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Abstract: Cognitive Radio Networks (CRN) have recently emerged as an impor-
tant solution for addressing spectrum constraint and meeting the stringent criteria
of future wireless communication. Collaborative spectrum sensing is incorporated
in CRNs for proper channel selection since spectrum sensing is a critical capabil-
ity of CRNs. According to this viewpoint, this study introduces a new Adaptive
Neuro Fuzzy logic with Improved Genetic Algorithm based Channel Selection
(ANFIGA-CS) technique for collaborative spectrum sensing in CRN. The sug-
gested method’s purpose is to find the best transmission channel. To reduce spec-
trum sensing error, the suggested ANFIGA-CS model employs a clustering
technique. The Adaptive Neuro Fuzzy Logic (ANFL) technique is then used to
calculate the channel weight value and the channel with the highest weight is
selected for transmission. To compute the channel weight, the proposed ANFI-
GA-CS model uses three fuzzy input parameters: Primary User (PU) utilization,
Cognitive Radio (CR) count and channel capacity. To improve the channel selec-
tion process in CRN, the rules in the ANFL scheme are optimized using an
updated genetic algorithm to increase overall efficiency. The suggested ANFI-
GA-CS model is simulated using the NS2 simulator and the results are investi-
gated in terms of average interference ratio, spectrum opportunity utilization,
average throughput, Packet Delivery Ratio (PDR) and End to End (ETE) delay
in a network with a variable number of CRs.

Keywords: Cognitive radio; spectrum sensing; channel selection; spectrum
assignment; improved genetic algorithm

1 Introduction

Cognitive Radio (CR) has emerged as a viable communication strategy for making full use of
constrained spectrum resources in an opportunistic manner [1,2]. It makes good use of the available
spectrum. Spectrum sharing, spectrum management, spectrum sensing and spectrum mobility are the four
aspects of CR technology. Spectrum sensing detects idle spectrums and distributes them to another user.
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Following that, the optimal portion that meets the user’s transmission requirements. In order to have an
effective spectrum, constant transmission needs are maintained during the spectrum mobility process. The
third phase provides a feasible spectrum scheduling strategy for coexisting users [3]. Several issues, such
as multipath fading, shadowing and the receiver uncertainty problem, have a significant impact on the
detection efficiency of the spectrum sensing process in real-time. To prevent these challenges, cooperative
sensing is suggested to boost sensing effectiveness by observing spatially distributed CR users. Fig. 1
depicts the structure of CR networks (CRN).

The spectrum assignment function of CR handles how Secondary Users (SUs) can resourcefully utilize
the unused licensed spectrum without interference and on a lease basis at some point throughout the entire
spectrum [4]. The primary goal of CRN is to optimize specific network utilities such as the allocation of
existing channels to SUs. Channel selection is vital in CRN because it allows the CR to choose the best
channel among the available detected channels. The current channel selection research activities are based
on recent observations of the channel state as a basic information to select the channels. However, a
channel used by the Primary User (PU) could not be used for CR transmission. As a result, if PU arrives,
the CR should stop the transmission and look for another channel to restart it. These CR transmission
distributions have an impact on the Quality of Service (QoS) performance of CR consumers. Several
models are created in [5] to address these issues. In this case, the CR will forecast the arrival of PU on
various channels and select the one with the lowest PU utilization for broadcast (PUU). The goal of these
techniques is to eliminate interference between CR and PUs. However, other aspects that must be
considered while choosing the best channels are channel state and the CR’s QoS requirements. All of
these aspects are considered by an effective channel selection model.

CRN’s spectrum assignment strategies include game theory, pricing and auction mechanisms and local
bargaining. In [6] an optimal channel and power allocation model for a multi-channel environment is created
based on the probability of channel accessibility. The spectrum allocation problem is treated as an NP-hard
Graph Coloring Problem (GCP) in [7,8] and a Color Sensitive Graph Coloring (CSGC) strategy is proposed
to solve it. In [9], an improved graph coloring theory-based technique is created with CSGC spectrum usage
of least simulated time. In [10], graph coloring and bidding theory techniques are used to allocate channels in
a novel distributed collusion mechanism. The channel selection procedure is carried out by Genetic
Algorithm (GA) based models described in [11] by considering the bit error rate, modulation, bandwidth,
power and frequency. The objective function is converged to the optimum value and the stopping criteria
are met based on the desired criteria. It provided a thorough evaluation of the channel selection process
without taking the PUU into account.

Figure 1: Architecture of CRN

1094 IASC, 2022, vol.34, no.2



Despite the fact that numerous spectrum sensing models are available in the literature, the concealed
terminal problem occurs when the cognitive user is shadowed while the main user (PU) operates nearby.
To address the concealed terminal issue, collaborative spectrum sensing is employed, which alleviates the
problem of corrupted detection by utilizing inbuilt spatial variety to reduce the chance of interferences
with the PUs. According to this viewpoint, this study introduces a new Adaptive Neuro Fuzzy Logic with
Improved Genetic Algorithm-based Channel Selection (ANFIGA-CS) technique for collaborative
spectrum sensing in CRN. The ANFIGA-CS approach aids the CR in determining available spectrum
slots/channels in the radio band. The ANFIGA-CS technique primarily employs a clustering technique to
reduce spectrum sensing inaccuracy. Furthermore, the Adaptive Neuro Fuzzy Logic (ANFL)-based
channel weight selection technique is used and the channel with the highest weight is picked for
transmission. To improve the channel selection process in CRN, the rule optimization in the ANFL
scheme is performed using the Improved Genetic Algorithm (IGA) to increase overall performance. The
suggested ANFIGA-CS model is simulated using the NS2 simulator and the outcomes are evaluated
using several metrics.

The remainder of the paper is organized as follows. Section 2 summarizes the available channel selection
approaches in the literature. Section 3 covers the ANFIGA-CS model’s operation, while Section 4 examines
its experimental validation. Finally, in Section 5, the important findings of the ANFIGA-CS model are
summarized.

2 Literature Survey

This section examines some of the most recently established channel selection strategies for CRNs. A
fully distributed channel selection technique is devised to facilitate the existence of LTE devices or systems in
the unlicensed 5 GHz band [12]. For channel allocation, the game theory and Q-learning models are used.
The performance of this model is validated in terms of signaling requirements, convergence time and
error. The overhead issue associated with many SUs is addressed in [13], which delivers examinations to
the fusion centre by dividing a network into a series of clusters. Through the usage of cluster heads, the
cluster transmits observations to the fusion centre (CHs). They are created using the machine learning
affinity propagation technique. The construction of an infrastructure-based model becomes simple in such
a way that the fusion centre remains static regardless of the movement of SUs. This strategy does not
consider ad hoc scenarios. The simulation of channel conditions is regarded as a critical operation in [14].
The channel states are described using stochastic processes with a joint distribution that the user is aware of.

A backward propagation training strategy using Neural Network (NN) is given for predicting future
channel state from past data [15]. GA is used to avoid the local optima problem while decreasing
aggressive structural patterns and optimizing the structure of a NN. Sumathi et al. [16] create an effective
support vector machine model for identifying likely free channels for SU transmission. It employs four
input variants for successful channel selection, which is utilized to determine the channel preference list
for SUs to carry out channel switching. It manages two queues using the M/M/1 queueing technique to
reduce the channel switching count and poison distribution is used to determine the SU count coming in
a certain time span.

Because of channel dynamics, the study underlines the difficulties that SUs confronts in determining the
best sensing and transmission protocols. The reinforcement learning technique, namely the Double Deep-Q
Network [17], is used to develop a unique transmission strategy for SU. It is used to determine the sensing
order of channels as well as the cooperative sensing partner selection. When compared to traditional Q
learning models, deep reinforcement learning algorithms have a faster learning rate and a larger
performance gain. Soft and hard decision recognition are used in the fusion centre to detect the existence
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or absence of PUs [18]. When it comes to sensing, soft decision recognition often outperforms hard decision
sensing. It is realised in order to provide a better compromise between cost and sensing efficiency.

For CR, an Intelligent Fuzzy based Dynamic Spectrum Allocation (IDSA) approach with bandwidth
flexibility is designed [19]. The presented IDSA model yielded better results in terms of delay, packet
loss and service rate. A dynamic GA is designed for channel allocation in CRN [20]. It is based on better
crossover and mutation operators and it provides a new technique for allocating spectrum to Pus and
SUs. [21] proposes a Best Fit Channel Selection (BFC) technique for distributed channel selection. For
channel selection, it takes primary channel and CR traffic activities into account. The CR nodes
determine the PU’s traffic activity and the channel condition. It also forecasts how long the channel will
be idle. Despite the fact that numerous models are available in the literature, there is still a need to create
an appropriate channel selection mechanism for CRNs.

3 The Proposed Channel Selection Methodology

The proposed ANFIGA-CS model comprises of several process such as node deployment, clustering,
channel weight determination and rule optimization. The overall working principle of the ANFIGA-CS
model is illustrated in Fig. 2. Once the nodes are deployed and clusters are constructed, the channel
weights are determined using ANFL scheme. It involves three fuzzy input parameters namely PUU,
number of CRs (NCR) and Channel Capacity (CC) to determine the channel weight. The channel with
maximum weight will be chosen for data transmission. Finally, the rules generated using the ANFL
scheme are optimized using IGA and thereby the efficiency can be further improved. The detailed
operation of this process is given in the subsequent subsections.

3.1 Network Model

A CRN with a set of PU and CR nodes is considered. The PU nodes are the approved clients who have
first priority access to the channels that are not disrupted by CR node transmission. The network is supposed
to operate in a different fashion, with the CR nodes performing networking functions such as spectrum
sensing and channel selection. The ability of CR and PU is discovered to be sampled. The primary

Figure 2: Workflow of proposed ANFIGA-CS model
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distinction between CR and PR is that the PR owns a band that may be used everywhere, but the CR can only
access the idle frequency band. When the CR detects a PU signal, it quickly exits the designated spectrum.
CR has a single transceiver that allows it to perceive or communicate on only one channel at a time. By using
a multi-transceiver, it reduces the processing cost of the CRs and removes the possibility of interference.
Each CR node performs spectrum sensing on a regular basis. The CRN’s effectiveness is primarily
determined by the PU’s activity throughout the channels. The CR user will only use the spectrum
resource if the PUs does not use it. When the CR uses an idle channel, the PU can arrive at any time and
the CR must then stop the conversation and vacate the existing channel. The PU activity is based on
Poisson modelling with an exponential distribution of inter-arrivals.

3.2 Cluster Construction Phase

Earlier in the process, cognitive sensors are deployed to operate as SU in the RF environment. In this
situation, the relevant sensors are regarded as static and an adaptive spectrum-based clustering technique
is employed to achieve rapid spectrum creation in a dynamic environment with constraints. In this case,
the weighted clustering technique is used to choose the CHs, resulting in the formation of clusters. The
development of a clustering topology aids in the effective sharing of spectrum and the efficient use of
existing spectrum.

3.3 ANFL Based Channel Weight Selection Phase

The ANFL model combines the fundamental concepts of Fuzzy Logic (FL) with Artificial Neural
Network (ANN) (ANN). It supports a set of Membership Functions (MF) as well as if/then rules. To alter
weights, the ANFL use a trapezoidal MF. These MFs are used in conjunction with the product inference
rules during the fuzzification stage. The ANFL model contains three inputs: PUU, NCR and CC and one
output: Channel Weight Selection (CWS). The minimizing of interference caused by PUs and between
CRs is a major challenge that exists to improve the efficiency of the CRN. As a result, the optimal
channel with low PUU, low CR user congestion and high CC must be selected. The output assigns a
channel weight based on three parameters, which are defined below: PUU, NCR and CC.

a. Primary user’s utilization

PUU denotes the fraction of time at which channel i is in ON state, that is used by PUs. Channel
utilization [22] u can be determined using Eq. (1). A major necessity of CRN is that there should be zero
inference between the CRs and Pus transmission. Hence, the optimum channel will be the one with
minimum PUU rate.

Ui ¼ E½Ti
ON�

E½Ti
ON� þ E½Ti

OFF�
¼ ky

kx þ ky
(1)

where, E½Ti
ON� ¼ 1

kx
, E½Ti

OFF� ¼ 1
ky
, λx, λy are rate parameters for exponential distribution and E½Ti

ON�, E½Ti
OFF�

are the mean exponential distribution.

b. Number of CRs

By using the channel, an effective channel selection process will choose the channel with the fewest CR
neighbors. The lowest possible CR reduces interference between CRs, increasing transmission rate, resource
utilization and throughput. It also lowers packet loss and latency. Every CR node will use the Common
Control Channel (CCC) mechanism to investigate the nearby nodes in order to determine the NCR.
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c. Channel capacity

CC defines the data rate per Hertz of the spectrum band utilized [23]. The expected normalized capacity
of a user k in spectrum band i can be determined as follows.

CCR
i ðkÞ ¼ E½CiðkÞ� ¼ Toff

i

Toff
i þ t

:gi:ciðkÞ (2)

where Ci(k) denotes spectrum capacity, ci(k) is the normalized channel capacity of spectrum band i in
bits/sec/Hz, τ is the spectrum switching delay, γi is the spectrum sensing efficacy and Toff

i signifies the
expected transmission time switching in spectrum band.

Each individual input makes use of the three MFs. The TakagiSugeno type model, which consists of
27 rules, is then employed. The first portion of the rule represents the fuzzy subspace, while the second
part computes the output in the fuzzy subspace. In general, the ANFL system is a five-layer FFNN with
supervised learning. The five layers are labelled as fuzzy, Tnorm, normalized, defuzzy and aggregated, in
that order. Fig. 3 [24] depicts the structure of an ANFC. The first and fourth layers are dynamic, whereas
the rest are static. The TakagiSugeno fuzzy inference model generates a set of 27 if then rules for the
three inputs PUU, NCR and CC with CWS output [24]. These rules are

Rule1 ¼ If PUU is low; NCR is low ^ CC is lowThen F1 ¼ X1mþ Y1nþ Z1oþ P1
Rule2 ¼ If PUU is low; NCR is low ^ CC is lowThen F1 ¼ X2mþ Y2nþ Z2oþ P2
Rule3 ¼ If PUU is low; NCR is low ^ ND is lowThen F1 ¼ X3mþ Y3nþ Zsoþ P3

. . .

Rule25 ¼ If PUU is low; NCR is low ^ ND is lowThen F25 ¼ X25mþ Y25nþ Z25oþ P25
Rule26 ¼ If PUU is low; NCR is low ^ ND is lowThen F26 ¼ X26mþ Y26nþ Z26oþ P26
Rule27 ¼ If PUU is low; NCR is low ^ ND is lowThen F27 ¼ X27mþ Y27nþ Z27oþ P27

Figure 3: Structure of ANFC model
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where high and low are the MFs or the linguistic parameters of the inputs. Xi, Yj, Zk are linear parameters of
then part (consequent) of the Takagi-Sugeno fuzzy inference model.

Fuzzy Layer: It explains the flexible behaviors of the node, based on the backward pass which
resembles every individual input parameter related to the MF. The MF graph is plotted for every
adaptable node to define its output. The MF follows Gaussian distribution as defined in Eq. (3) or
generalized bell-shaped MF (see Eq. (4)).

mMaðMÞ ¼ exp � m� fa
2da

� �2
" #

(3)

mMaðMÞ ¼ 1

1þ m� fa
d

����
����
2

ea

(4)

where M is the input node to α and μMi, μ, μoi are the degree of MF corresponding to linguistic parameters Mi,
Ni and Oi and {di, ei, fi} are denoted as a parameter set of the MF. The bell-shaped MF differs along with the
values of the principal parameter set.

T-Norm Layer: Here, every individual node is static and named as rule node. It represents the firing
strength of the rules linked to it. For determining the outcome of every individual node, the multiplication
of all the MF signals comes to the node. The T-norm operator makes use of generalized AND to compute
the antecedent/output at subsequent layer of the rule.

R2a ¼ Ta ¼ mMaðMÞ�mNaðNÞ�moaðOÞ; a ¼ 1; 2; 3 (5)

where Tα is the outcome of every individual node denoting the firing strength of every rule.

Normalized Layer: The nodes in the normalized layer are static and are called normalized nodes. The
outcome of all nodes is the determination of the proportion among αth rule’s firing strength to the
summary of firing strength of every rule. The outcome at the 3rd layer or normalized output is defined by

R3a ¼ Tna ¼ Ta

�aTa

0a ¼ 1; 2; 3 (6)

De-fuzzy Layer: It comprises of the nodes with dynamic essence. The outcome will be the
multiplication of the normalized firing strength and individual rule. Its output can be represented as

R4a ¼ Tnafa ¼ Tnaðsamþ tanþ uaoþ paÞ (7)

where TnaðsamþtanþuaoþpaÞ is the normalized firing strength and (sαm+ tαn + uαo + pα) is a parameter in the
node. The defuzzied layer variables are termed consequent variables.

Aggregated Output Layer: It comprises of one consolidated node which acts as output and is static in
nature. It provides details about the outcome of the whole system determined by totaling the approaching
signals at this layer from the preceding node. Σ is utilized in a circle for representing the aggregated
output node. The outcome of the 5th layer can be determined as follows.

R5a ¼
Xn
a

Tnafa ¼ �aWafa
�awa

(8)

The ANFL scheme is divided into two stages: forward and backward passes. The input signal is
transferred to the 4th layer during the forward pass (layer-wise). They are static and the least mean
squares model is used to update the sequential measures. Following the achievement of output data at the
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fourth layer, the data is compared by the original outcome and error. The error caused by the forward pass
outcome and the original output are transferred to the dynamic node of the first layer in the backward pass. As
a result, the best CWS value will be chosen. The IGA is used for optimal rule generation to boost the
efficiency of the ANFL model even further.

3.4 IGA Based Rule Optimization Phase

The rules produced by the ANFL model are optimized by IGA. Its goal is to ensure the implementation
of optimum rules for effective performance. All 27 rules are sent into the IGA, which selects the best rules
through a process of selection, fitness evaluation, crossover, mutation and elite retention. GA has been
discovered to be a common strategy for locating optimal solutions to a variety of situations. In this paper,
IGA is derived for ANFL rule optimization. The population initialization procedure occurs at the
beginning in a random manner in preparation for further genetic manipulation. For a simpler training set,
a maximum of three hidden layers are sufficient to achieve higher performance. Because binary coding is
a widely used coding technique in GA, the node count in the three buried layers is directly encoded as
binary chromosomes. It defines a network structure with three hidden levels, each with six bits. Each
each bit’s value will be a binary number, either ‘0’ or ‘1’. The translated decimal value represents the
number of neurons in the layer. The allowed neuron count in the hidden layer can be anywhere between
the input and output layers. As a result, when the population is initialized, the node count in each layer is
guaranteed to be less than the input feature count and greater than the output feature count.

The selection procedure tries to pick superior chromosomes from the current population and to develop
crossover and mutation models. As a candidate’s fitness improves, so does his or her chances of being
chosen. Furthermore, a roulette wheel selection approach based on proportional fitness assignment (also
known as the Monte Carlo method) is used. However, one significant restriction is that adopting an
arbitrary number may result in the exclusion of individuals with the highest fitness [25]. As a result, the
IGA is designed to select individuals with better fitness values to ensure that they advance to the next
stage and to select the remaining individuals using the roulette idea. This improvement demonstrates that
only the best people are kept.

The Partially Matched Crossover (PMC) model is then used, which interchanges arbitrarily picked
regions from two nearby chromosomes. However, when two neighboring chromosomes are picked at
random, they stay intact following the crossover procedure. Therefore, interval crossover is employed in
IGA as defined in Eq. (9). For instance, when n chromosomes are available, the initial one is crossed
with (n/2 + 1) th, the subsequent one with (n/2 + 2) th, etc.

c ¼ ithcrosswith ðn=2þ iÞth; i ¼ 1; 2; . . . ; n=2 (9)

where c signifies the individuals created next to the intersection. The utilization of this approach avoids the
local optima; therefore, the diversity of the subsequent generation can be improved and the convergence rate
can be enhanced.

The mutation procedure is then performed to change a specific bit in the chromosome. It might make use
of the mutation operator’s arbitrary search capability. When the operational outcome is closer to the optimum
solution neighborhood, it quickly converges to the optimum solution. The process of crossover and mutation
may result in the loss of ideal individuals in the subsequence round. For preventing this issue, an ‘‘elite
retention’’ strategy is employed. Next to the process of every mutation, the optimal individual A in this
generation undergoes comparison to the optimal individual B which existed in the evolution process. If B
exceeds A, B will replace the worst individual in the present round and moves to the subsequent round,
A moves to the subsequent round straightaway. If A is equal or greater than B, A goes to the succeeding
generation directly, as given in Eq. (10).
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C ¼ A; if A � B
B ^ A; if A , B

�
(10)

where C signifies the one which drives to the succeeding round. The processes involved in the IGA based
rule optimization is given as follows [26].

Algorithm 1: Pseudocode of IGA based rule optimization

Input: 27 rules generated by ANFL scheme

Output: Optimized rules

Step 1: Initialization process: population, channel parameters namely PUU, NCR and CC.

Step 2: Determine the fitness value of the ANFL rules (weighted parameters of PUU, NCR and CC).

Step 3: With the evaluation of the attained fitness values, remove weak rules.

Step 4: Select stronger rules for crossover and mutation processes.

Step 5: For attaining new rules, utilize crossover and mutation processes over the selected rules in Step 4.

Step 6: Jump to Step 2 and reiterate the process till the optimized rules are generated.

4 Performance Validation

To validate the effective performance of the ANFIGA-CS model, a series of simulations are run and the
results are examined at CR with varied numbers of available channels. Tab. 1 shows the parameter settings
for the simulation process.

In Tab. 2, a detailed comparative result analysis of the ANFIGA-CS model with other existing
approaches is performed in terms of Average Inference Ratio (AIR) and average throughput. Fig. 4
displays the AIR analysis of the ANFIGA-CS model with varied numbers of accessible channels at each
CR. According to the graph, the LITC model suffers from strong interference between CR and PUs
despite having a greater AIR than the other techniques. Furthermore, the GA and BFC models attempted
to outperform the LITC model by lowering the AIR. Similarly, the ICSSS model produced a respectable
result with a reasonable AIR, whereas the ILFCS model produced an even better performance. The
ANFIGA-CS model, on the other hand, has demonstrated improved performance by achieving the lowest
possible AIR. The experimental results revealed that the ANFIGA-CS model produced the lowest AIR of

Table 1: Parameter settings

Parameter Value

Communication media Wireless channel

Propagation model Free space model

No. of interfaces 1 transceiver

MAC 802.11

Packet size 512 bytes

Communication range 250 m

No. of CR users 10–250
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0.1371 while the ILFCS, ICSSSS, GA, BFC and LITC models produced higher AIRs of 0.1996, 0.2394,
0.4210, 0.4609 and 0.6978, respectively.

Table 2: Result analysis of existing with proposed ANFIGA-CS method in terms of average interference
ratio and average throughput

Average interference ratio

No. of available
channels at each CR

ANFIGA-
CS

ILFCS ICSSSS GA BFC LITC

3 0.2090 0.2790 0.3210 0.5200 0.5624 0.8112

4 0.2130 0.2630 0.3050 0.5120 0.5413 0.8123

5 0.1960 0.2660 0.3120 0.4270 0.5200 0.7823

6 0.1580 0.2080 0.2170 0.4310 0.4714 0.7312

7 0.1670 0.1970 0.2560 0.4100 0.4612 0.7123

8 0.1520 0.1920 0.2310 0.4100 0.4500 0.7211

9 0.1311 0.1890 0.2200 0.3910 0.4513 0.6923

10 0.1090 0.1790 0.2100 0.3630 0.4354 0.6732

11 0.1040 0.1840 0.1920 0.3650 0.4162 0.6532

12 0.0920 0.1680 0.2230 0.3854 0.4232 0.6324

13 0.0920 0.1680 0.2130 0.4230 0.4212 0.6212

14 0.0870 0.1630 0.2080 0.4180 0.4162 0.6162

15 0.0730 0.1400 0.2050 0.4180 0.4221 0.6130

Average throughput (bits\seconds)

No. of available
channels at each CR

LITC BFC GA ICSSSS ILFCS ANFIGA-
CS

3 217.9826 343.0491 380.8982 412.1648 459.8875 518.8875

4 226.2107 346.3403 385.8350 413.8104 466.4700 537.4700

5 231.1475 354.5684 394.0631 422.0385 474.6980 542.6980

6 250.8948 356.2140 403.9367 430.2665 486.2173 551.2173

7 259.1229 357.8596 412.1648 431.9121 492.7998 561.7998

8 262.4141 361.1508 418.7472 435.2033 494.4454 552.4454

9 270.6422 359.5052 426.9753 436.8490 507.6103 576.6103

10 272.2878 366.0877 433.5577 445.0770 517.4839 599.4839

11 278.8702 362.7964 443.4314 459.8875 532.2944 611.2944

12 283.8071 366.0877 461.5331 476.3436 535.5857 615.5857

13 283.8071 371.0245 469.7612 482.9261 543.8137 620.8137

14 283.8021 371.0195 469.7562 482.9211 543.8087 620.8087

15 284.3540 375.1240 470.8740 483.1240 548.2130 622.1350
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The average throughput analysis of the ANFIGA-CS model with varied numbers of accessible channels
at each CR is depicted in Fig. 5. The graph shows that the LITC model achieved the lowest average
throughput compared to the other techniques. Similarly, the GA and BFC models outperformed the LITC
model in terms of efficiency, achieving a slightly higher average throughput. Similarly, the ICSSS model
outperformed the previous methods in terms of results. Despite reporting competitive average throughput,
the ANFIGA-CS model surpassed the other approaches with the highest average throughput. The
ANFIGA-CS model, for example, has a higher average throughput of 579.3269 bits/s, but the ILFCS,
ICSSSS, GA, BFC and LITC models have lower average throughputs of 261.9494692, 360.8328615,
428.5795308, 447.1172231 and 507.9482846 bits/s, respectively.

Tab. 3 and Fig. 6 examine the SOU analysis of the ANFIGA-CS model with comparable approaches at
each CR using different accessible channels. The importance of SOU in the construction of an effective
channel allocation model cannot be overstated. The experimental results demonstrate that the LITC
technique performed poorly, achieving the lowest SOU, whereas the BFC and GA techniques achieved
significantly higher results. Additionally, the ICSSSS and ILFCS models outperformed all other

Figure 4: AIR analysis of the ANFIGA-CS with other existing models

Figure 5: Average throughput analysis of the ANFIGA-CS with other existing models
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techniques except the ANFIGA-CS model. However, the provided ANFIGA-CS model produced an
effective result by achieving a maximum SOU of 0.953585, whereas the other techniques, such as
ILFCS, ICSSSS, GA, BFC and LITC models, produced a lower average SOU of 0.0908, 0.6152, 0.6553,
0.8647 and 0.9341, respectively.

Tab. 4 and Fig. 7 compare the PDR analysis of the given ANFIGA-CS model to other available
approaches. The importance of PDR in the construction of an effective channel allocation model cannot

Figure 6: SOU analysis of the ANFIGA-CS with other existing models

Table 3: Result analysis of existing with proposed ANFIGA-CS Method in terms of spectrum opportunity
utilization (SOU)

Spectrum opportunity utilization

No. of available
channels at each CR

LITC BFC GA ICSSSS ILFCS ANFIGA-CS

3 0.0786 0.5172 0.5552 0.8038 0.8798 0.9000

4 0.0786 0.5414 0.5828 0.8038 0.8867 0.9221

5 0.0993 0.5586 0.6104 0.8176 0.8936 0.9301

6 0.1166 0.5828 0.6173 0.8349 0.9178 0.9323

7 0.1201 0.6001 0.6242 0.8452 0.9212 0.9414

8 0.1166 0.6001 0.6450 0.8556 0.9212 0.9416

9 0.0959 0.6242 0.6553 0.8832 0.9488 0.9617

10 0.0855 0.6242 0.6726 0.8832 0.9488 0.9713

11 0.0786 0.6484 0.7037 0.9005 0.9557 0.9721

12 0.0855 0.6622 0.7071 0.9039 0.9661 0.9801

13 0.0752 0.6795 0.7106 0.9039 0.9696 0.9811

14 0.0752 0.6795 0.7106 0.9039 0.9696 0.9811

15 0.0752 0.6795 0.7245 0.9020 0.9654 0.9817
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be overstated. The results show that the LITC model outperformed the other compared methods in terms of
PDR. Simultaneously, the BFC and GA models resulted in a somewhat higher PDR than the LITC model.
Finally, the ICSSSS and ILFCS models outperformed all other techniques save the ANFIGA-CS model in
terms of PDR. However, as compared to other current approaches, the ANFIGA-CS model ensured a
higher PDR. The ANFIGA-CS model, for example, has an average PDR of 93.41%, but the LITC, BFC,
GA, ICSSSS and ILFCS models have lower average PDRs of 45.10%, 62.778%, 78.26%, 85.69% and
92.04%, respectively.

Table 4: Result analysis of existing with proposed ANFIGA-CS method in terms of packet delivery ratio

Packet delivery ratio

No. of available
channels at each CR

LITC BFC GA ICSSSS ILFCS ANFIGA-CS

3 37.9960 51.3855 69.3394 80.5987 82.1202 83.9102

4 37.9960 52.9070 71.7739 81.2073 85.4676 86.8876

5 40.1262 55.0371 70.8610 81.8159 88.5106 89.8906

6 41.0391 58.6888 72.6868 82.4245 90.0322 91.4122

7 42.2563 60.5146 74.2083 85.1633 90.6408 91.9908

8 43.4735 61.1232 73.5997 85.1633 91.2494 92.8294

9 45.9080 60.8189 77.8600 87.2934 91.8580 92.6380

10 48.0381 65.0792 79.9901 86.9891 92.4666 94.0466

11 48.0381 68.1222 83.9461 88.2063 95.2053 96.9353

12 49.5596 68.4265 85.7719 88.5106 97.6398 98.3698

13 50.4725 70.8610 85.7719 88.8149 97.0312 98.5812

14 50.5225 70.9110 85.8219 88.8649 97.0812 98.6312

15 50.8945 72.2450 85.7719 88.9824 97.2230 98.2456

Figure 7: PDR analysis of the ANFIGA-CS with other existing models
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Tab. 5 and Fig. 8 compare the ETE delay analysis of the ANFIGA-CS model to other existing
approaches with varied numbers of accessible channels at each CR. For an effective channel allocation
strategy, the ETE delay must be kept to a bare minimum. According to the results, the LITC technique
resulted in inferior channel selection performance by achieving a maximum ETE delay, whereas the BFC
technique resulted in marginally improved performance. Simultaneously, the GA and ICSSSS models
revealed considerable ETE delay. It should also be noted that the ILFCS model has a shorter ETE delay.
However, the proposed ANFIGA-CS model has achieved an effective result by achieving the shortest
ETE delay. The ANFIGA-CS model, for example, had the shortest average ETE delay of 0.1264 s, but
the ILFCS, ICSSSS, GA, BFC and LITC models had longer average ETE delays of 0.1574, 0.3249,
0.4060, 0.5570 and 0.6580 s, respectively.

Table 5: Result analysis of existing with proposed ANFIGA-CS method in terms of end-to-end delay

End-to-End delay (Seconds)

No. of available
channels at each CR

ANFIGA-CS ILFCS ICSSSS GA BFC LITC

3 0.3326 0.3389 0.4318 0.5179 0.6671 0.7665

4 0.2824 0.3124 0.4085 0.4980 0.6472 0.7433

5 0.2690 0.3191 0.3887 0.4815 0.6339 0.7102

6 0.1295 0.2296 0.3588 0.4450 0.6074 0.6969

7 0.1198 0.1699 0.3423 0.4516 0.5710 0.6770

8 0.1002 0.1102 0.3389 0.4251 0.5677 0.6704

9 0.0769 0.1069 0.3157 0.4052 0.5610 0.6671

10 0.0670 0.0870 0.3058 0.3953 0.5411 0.6638

11 0.0637 0.0837 0.2826 0.3754 0.5212 0.6373

12 0.0603 0.0804 0.2793 0.3356 0.5047 0.6174

13 0.0504 0.0705 0.2561 0.3157 0.4782 0.5677

14 0.0464 0.0695 0.2581 0.3167 0.4732 0.5697

15 0.0455 0.0684 0.2574 0.3157 0.4685 0.5677

Figure 8: ETE delay analysis of ANFIGA-CS with other existing methods

1106 IASC, 2022, vol.34, no.2



From the above-mentioned tables and figures, it is evident that the presented ANFIGA-CS model has
outperformed all the other existing methods under varying number of available channels at CRs.

5 Conclusion

In this study, a new ANFIGA-CS approach for collaborative spectrum sensing in CRN was established.
The ANFIGA-CS technique given here allows the CR to locate accessible spectrum slots/channels in the
radio band. The proposed ANFIGA-CS model includes several stages of operations, including node
deployment, clustering, channel weight determination and rule optimization. The ANFIGA-CS technique
is primarily subjected to a clustering technique in order to reduce spectrum sensing inaccuracy. The
ANFL-based channel weight selection technique is then used and the channel with the highest weight is
selected for transmission. Finally, the IGA is used to optimise the rules generated by the ANFL scheme
in CRNs. A large number of simulations were run to demonstrate the increased performance of the
ANFIGA-CS model. A thorough comparison results study ensured that the ANFIGA-CS model improved
in terms of diverse measures. The performance of channel selection in CRN can be improved in the
future by combining advanced Deep Learning (DL) architectures with learning rate scheduling
approaches. Statement of Funding: This study was not funded in any way by the authors.

Funding Statement: The authors received no specific funding for this study.
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