
Modeling Metaheuristic Optimization with Deep Learning Software Bug
Prediction Model

M. Sangeetha1,* and S. Malathi2

1Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 0119, India
2Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, 600 123, India

*Corresponding Author: M. Sangeetha. Email: sangeethameckanzi2224@gmail.com
Received: 15 November 2021; Accepted: 09 February 2022

Abstract: Software testing is an effective means of verifying software stability
and trustworthiness. It is essential in the software development process and needs
a huge quantity of resources such as labor, money, and time. Automated software
testing can be used to save manual work, shorten testing times, and improve test-
ing performance. Recently, Software Bug Prediction (SBP) models have been
developed to improve the software quality assurance (SQA) process through
the prediction of bug parts. Advanced deep learning (DL) models can be used
to classify faults in software parts. Because hyperparameters have a significant
impact on the performance of any DL model, a proper hyperparameter optimiza-
tion approach utilizing metaheuristic methods is required. This paper provides a
unique Metaheuristic Optimization with Deep Learning based SBP (MODL-
SBP) methodology to ensure software dependability and trustworthiness. The
suggested technique entails creating a hybrid Convolution Neural Network
(CNN) bi-directional long short-term memory (BiLSTM) to forecast software pro-
blems. Furthermore, the Chaotic Quantum Grasshopper Optimization Algorithm
(CQGOA) is used for hyperparameter optimization of the CNN-BiLSTM models,
which enhances predictive accuracy. To demonstrate the superior performance of
the MODL-SBP technique, a wide range of simulations are performed on bench-
mark datasets, with the results highlighting the superior performance of the
proposed model over other recent techniques.

Keywords: Software testing; software bug prediction; deep learning;
metaheuristics; hyperparameter tuning

1 Introduction

The software application’s influence is growing with time. Effort estimation is the fastest developing
field in business and academia [1]. Because the total cost and duration of software testing are increasing
daily, the key problem for software practitioners and academics is to improve software quality while
utilizing limited testing resources. The main goal of the Software Bug Prediction (SBP) approach is to
categorize fault-free and faultily models, and then the developer would allocate testing preferences of
many software components, assign appropriate testing sources, and improve software quality [2].

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2022.025192

Article

echT PressScience

mailto:sangeethameckanzi2224@gmail.com
http://dx.doi.org/10.32604/iasc.2022.025192
http://dx.doi.org/10.32604/iasc.2022.025192

A software bug is a flaw, defect, or error that results in unexpected or erroneous results [3]. Because resources
are limited, software components with flaws should be prioritized. SBP approaches for detecting bug-prone
software components using machine learning (ML) classifier algorithms were presented to address resource
allocation challenges. SBP is an essential topic in software development since anticipating errors in software
systems improves quality and hence reduces work and maintenance costs. SBP enables SQA teams to detect
defects in problematic code throughout the software development process, preventing them from producing
additional errors in other areas of the programme components/modules.

SBP is an important part of software development. This is because predicting the malfunctioning
components prior to programme launch promotes customer satisfaction and improves overall software
performance. Furthermore, predicting software problems increases resource usage and enhances
programme adaptation to various contexts [4]. Several techniques to coping with SBP concerns have been
offered. Machine Learning (ML) techniques are the most often utilized in SBP for forecasting
problematic components based on significant metrics, various software computing strategies, and
historical fault data [5]. A hyperparameter is an ML classification parameter that has been altered to
improve prediction/performance accuracy. In general, hyperparameter optimization is the process of fine-
tuning the hyperparameters of ML techniques or determining the optimal hyperparameter values; it is
sometimes referred to as hyper-parameter tuning or model selection. Various classifications have different
properties that must be improved for the hyperparameter to improve [6]. In previous decades,
publications provided several approaches for analysing the performance of ML classifiers in software bug
prediction [7].

Machine learning (ML) is a subset of deep learning (DL) (ML). DL tries to reflect higher-level
abstraction in data using numerous processing layers and sophisticated structures based on a set of
models [8]. Deep learning (DL) refers to a class of models and techniques that include, but are not
limited to, Deep Belief Networks (DBN), Convolution Neural Networks (CNN), Deep Boltzmann
Machines (DBM), Restricted Boltzmann Machines (RBM), deep representation, and recursive auto-
encoders [9]. CNN, RBM, and DBN are the most often used ML techniques for image categorization.
Deep learning is distinguished from commonly used “shallow learning” approaches such as boosting,
maximum entropy approach, and support vector machine by the term “Deep” (SVM). Because shallow
learning primarily harvests feature through empirical/artificial sampling, the network/model would learn
non-layer structural aspects [10]. DL, on the other hand, learns raw information layer by layer by shifting
input from raw to changed feature space. Deep structure may be able to learn and approach non-linear
functions as well.

This research offers a new metaheuristic optimization model for software testing that incorporates deep
learning-based SBP (MODL-SBP). To implement the SBP as a prediction technique, the MODL-SBP
approach employs a hybrid convolution neural network (CNN) bi-directional long short-term memory
(BiLSTM). Furthermore, the chaotic quantum grasshopper optimization algorithm (CQGOA) is employed
to optimise the CNN-BiLSTM models’ hyperparameters, which improves prediction accuracy. A wide
range of simulations are run to investigate the improved efficiency of the MODL-SBP technique, and the
results are evaluated in a variety of ways.

2 Related Works

JDA-ISDA is a ground-breaking cross-project ARB prediction method developed by Arun et al. [11]
that is based on Joint Distribution Adaptation (JDA) and Improved Subclass Discriminant Analysis
(ISDA) (ISDA). The basic idea behind JDA-ISDA is to use JDA to lessen conditional and marginal
distribution changes while employing ISDA to avoid serious class imbalance concerns. Khan et al. [12]
proposed a method for detecting software defects that employs both an ML classifier and the Artificial

1588 IASC, 2022, vol.34, no.3

Immune Network (AIN) to increase bug forecasting accuracy through hyperparameter tweaking. For this
objective, seven ML classifications were used: KNN (Minkowski metric), SVM Radial base function
(SVM-RBF), KNN (Euclidean metric), AdaBoost, NB, DT, LDA, and RF.

Pandey et al. [13] focused on proving the benefits of the FS and ML approaches for distinguishing
between non-faulty and defective software components. They demonstrated fundamental SBP
classifications based on Ensemble Learning and Bug Prediction with Deep Representation (BPDET).
Both the DR and EL processes make use of it. Rajaram et al. [14] created the BugHunter Data
Collection, which is a new type of manually built and open-source bug dataset made up of code
components (files, classes, models) containing a greater range of bug information and code metrics.
Another available bug dataset collects the characteristics of each source code component (non-buggy and
buggy) at many pre-selected release versions of the code using the standard method.

To broaden the original dataset throughout the CNN efforts, Chaubey et al. [15] constructed the
PROMISE Source Code (PSC) datasets, which were called the Simplified PROMISE Source Code
(SPSC) datasets by its developer. In the data sets, each variant was used. The proposed model employs
CNN hybridization with various activation functions via global pooling and is thus trained through
additional tree classifications. Venu et al. [16] improved classification performance by using developed
GWSO as a classification FS approach. Furthermore, rather than recognizing it as non-defective/faulty,
software error detection is expected to assume the nature of the issue when rectifying it for corrective action.

Qu et al. [17] looked into the direct relationship between the various designers and the risk of a faulty
file. According to an experimental investigation on nine publicly available Java systems with thirty-two
versions, they uncovered an unexpected and widely recognized trend: if there are many individuals
working on a source file, there is a high likelihood that this file will be problematic. Pretty Diana Cyril
et al. [18] presented a function-level JavaScript issue detection system based on static source code metrics
as well as hybrid (dynamic and static) code analysis-based metrics of various outgoing and incoming
function calls (HNOI and HNII). Because JavaScript is a very dynamic scripting language, static code
analysis may be incorrect; thus, relying solely on static source code features for issue prediction may be
insufficient. Qu et al. [19] carried out an experimental investigation to evaluate network embedding
strategies in bug predictions by expanding and implementing node2defect, a recently reported bug
predictive strategy that concatenates the embedded vector with typical software engineering metrics.
Seven network embedding approaches, two effort-aware methods, and thirteen publicly available Java
schemes are used in the experiment.

3 The Proposed Model

In this work, a novel MODL-SBP approach was developed to predict the presence of software faults,
ensuring software dependability and trustworthiness. The suggested MODL-SBP technique addresses the
SBP as a classification problem that is solved with DL models. The suggested MODL-SBP technique is
divided into two stages: CNN-BiLSTM prediction and CQGOA hyperparameter tuning. Fig. 1 depicts the
entire method of the proposed MODL-SBP approach. The following sections go through these two
techniques in further depth.

IASC, 2022, vol.34, no.3 1589

3.1 Preprocessing

The proposed method illustrates how the pre-processed data is originally developed using that data has
normalization from zero to one since it is utilized to increase the classifier accuracy. The equation of pre-
processed normalized data is shown below.

x0 ¼ x� xmin

xmax� xmin
(1)

where x' denotes the variable x's normalization value, x denotes the variable x's current value, xmin denotes
the dataset’s minimum data point, and xmax denotes the dataset's maximum data point. After normalization,
trained data was used to train the classifier, and test data was used to compute classification accuracy. If the
classification accuracy and AUC are obtained, the FF is determined using the classifier's classification
accuracy, including the AUC and hyper-parameter.

3.2 Process Involved in the CNN-BiLSTM Based Prediction

The MODL-SBP approach primarily employs the CNN-BiLSTM model to forecast the emergence of
software problems. The CNN BiLSTM is a unique hybrid approach combining CNN and BiLSTM, is
given in this paper. The model given here has been trained to categorize a multivariate temporal sequence

Figure 1: Overall process of MODL-SBP technique

1590 IASC, 2022, vol.34, no.3

of land cover into its many classes. The current technique differs from conventional classification methods by
including embedded relationships and efficient features in a longer time sequence, resulting in an
improvement in classifier performance. The two ways mentioned above are extensively discussed below.

CNN is a kind of multilayer NN that is made up of two primary parts [20]. Initially, feature extractors
learn features automatically from data. Following that, trainable FC-MLP conducts the classification
algorithm based on the previously learnt feature. Typically, the feature extractor involves a number of
comparable steps, all of which include pooling, filtering, and activation layers. Every layer’s output is
referred to as a feature map.

A recurrent Neural Network (RNN) is a kind of ANN that differs from NNs based on feed forward by the
possibility of using its internal state (memory) to handle a succession of inputs. Recently, the LSTM network
has emerged as a revolutionary RNN model that addresses the concerns of the prior RNN’s vanishing
gradient and holds the LSTM. The LSTM is distinguished from RNN by two characteristics. Firstly, the
cell state is separated into the short-term state h(t) and the long-term state c(t). Next, an LSTM consist of
output, forget, and input gates, each of which is along the state path for regulating the cell state as
presented in [21].

It learns Bi-LSTM dependencies between time steps of a time sequence and is useful for a network that
should be taught at all time-steps of a complete time series. With two sublayers, BiLSTM processes the input
sequence in all directions. It has two recurrent network layers, the first of which handles the order of inputs in
the forward direction, and the second of which handles the input sequence in the reverse direction. The two
layers are coupled to a similar output layer, and the BiLSTM network obtains overall data regarding future
and prior data point sequences. Both layers calculate backward and forward hidden sequences ~h and

h

correspondingly, that is later integrated to calculate the output sequence as shown below:

ht
!¼ tan chðWx~hxt þW~h~h

~ht�1 þ b~hÞ (2)

~ht ¼ tanchðWx~h � xt þ w h h

htþ1 þ b hÞ (3)

yt ¼ W~hy ht
!þW

h y

ht þ by (4)

In which: Wx~h represents the connection weight between input and forward hidden layers, Wx~h signifies
the connection weight between input and backward hidden layers,W~h~h means the connection weight between
the forward hidden layer and W~hy symbolizes the connection weight between forward hidden and output
layers.

CNN-BiLSTM, a hybrid technique combining CNN and BiLSTM networks, is described for the
classification of multivariate time sequences of land cover information. The proposed model incorporates
multilayers that include the proposed convolution and BiLSTM layers, as well as the FC layer,
classification layer, and softmax layer. A sequence of folding layers is placed before the convolution layer
to execute the convolution operation on each time step independently. A series of unfolding and flatten
layers are inserted between the convolution and BiLSTM layers to restore the sequence model and
reshape the output of the convolution layer to the sequence of feature vectors. The structure of the Bi-
LSTM approach is seen in Fig. 2. The following depicts the different layers and parameter values of the
provided model:

IASC, 2022, vol.34, no.3 1591

� A series input layer with an input size of dimension [10231]

� Series Folding Layer

� CNN includes ReLU, convolution and BN layers with multiple filters equal to 30 and with filter size
of 5-by-5. 2 sequences of the layers are utilized by the presented model

� Series of Unfolding Layer restore the series model of input data afterward series folding

� Flatten Layer

� BiLSTM with 350 hidden units which output only the final time step

� An FC layer of size 9 i.e., multiple classes followed by a classification and softmax layers

3.3 Hyperparameter Optimization Using CQGOA

The CQGOA is used to successfully tune the CNN-BiLSTM model’s hyperparameters. The GOA is a
revolutionary SI-based metaheuristic technique inspired by the extended range and quick movement of adult
grasshoppers in groups. The metaheuristic technique divides the search process into exploitation and
exploration stages that are reasonable. The grasshopper’s extensive range and quick motion symbolise the
exploration stage, while its local motion for hunting for an ideal food source represents the exploitation
stage. Mirjalili [22] provides a mathematical expression for this behaviour as:

xi ¼ Si þ Gþ A; (5)

In which xi signifies location of i grasshopper, Si implies social interaction in a group, G means force of
gravity performance on i grasshopper and A shows wind direction. Through extending Si, G and A can be
expressed as:

xi ¼
XN

j¼1;j 6¼i
sðjxj � xijÞ xj � xi

dij
� gêg þ uêw; (6)

While s(r) = fe−r/l − e−r represents, function stimulating the impact of social interaction and N signifies
number of grasshoppers. gêg means extendedG element, in which g denotes gravitational force and êg means
unit vector directing to the center of earth. uêw implies an extended element, let u be the constant drift and êw
represents the unit vector directing towards the wind direction. dij signifies the distance between ith & jth
grasshopper and evaluated as follows,

Figure 2: Framework of BiLSTM

1592 IASC, 2022, vol.34, no.3

dij ¼ jxj � xjj:
Because grasshoppers recognize a comfortable zone rapidly and have low convergence, the effects of

wind and gravity are significantly less than the interactions between grasshoppers, implying that
mathematical expressions must be changed as,

xi ¼ c
XN

j¼1;j 6¼i
c
ub� lb

2
sðjxj � xijÞ xj � xi

dij

 !
þ T̂d; (7)

Let ub & lb be the upper and lower limits of the searching space respectively, Td shows the comparative
value to the target (optimal solution established until now) and c signifies the reduction coefficient that
balances the procedure of explorations and exploitations as:

c ¼ cmax � iter
cmax � cmin

Maxiter
; (8)

In the above equation, cmax means the maximal value (equivalent to one), cmin denotes the minimal value
(equivalent to 0.00001), iter shows the present iteration and Maxiter indicates the maximum number of
iterations.

Algorithm 1: Pseudocode of GOA

Initialize

Initiate the swarm Xi(i = 1, 2, …, n),

Initiate cmax, cmin and maximal iteration count;

Evaluate the fitness of every searching agents;

T = optimal searching agents;

while (l � Max amount of iterations)

Upgrade c;

for every searching agent

Regulate the distance among grasshoppers in [1,4];

Upgrade the location of present searching agent;

Bring the present searching agents back when it drives outside the boundary;

end for

Upgrade T when it has an optimal solution;

l = l + 1;

end while

return T;

End

The chaos approach is a branch of mathematics that works with nonlinear dynamical models. Non-linear
means that forecasting the system response by linking the input and dynamical mean changes in the
technique from one state to another over time may be difficult. A dynamic system with a deterministic

IASC, 2022, vol.34, no.3 1593

formula is implied by the chaos drive. However, chaotic functions have produced radically unpredictable and
diverse feature efficiencies dependent on the beginning state. As a result, the chaotic function improved the
intensification and diversification of optimization techniques, avoiding local optimal solutions and altering
surrounding global better. These solutions follow extremely basic principles and have no interconnected
sections; yet the produced value is reliant on the preceding value and the primary condition in each cycle.

In this scenario, logistic mapping is used to increase the GOA’s performance. The chaos drives have
been identified as having the best performance when compared to other chaotic solutions. As an example,
consider the logistic map below.

xt ¼ rxt�1ð1� xt�1Þ (9)

where, xt stands for the value in any iterations t and r refers the growth rate that continues values from 3.0 to
4.0. The QCGOA is derived by integrating the concepts of quantum computing and chaos theory into the
traditional GOA.

Quantum computing (QC) is a novel variety of computing method that applies a quantum approaches
like quantum entanglement, quantum measurement and state superposition. An important unit of QC is
qubit [23]. The 2 fundamental states |0〉 and |1〉 system a qubit which is formulated as linear combination
of these 2 fundamental states as:

jQi ¼ aj0i þ bj1i: (10)

|α|2 signifies the probability of noticing condition |0〉, |β|2 defines the probability of observed condition
|1〉, where |α|2 + |β|2 = 1. The quantum was composed of n qubits. According to the nature of quantum
superposition, each quantum has of 2n feasible values. An n-qubits quantum was represented as:

� ¼
X2n�1
x¼0

Cxjxi;
X2n�1
x¼0
jCxj2 ¼ 1: (11)

Quantum gates such as rotation, NOT, and Hadamard gates have altered the state of qubits. The rotation
gate was defined as a mutation operator that generates quanta way optimal solutions before defining the
global optimum.

The rotation gate is determined as follows:

adðt þ 1Þ
bdðt þ 1Þ
� �

¼ cosð4hdÞ �sinð4hdÞ
sinð4hdÞ cosð4hdÞ
� �

adðtÞ
bdðtÞ
� �

for d ¼ 1; 2; . . . ; n: (12)

4hd ¼ 4� S ðad; bdÞ,4hd stands for the rotation angle of qubits, where4 and Sðad; bdÞ are the
size and direction of rotation respectively.

4 Performance Validation

The performance validation of the MODL-SBP technique takes place using five benchmark datasets,
which comprises of distinct classes [24]. The details of the dataset are given in Tab. 1. The results are
inspected under two aspects such as Before Parameter Tuning (BPT) and After Parameter Tuning (APT).

1594 IASC, 2022, vol.34, no.3

The accuracy study of the MODL-SBP technique under the BPT process is presented in Tab. 2 and
Fig. 3. The results demonstrate that the MODL-SBP technique achieved the highest level of accuracy
across all test datasets. For example, the MODL-SBP strategy achieved a better accuracy of 0.914 using
the Eclipse JDT Core dataset, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost strategies
achieved lesser accuracy of 0.809, 0.832, 0.817, 0.804, 0.846, and 0.847, respectively. Furthermore, using
the Lucene dataset, the MODL-SBP strategy achieved the highest accuracy of 0.929, while the SVM-
RBF, KNN-EM, NB, DT, LDA, and AdaBoost techniques achieved lower accuracy of 0.896, 0.884,
0.852, 0.880, 0.852, and 0.881, respectively. Furthermore, with the Eclipse Pde UI dataset, the MODL-
SBP strategy achieved an accuracy of 0.888, whilst the SVM-RBF, KNN-EM, NB, DT, LDA, and
AdaBoost techniques achieved an accuracy of 0.840, 0.840, 0.817, 0.812, 0.847, and 0.849, respectively.

Table 1: Dataset descriptions

System Release Classes Buggy (%)

Eclipse JOT core 3.4 997 20

Eclipse PDE UI 3.4.1 1497 14

Equinox 3.4 324 40

Mylyn 3.41 1862 13

Lucene 2.4.0 691 9

Table 2: Result analysis of existing with proposed model in terms of accuracy on before parameter tuning
(BPT)

Dataset Eclipse JDT core Equinox Lucene Mylyn Eclipse Pde UI

SVM-RBF 0.809 0.728 0.896 0.918 0.840

KNN-EM 0.832 0.685 0.884 0.921 0.840

NB model 0.817 0.710 0.852 0.840 0.817

DT model 0.804 0.667 0.880 0.923 0.812

LDA model 0.846 0.602 0.852 0.900 0.847

AdaBoost model 0.847 0.679 0.881 0.937 0.849

MODL-SBP 0.914 0.773 0.929 0.943 0.888

Figure 3: Accuracy analysis of MODL-SBP technique under BPT process

IASC, 2022, vol.34, no.3 1595

The accuracy study of the MODL-SBP algorithm under APT is presented in Tab. 3 and Fig. 4. The
results show that the MODL-SBP approach achieved maximum accuracy on all test datasets. For
example, the MODL-SBP approach achieved a better accuracy of 0.954 with the Eclipse JDT Core
dataset, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost techniques achieved minimal
accuracy of 0.852, 0.858, 0.822, 0.835, 0.850, and 0.858, respectively. The MODL-SBP technique
achieved a maximum accuracy of 0.981 with the Lucene dataset, whereas the SVM-RBF, KNN-EM, NB,
DT, LDA, and AdaBoost systems achieved minimum accuracy of 0.908, 0.909, 0.862, 0.903, 0.909, and
0.896, respectively. Finally, the MODL-SBP strategy achieved a greater accuracy of 0.955 using the
Eclipse Pde UI dataset, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost methods
achieved lesser accuracy of 0.899, 0.859, 0.821, 0.834, 0.849, and 0.857, respectively.

The AUC analysis of the MODL-SBP technique under the BPT process is shown in Tab. 4 and Fig. 5.
The results reveal that the MODL-SBP approach achieved a higher AUC on all test datasets. For example,
with the Eclipse JDT Core dataset, the MODL-SBP approach achieved a higher AUC of 73.63%, whereas the
SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost techniques achieved lesser AUCs of 45%, 56%, 57%,
54%, 57%, and 62%, respectively. Similarly, with the Lucene dataset, the MODL-SBP approach achieved the
highest AUC of 73.58%, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost strategies had

Table 3: Result analysis of existing with proposed model in terms of accuracy on after parameter tuning
(APT)

Dataset Eclipse JDT core Equinox Lucene Mylyn Eclipse Pde UI

SVM-RBF 0.852 0.734 0.908 0.945 0.899

KNN-EM 0.858 0.700 0.909 0.940 0.859

NB model 0.822 0.720 0.862 0.843 0.821

DT model 0.835 0.697 0.903 0.942 0.834

LDA model 0.850 0.602 0.909 0.942 0.849

AdaBoost model 0.858 0.702 0.896 0.946 0.857

MODL-SBP 0.954 0.839 0.981 0.984 0.955

Figure 4: Accuracy analysis of MODL-SBP technique under APT process

1596 IASC, 2022, vol.34, no.3

lesser AUCs of 65%, 61%, 65%, 69%, 67%, and 63%. Finally, with the Eclipse Pde UI dataset, the MODL-
SBP technique has a higher AUC of 71.60%, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and
AdaBoost approaches have lesser AUCs of 56.80%, 59.40%, 61.80%, 60.40%, and 63.60%, respectively.

The AUC analysis of the MODL-SBP approach under APT is presented in Tab. 5 and Fig. 6. The results
reveal that the MODL-SBP approach achieved a higher AUC on all test datasets. For example, with the
Eclipse JDT Core dataset, the MODL-SBP methodology achieved an AUC of 90.04%, whereas the
SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost methods achieved AUCs of 86%, 80%, 68%, 70%,
65%, and 73%, respectively. Furthermore, with the Lucene dataset, the MODL-SBP technique achieved
the highest AUC of 85.31%, whereas the SVM-RBF, KNN-EM, NB, DT, LDA, and AdaBoost strategies
achieved lower AUCs of 78%, 71%, 68%, 77%, 80%, and 77%, respectively. Finally, with the Eclipse
Pde UI dataset, the MODL-SBP technique achieved an AUC of 84.60%, while the SVM-RBF, KNN-EM,
NB, DT, LDA, and AdaBoost algorithms achieved AUCs of 77.40%, 72.80%, 65.40%, 73%, 71%, and
73.80%, respectively.

Table 4: Result analysis of existing with proposed model in terms of AUC on BPT

Dataset Eclipse JDT core Equinox Lucene Mylyn Eclipse Pde UI Average

SVM-RBF 45.00 57.00 65.00 70.00 47.00 56.80

KNN-EM 56.00 51.00 61.00 72.00 57.00 59.40

NB model 57.00 55.00 65.00 63.00 59.00 59.80

DT model 54.00 58.00 69.00 70.00 58.00 61.80

LDA model 57.00 50.00 67.00 67.00 61.00 60.40

AdaBoost model 62.00 58.00 63.00 72.00 63.00 63.60

MODL-SBP 73.63 63.13 73.58 78.87 68.78 71.60

Figure 5: AUC analysis of MODL-SBP technique under BPT process

IASC, 2022, vol.34, no.3 1597

Fig. 7 offers an average accuracy and AUC analysis of the MODL-SBP technique under BPT and APT.
The figures depict that the MODL-SBP technique has offered the maximum performance in terms of
accuracy and AUC over the other methods compared.

Finally, as shown in Tab. 6 and Fig. 8, a full comparative result analysis of the MODL-SBPmethodology
with recent methodologies is performed in terms of enhanced accuracy. The results demonstrate that the NB
model performed poorly in comparison to the other strategies. Following that, the KNN-EM, DT, DA, and
AdaBoost models achieved a reasonable performance. In keeping with this, the SVM-RBF approach resulted
in a 3% boost in accuracy. The new MODL-SBP technique, on the other hand, surpassed the current
strategies with a maximum accuracy improvement of 5.3%. The full result analysis clearly shows that the
MODL-SBP technique is a useful tool for SBP.

Table 5: Result analysis of existing with proposed model in terms of AUC on APT

Dataset Eclipse JDT core Equinox Lucene Mylyn Eclipse Pde UI Average

SVM-RBF 86.00 68.00 78.00 77.00 78.00 77.40

KNN-EM 80.00 67.00 71.00 78.00 68.00 72.80

NB model 68.00 64.00 68.00 65.00 62.00 65.40

DT model 70.00 63.00 77.00 86.00 69.00 73.00

LDA model 65.00 51.00 80.00 85.00 74.00 71.00

AdaBoost model 73.00 65.00 77.00 83.00 71.00 73.80

MODL-SBP 90.04 72.70 85.31 91.95 83.01 84.60

Figure 6: AUC analysis of MODL-SBP technique under APT process

1598 IASC, 2022, vol.34, no.3

Figure 7: Average result analysis of MODL-SBP technique (a) Accuracy-BPT (b) Accuracy-APT (c) AUC-
BPT (d) AUC-APT

Table 6: Comparison of various approaches in terms of improvisation on accuracy

Methods Accuracy (Improved)

SVM-RBF 3.0%

KNN-EM 2.1%

NB model 0.6%

DT model 2.5%

LDA model 2.1%

AdaBoost model 1.3%

MODL-SBP 5.3%

IASC, 2022, vol.34, no.3 1599

5 Conclusion

A unique MODL-SBP approach was created in this work to forecast the existence of software flaws,
ensuring software dependability and trustworthiness. The proposed MODL-SBP approach treats the SBP
as a classification issue that is addressed using DL models. Furthermore, the MODL-SBP approach used
the CNN-BiLSTM model to discover software flaws. Furthermore, CQGOA is used to tune the
hyperparameters of the CNN-BiLSTM model. To investigate the improved performance of the MODL-
SBP approach, a thorough experimental study is performed, and the findings are scrutinized in a variety
of ways. The simulation results demonstrated that the suggested MODL-SBP method outperformed
current state-of-the-art SBP techniques. In the future, hybrid metaheuristic optimization techniques may
be created to successfully adjust the DL models’ hyperparameters.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declared that they have no conflicts of interest regarding the present study.

References
[1] A. Hammouri, M. Hammad, M. Alnabhan and F. Alsarayrah, “Software bug prediction using machine learning

approach,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 78–83, 2018.

[2] S. Divyabharathi, “Large scale optimization to minimize network traffic using MapReduce in big data
applications,” in Int. Conf. on Computation of Power, Energy Information and Communication, India, pp.
193–199, 2016.

[3] S. Shivaji, E. J. Whitehead, R. Akella and S. Kim, “Reducing features to improve bug prediction,” in IEEE/ACM
Int. Conf. on Automated Software Engineering, Auckland, New Zealand, pp. 600–604, 2009.

[4] D. Paulraj, “An automated exploring and learning model for data prediction using balanced ca-svm,” Journal of
Ambient Intelligence and Humanized Computing, vol. 12, no. 5, pp. 1–15, 2020.

[5] D. L. Gupta and K. Saxena, “Software bug prediction using object-oriented metrics,” Sādhanā, vol. 42, no. 5, pp.
655–669, 2017.

[6] H. Osman, M. Ghafari and O. Nierstrasz, “Hyperparameter optimization to improve bug prediction accuracy,” in
IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE), Klagenfurt,
Austria, pp. 33–38, 2017.

Figure 8: Comparative analysis of MODL-SBP technique with existing approaches

1600 IASC, 2022, vol.34, no.3

[7] M. Sundaram, S. Satpathy and S. Das, “An efficient technique for cloud storage using secured de-duplication
algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 2969–2980, 2021.

[8] M. A. Berlin and S. Tripathi, “IoT-based traffic prediction and traffic signal control system for smart city,” Soft
Computing, vol. 25, no. 8, pp. 12241–12248, 2021.

[9] C. Ramalingam, “Addressing semantics standards for cloud portability and interoperability in multi cloud
environment,” Symmetry, vol. 13, no. 2, pp. 1–12, 2021.

[10] S. Sambit, S. Debbarma, S. C. Sengupta Aditya and K. D. Bhattacaryya Bidyut, “Design a fpga, fuzzy based,
insolent method for prediction of multi-diseases in rural area,” Journal of Intelligent & Fuzzy Systems, vol. 37,
no. 5, pp. 1064–1246, 2019.

[11] A. Arun, R. R. Bhukya, B. M. Hardas and T. Ch, “An automated word embedding with parameter tuned model for
web crawling,” Intelligent Automation & Soft Computing, vol. 32, no. 3, pp. 1617–1632, 2022.

[12] F. Khan, S. Kanwal, S. Alamri and B. Mumtaz, “Hyper-parameter optimization of classifiers, using an artificial
immune network and its application to software bug prediction,” IEEE Access, vol. 8, no. 2, pp. 20954–
20964, 2020.

[13] S. K. Pandey, R. B. Mishra and A. K. Tripathi, “BPDET: An effective software bug prediction model using deep
representation and ensemble learning techniques,” Expert Systems with Applications, vol. 144, no. 1, pp. 113085,
2020.

[14] P. V. Rajaram and P. Mohan, “Intelligent deep learning based bidirectional long short term memory model for
automated reply of e-mail client prototype,” Pattern Recognition Letters, vol. 152, no. 12, pp. 340–347, 2021.

[15] P. K. Chaubey and T. K. Arora, “Software bug prediction and classification by global pooling of different
activation of convolution layers,” Materials Today: Proceedings, vol. 26, no. 2, pp. 154–161, 2020.

[16] D. Venu, A. V. R. Mayuri, G. L. N. Murthy, N. Arulkumar and S. Nilesh, “An efficient low complexity
compression based optimal homomorphic encryption for secure fiber optic communication,” Optik, vol. 252,
no. 1, pp. 1–15, 2022.

[17] Y. Qu, J. Chi and H. Yin, “Leveraging developer information for efficient effort-aware bug prediction,”
Information and Software Technology, vol. 137, no. 2, p.1 06605, 2021.

[18] C. Pretty Diana Cyril, J. Rene Beulah, P. Mohan, A. Harshavardhan, D. Sivabalaselvamani et al., “An automated
learning model for sentiment analysis and data classification of twitter data using balanced CA-SVM,” Concurrent
Engineering: Research and Applications, vol. 28, no. 4, pp. 386–395, 2021.

[19] Y. Qu and H. Yin, “Evaluating network embedding techniques’ performances in software bug prediction,”
Empirical Software Engineering, vol. 26, no. 4, pp. 1–44, 2021.

[20] N. Subramanian and D. Paulraj, “A gradient boosted decision tree-based sentiment classification of twitter data,”
International Journal of Wavelets, Multiresolution and Information Processing, vol. 18, no. 4, pp. 1–21, 2020.

[21] C. Saravanakumar, R. Priscilla, B. Prabha, A. Kavitha and C. Arun, “An efficient on-demand virtual machine
migration in cloud using common deployment model,” Computer Systems Science and Engineering, vol. 42,
no. 1, pp. 245–256, 2022.

[22] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris and I. Aljarah, “Grasshopper optimization algorithm for multi-
objective optimization problems,” Applied Intelligence, vol. 48, no. 4, pp. 805–820, 2018.

[23] C. Ramalingam and P. Mohan, “An efficient applications cloud interoperability framework usingi-anfis,”
Symmetry, vol. 13, no. 2, pp. 1–15, 2021.

[24] H. B. Duan, C. F. Xu and Z. H. Xing, “A hybrid artificial bee colony optimization and quantum evolutionary
algorithm for continuous optimization problems,” International Journal of Neural Systems, vol. 20, no. 01, pp.
39–50, 2010.

IASC, 2022, vol.34, no.3 1601

	Modeling Metaheuristic Optimization with Deep Learning Software Bug Prediction Model
	Introduction
	Related Works
	The Proposed Model
	Performance Validation
	Conclusion
	References

