3 and pi; qi; ri represent the variable set.

Layer 5: The node in these layers is labelled as
P

. It executes the summation of each incoming output in
the preceding layer.

O5;i ¼ f ¼
X
i

wifi ¼
P

i wifiP
i wi

(9)

3.3 Design of CKHA Based Tuning Process

KH [21] is a new kind of metaheuristic model for resolving optimized problems. This approach is
stimulated by herding of krill swarm while seeking food in nature. For every krill, their location in
searching space has impacted by 3 mechanisms as follows:

i. motion induced by other krill;
ii. foraging movement;
iii. random diffusion.

For simplification purposes, the above 3 movements in KH are idealized to the Lagrangian system.

dXi

dr
¼ Ni þ Fi þ Di (10)

In which Ni, Fi, and Di are equivalent to the abovementioned three movements to the ith krill. The krill
number has denoted as i, and t represented as generation. The direction of the first movement, αi, is accurately
estimated based on three factors: repulsive, target, and local effecst. For krill i, this motion is modeled in
Eq. (11):

Nnew
i ¼ N max ai þ xnN

old
i (11)

While

ai ¼ alocali þ atargeti (12)
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and N max denotes the maximal speed, ωn indicates the inertia weights in [0, 1], Nold
i represent the prior

movement, alocali and atargeti er signifies the local and target effects, correspondingly. It set N max to 0.01
(ms−1). The second movement is defined by the 2 main factors: the prior experience and the food position
based on the food place. To the ith krill, the motion is expressed by:

Fi ¼ Vf bi þ xf F
old
i (13)

In which

bi ¼ bfoodi þ bbesti (14)

and Vf indicates the foraging speed, ωf represent the inertia weight within [0, 1] and 1, Fold
i denotes the prior

foraging movement, bfoodi means the food attraction and bbesti shows the effect of optimal fitness. The motion
is formulated based on two factors: a random vector and a maximal diffusion speed [22]:

Di ¼ D max d (15)

In the equation, D max implies the diffusion speed, and δ denotes the random vector from −1 and 1. The
second and third movement involves two local and two global systems. Such systems could work
concurrently that making KH an efficient and robust system. The location of krill i from r to t + Δt is
expressed as follows [23].

Xiðt þ DtÞ ¼ XiðtÞ þ Dt
dXi

dt
(16)

Noted that Δt represent a key constantly and must be fine-tuned interms of the certain problems. The
reason is that Δt is considered as scale factor of speed vectors. Furthermore, in KH, the inertia weight
(ωn, ωf) is fixed to 0.9 at the beginning of KH to emphasize exploration. Later, it can be reduce linearly
to 0.1 for stimulating exploitation.

In CKH algorithm, the steps where randomly defined numbers are utilized in the krill herd optimization
method are given in the following.

� Establish the initial population

� Computation of Cbest term in the target direction effects of the optimal krill individual

� The directional vector in physical diffusion

� Crossover

Consequently, a new method has been presented in this work where the above first two procedures are
also chaotic. The numbers created by chaotic map function are applied in the steps of generating the
population initialization and calculating the optimal effect coefficient Cbest.

CKHA is utilized to detect the MFs optimum parameter by the subsequent evaluation and its adjustment
of the model. The a, b, f, j, k parameters are equivalent to the MFs of the input variable remain fixed to
represent the problems. The system would detect the optimum values of the parameter c, i in a direct way
and, by the optimal location of intersection points ðX1; Y1Þ; ðX2; Y2Þ, the values of the parameter d, e,
g, h. Based on the MFs of the output variable, the process would seek the optimal center (b, h, excepts e
which remain fixed for simplicity) and span of everyone (a, c, d, f, g, i). The CKHA application to
improve MFs includes some consideration. Firstly, encrypt each parameter in a weighted graph [24]. The
parameter of MFs of the fuzzy model is attained by the distance among 2 nodes. The process will detect
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the optimum values of c, i from the direct way and utilize the best places of intersection point (X1, Y1),
ðX2; Y2Þ the values of parameter d, e, g, h in which:

d ¼ ð0� C1Þ
m1

; e ¼ ð0� C2Þ
m2

;

m1 ¼ ðY1 � 1Þ
ðX1 � cÞ ; m2 ¼ ð1� Y1Þ

ð0� X1Þ ;

ci ¼ 1� m1c; C2 ¼ 1;

� 1, c, � 0:05; c,X1 , 0; 0,Y1 , 1;

g ¼ ð0� C3Þ
m3

; h ¼ ð0� C4Þ
m4

;

m3 ¼ ðY2 � 1Þ
ðX2 � 0Þ ; m4 ¼ ð1� Y2Þ

ði� X2Þ ;

C3 ¼ 1; C4 ¼ 1� m4i;

0:05, i, 1; 0,X2 , i; 0,Y2 , 1

Let m1, m2, m3 and m4 be the slopes.

The next step is to determine a proper main purpose for estimating the CKHA efficiency. The main
purpose denotes the quality of solutions, and acts as interface among the considered problem and the
optimization method. The MSE was utilized for evaluating the fitness of fuzzy model.

MSE ¼ 1

N

XN
K¼1

½yðkÞ � ~yðkÞ�2 (17)

Whereas y(k) =Reference value at instant k: ~yðkÞ ¼Calculated output of the model at instant k:N =amount of
instances.

4 Experimental Validation

The performance validation of the EECKHA-ANFIS technique takes place using MATLAB tool. The
results are investigated under varying dimensions.

Tab. 1 and Fig. 3 offer the number of alive sensors (NAS) of the EECKHA-ANFIS technique under
distinct rounds. The results demonstrated the betterment of the EECKHA-ANFIS technique with the
higher NAS. For instance, under 600 rounds, the EECKHA-ANFIS technique has obtained higher NAS
of 199 nodes whereas the energy-efficient beaconless geographic routing (EeBGR), energy efficient
beaconless position routing (eBPR), and Energy-Efficient Routing Using Fuzzy Neural Network (ERFN)
techniques have attained lower NAS of 169, 190, and 195 sensors respectively. Moreover, under
1400 rounds, the EECKHA-ANFIS technique has resulted in increased NAS of 166 nodes whereas the
EeBGR, eBPR, and ERFN techniques have attained lower NAS of 90, 131, and 151 sensors respectively.
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Furthermore, under 2000 rounds, the EECKHA-ANFIS technique has accomplished maximum NAS of
106 nodes whereas the EeBGR, eBPR, and ERFN techniques have reached minimal NAS of 30, 50, and
80 sensors respectively.

Tab. 2 and Fig. 4 provided the average residual energy (ARE) of the EECKHA-ANFIS approach under
distinct rounds. The results demonstrated the betterment of the EECKHA-ANFIS technique with the
maximum ARE. For instance, under 600 rounds, the EECKHA-ANFIS approach has obtained higher
ARE of 1.90 J whereas the EeBGR, eBPR, and ERFN techniques have gained lower ARE of 1.46, 1.60,
and 1.86 J correspondingly. Besides, under 1400 rounds, the EECKHA-ANFIS methodology has resulted
in improved ARE of 1.25 J whereas the EeBGR, eBPR, and ERFN systems have gained lesser ARE of
0.58, 0.72, and 1.10 J correspondingly. Besides, under 2000 rounds, the EECKHA-ANFIS technique has
accomplished maximal ARE of 0.73 J whereas the EeBGR, eBPR, and ERFN techniques have obtained
minimal ARE of 0.16, 0.19, and 0.52 J correspondingly.

Table 1: Number of alive sensors (NAS) analysis of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

0 200 200 200 200

200 196 197 198 199

400 189 194 197 199

600 169 190 195 199

800 161 185 190 198

1000 150 171 186 194

1200 130 154 170 179

1400 90 131 151 166

1600 60 90 120 137

1800 45 73 109 118

2000 30 50 80 106

Figure 3: NAS analysis of EECKHA-ANFIS technique with different rounds
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Tab. 3 and Fig. 5 inspected the sensor death (SD) analysis of the EECKHA-ANFIS technique with recent
methods. The results depicted that the EECKHA-ANFIS technique has attained effective results with the
least SDH over the other methods.

Table 2: Average residual energy (J) of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

0 2.00 2.00 2.00 2.00

200 1.81 1.90 1.98 1.99

400 1.68 1.72 1.90 1.95

600 1.46 1.60 1.86 1.90

800 1.35 1.44 1.64 1.78

1000 1.15 1.30 1.56 1.68

1200 0.73 1.09 1.35 1.49

1400 0.58 0.72 1.10 1.25

1600 0.42 0.55 0.80 1.00

1800 0.29 0.42 0.60 0.80

2000 0.16 0.19 0.52 0.73

Figure 4: ARE analysis of EECKHA-ANFIS technique with different rounds

Table 3: Sensor death (%) analysis of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

0 0.00 0.00 0.00 0.00

200 3.17 1.99 1.60 0.82

400 7.09 5.13 3.17 1.60

600 20.42 15.33 5.52 2.78

800 28.27 21.99 12.19 7.88
(Continued)
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For sample, under 600 rounds, the EECKHA-ANFIS methodology has obtained reduced SDH of 2.78%
whereas the EeBGR, eBPR, and ERFN techniques have demonstrated increased SDH of 20.42%, 15.33%,
and 5.52% respectively. Simultaneously, under 2000 rounds, the EECKHA-ANFIS system has attained
minimal SDH of 65.52% whereas the EeBGR, eBPR, and ERFN techniques have outperformed enhanced
SDH of 91.80%, 87.48%, and 81.21% correspondingly.

Tab. 4 and Fig. 6 examined the average energy consumption (AEC) analysis of the EECKHA-ANFIS
methodology with recent approaches. The outcomes showcased that the EECKHA-ANFIS approach has
reached effectual results with the least AEC over the other methods. For instance, under 600 rounds, the
EECKHA-ANFIS method has gained reduced AEC of 0.06 J whereas the EeBGR, eBPR, and ERFN
approaches have portrayed increased AEC of 0.59, 0.28, and 0.10 J correspondingly. At the same time,
under 2000 rounds, the EECKHA-ANFIS method has attained lower AEC of 1.18 J whereas the EeBGR,
eBPR, and ERFN techniques have outperformed higher AEC of 1.89, 1.75, and 1.47 J respectively.

Figure 5: SDH analysis of EECKHA-ANFIS technique with different rounds

Table 3 (continued)

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

1000 35.72 29.05 18.07 11.80

1200 45.52 32.97 23.17 17.29

1400 52.58 40.82 30.62 23.95

1600 74.93 63.17 40.82 33.76

1800 87.09 78.46 58.86 49.84

2000 91.80 87.48 81.21 65.52

Table 4: Average energy consumption (J) of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

0 0.00 0.00 0.00 0.00

200 0.24 0.02 0.01 0.01
(Continued)
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Tab. 5 and Fig. 7 studied the Standard Deviation of Residual Energy (SDRE) analysis of the EECKHA-
ANFIS method with recent approaches. The outcomes depicted that the EECKHA-ANFIS technique has
attained effective outcomes with the lower SDRE over the other approaches. For instance, under
600 rounds, the EECKHA-ANFIS system has achieved reduced SDRE of 0.23 whereas the EeBGR,
eBPR, and ERFN systems have exhibited increased SDRE of 0.39, 0.31, and 0.29 respectively. Followed
by, under 2000 rounds, the EECKHA-ANFIS methodology has attained decreased SDRE of 0.01 whereas
the EeBGR, eBPR, and ERFN techniques have demonstrated increased SDRE of 0.01, 0.02, and
0.01 correspondingly.

Table 4 (continued)

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

400 0.36 0.19 0.04 0.01

600 0.59 0.28 0.10 0.06

800 0.70 0.45 0.30 0.14

1000 0.91 0.62 0.36 0.23

1200 1.35 0.83 0.55 0.39

1400 1.48 1.21 0.91 0.68

1600 1.64 1.34 1.17 0.94

1800 1.75 1.53 1.38 1.10

2000 1.89 1.75 1.47 1.18

Figure 6: AEC analysis of EECKHA-ANFIS technique with different rounds
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Table 5: Standard deviation of residual energy (SDRE) vs. number of rounds of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

0 0.00 0.00 0.00 0.00

100 0.17 0.17 0.10 0.06

200 0.20 0.20 0.13 0.11

300 0.31 0.27 0.20 0.15

400 0.34 0.29 0.22 0.18

500 0.37 0.30 0.25 0.21

600 0.39 0.31 0.29 0.23

700 0.37 0.31 0.29 0.22

800 0.36 0.34 0.27 0.21

900 0.34 0.32 0.24 0.19

1000 0.32 0.29 0.22 0.17

1100 0.27 0.25 0.20 0.15

1200 0.22 0.21 0.18 0.13

1300 0.17 0.17 0.16 0.10

1400 0.14 0.15 0.14 0.07

1500 0.06 0.11 0.06 0.03

1600 0.03 0.06 0.02 0.01

1700 0.01 0.03 0.01 0.01

1800 0.01 0.02 0.01 0.01

1900 0.01 0.02 0.01 0.01

2000 0.01 0.02 0.01 0.01

Figure 7: SDRE analysis of EECKHA-ANFIS technique with different rounds
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Tab. 6 and Fig. 8 inspected the SDRE analysis with alive sensor nodes of the EECKHA-ANFIS
technique with recent methods. The results depicted that the EECKHA-ANFIS method has attained
effective results with the least SDRE over the other methods.

For instance, under 40 nodes, the EECKHA-ANFIS technique has attained minimal SDRE of
0.028 whereas the EeBGR, eBPR, and ERFN techniques have defines enhanced SDRE of 0.043, 0.038,
and 0.032 correspondingly. Simultaneously, under 200 nodes, the EECKHA-ANFIS technique has
attained lower SDRE of 0.018 whereas the EeBGR, eBPR, and ERFN approaches have demonstrated
improved SDRE of 0.036, 0.030, and 0.023 respectively.

5 Conclusion

In this study, a novel EECKHA-ANFIS technique has been derived for the optimum selection of
routes and to accomplish maximum survivability in wireless networks. The selection of routes mainly
takes place using the ANFIS model which involves multiple input parameters and produces an optimal
route as output. In addition, a collection of fuzzy rules with MFs are designed for the choice of
succeeding hop node in wireless networks depending upon varying input parameters and the selection of
MF takes place using the CKHA. For investigative the enhanced outcomes of the EECKHA-ANFIS
technique, a comprehensive experimental analysis takes place and the outcomes are analyzed under
varying dimensions. The detailed comparative study highlighted the superior performance of the

Table 6: Standard deviation of residual energy vs. alive sensor nodes analysis of EECKHA-ANFIS technique

No. of rounds EeBGR eBPR ERFN EECKHA-ANFIS

40 0.043 0.038 0.032 0.028

80 0.025 0.020 0.019 0.015

120 0.026 0.021 0.021 0.017

160 0.032 0.024 0.022 0.018

200 0.036 0.030 0.023 0.018

Figure 8: SDRE analysis of EECKHA-ANFIS technique with different alive nodes
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EECKHA-ANFIS technique over the existing techniques interms of different measures. In future, the
network survivability can be further boosted by the effective design of unequal clustering and data
aggregation techniques.
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