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Abstract: Pulmonary Embolism is a blood clot in the lung which restricts the
blood flow and reduces blood oxygen level resulting in mortality if it is untreated.
Further, pulmonary embolism is evidenced prominently in the segmental and sub-
segmental regions of the computed tomography angiography images in
COVID-19 patients. Pulmonary embolism detection from these images is a signif-
icant research problem in the challenging COVID-19 pandemic in the venture of
early disease detection, treatment, and prognosis. Inspired by several investiga-
tions based on deep learning in this context, a two-stage framework has been pro-
posed for pulmonary embolism detection which is realized as a segmentation
model. It is implemented as a cascade of convolutional superpixel neural network
and a regularized UNet network for the segmentation of embolism candidates as
well as embolisms, respectively. The proposed model has been tested with two
public datasets and it has achieved a testing accuracy of 99%. The proposed mod-
el demonstrates high sensitivities of 88.43%, 88.36%, and 89.93% at 0, 2, and 5
mm localization errors, respectively for two false positives and they are superior
to the state-of-the-art models, signifying potential applications in the treatment
protocols of diverse pulmonary diseases and COVID-19.

Keywords: Computed tomography angiography; superpixel CNN; UNet;
plmonary embolism; COVID-19

1 Introduction

Pulmonary Embolism (PE) is a blood clot in the lung caused by Deep Vein Thrombosis (DVT) which
originates in the right heart chambers, leg, pelvis, renal veins, etc. In succession to myocardial infarction and
stroke, venous thromboembolism is identified to be the third most diagnosed cardiovascular disorder. A
recent study on the diagnosis of PE by Ishaaya et al. [1] reveals that dyspnea and chest pain are the
common symptoms of PE and they are nonspecific clinical presentations, associated with several
cardiopulmonary diseases. There are several causes of PE such as muscle tears, fractures, cancer, obesity,
hormone imbalance, surgeries, etc. PE is correlated with mortalities due to cardiac disorders, early
detection of which can considerably improve the treatment results.
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Further, current clinical studies [2–4] have reported intersections of PE and COVID-19 by recording
23% of PE incidences in COVID-19 patients. It has been identified that COVID-19 patients with PE
require frequent mechanical ventilation support compared to those without PE. Presently, many
investigations on the association [5,6] between PE and COVID-19 have revealed the prevalence of
overlapping symptoms of Acute Respiratory Distress Syndrome (ARDS), characteristic of COVID-
19 infections and PE. With the global infiltration of COVID-19, diagnosis of PE with symptoms atypical
to COVID-19 is very essential for emergency clinical interventions.

Computed Tomography Pulmonary Angiography (CTPA) [7] featuring high sensitivity and specificity is
highly desirable, due to its minimum invasiveness. Further, along with pulmonary arteries, this modality also
captures etiologies of several disorders such as pneumonia, musculoskeletal injuries, pericardial and vascular
disorders, coronary artery disease, etc. A most recent review by Kwee et al. [8] reveals that the frequency of
PEs in CTPA images of COVID-19 patients is high in the intensive care units (ICU) compared to emergency
departments and general wards. Similarly, a recent retrospective [9] study with CTPA images also shows high
incidences of PE in COVID-19 patients.

Examination of a CTPA image volume comprising hundreds of slices for PE detection is highly time-
consuming and challenging for expert radiologists, due to the asymmetric pulmonary vasculature. The
representative works founded on machine learning approaches reported in [10,11], in the past two
decades. However, these approaches are reported to generate a large number of false positives, calling for
excessive efforts by radiologists in resolving the detection results.

With the evolution of the deep learning paradigm, several works on PE detection based on
Convolutional Neural Network (CNN) models introduced in recent years. The first work in this context
reported in [12], follows a unique vessel-aligned multi-planar image representation of CTPA images
featuring compactness, consistency, and expandability. This system demonstrates a sensitivity of 83%
with 2 false positives per volume.

Inspired by this framework and several deep learning-based PE detection models, in the present study, a
novel two-stage PE detection model called the SCNN-UNet, which comprises a superpixel CNN and a
variant of the UNet has been proposed. The contributions of this research and potential features of the
SCNN-UNet framework are depicted below.

� An integral framework for PE detection comprising a superpixel CNN and UNet featuring high
accuracy and sensitivity

� The superpixel CNN performs PE candidate detection with low false positives

� The regularized UNet demonstrates accurate PE detection which generalizes well

� This model is trained and verified by two large scale datasets with non-overlapping training and
testing images

� The proposed model can be extended to a wide spectrum of pulmonary diseases by transfer learning

The coexistence of COVID-19 and PE, two life-threatening illnesses, in the same patient presents a
unique challenge. Guidelines have delineated how best to diagnose and manage patients with PE. The
performance of this model has been evaluated with two standard datasets and a global segmentation
accuracy of 99% with very low false-positive has been achieved. This model establishes superior
performance compared to the state-of-the-art approaches and is suitable for integration with CTPA image
examination protocols for accurate detection of PEs in the treatment regimen of COVID-19 and other
pulmonary pathologies.

The rest of the paper is organized as below. In Section 2, a review of deep learning-based PE detection
approaches is presented and in Section 3, the datasets used, mathematical foundations, and implementation of
the proposed system are described. In Section 4, the proposed model with the schematics of subnetworks has
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been illustrated. Experimental results are given in Section 5 and detailed comparative analysis is given in
Section 6. The paper is concluded in Section 7 with directions for future research.

2 Related Work

In this section, a review of deep learning models for PE management and relevant CNNmodels has been
presented to provide insight into the relevant works. A review [13] of the deep learning models for medical
image investigation gives a comprehensive account of various CNN models employed in medical image
investigation tasks of multiple pathologies and organs. In a two-stage model proposed in [14], masks are
defined on the candidate emboli regions in the first stage and Multiple Instance Learning (MIL) is
employed to detect PE from the masked volumes in the second stage. In this approach, 2D UNet [15] is
employed in the first stage to process stacks of 2D slices to construct the masks. A 2D Convolutional
Long Short-Term Memory (CLSTM) [16] model which captures Spatio-temporal correlations within CT
volumes is employed as a feature extractor. This model demonstrates Area Under Curve (AUC) scores of
0.94 and 0.85 for validation and test datasets, respectively.

The CNN model proposed in [17] comprises a sequence of three sub-networks viz. a 3D network for
detecting prospective regions containing PEs, which predicts the target class of the input from the cross-
sections of the transformed candidates. This model achieves a sensitivity of 80.7% with two false
positives per volume at 5 mm localization error. Similar to this model, a two-stage network performs
candidate selection and false-positive elimination in stage one with two sub-networks, and classification
is done in stage two with a 2D ResNet18 [18] model. The first stage is implemented with two subnets
and a 3D Fully Convolutional Neural Network (FCN) based candidate proposal subnet is followed by a
subnet based on vessel-aligned candidate transformation for false-positive removal. This model achieves
sensitivities of 75.5% and 76.3% for the PE Challenge [19] and PE129 datasets, respectively.

Unlike the approaches which find the candidate points and evaluate them to discriminate as PE or non-
PE, this approach formalizes PE detection as a segmentation problem. It segments the CTPA volumes by
training three networks viz. 2D, 2.5D, and 3D with different slice types such as 2D slices, a stack of 5
2D slices, and 3D slices. This is followed by transforming the segmented output into emboli coordinates
by assigning a probabilistic score to each coordinate based on its proximity to the center of the emboli.

Acute or chronic PEs manifest in pulmonary arteries and are attached to the walls. In CTPA images, both
kinds of PEs are seen as dark regions with CT values in the range [−50 100] Hounsfield Units (HU), within
bright vessels. However, the pixels closer to the vessel boundaries also fall in the same HU range. The
separation of PE pixels from these pixels is a non-trivial problem. The tobogganing algorithm [20,21]
separates the PE pixels by sliding the voxels in the range [−50 100] to the neighboring voxels with
minimal CT value and clustering the voxels which do not slide into the neighboring regions with CT
values below -50. The CNN models are then trained with these candidates to detect the presence and
absence of PEs in CT volumes.

In line with this, the most recent work on COVID-19 lesion segmentation from lung CT images with
UNet and four variants employing Attention Gate (AG) mechanism, dense networks, Improved Dilation
Convolution (IDC), and their combinations is proposed in [22]. The AG-UNet employs an attention
mechanism to focus on target regions of varying shapes and sizes, assigning higher weights to these
regions for precise segmentation of lesions. The DA-UNet adds two dense networks and an AG module
to the UNet, where each dense network comprises a set of convolution and pooling layers, numerous
dense blocks, and transition layers. The IDA-UNet is built by adding the IDC and AG modules to the
UNet. The IDC module connects the encoder-decoder pipelines of the UNet to increase the size of the
receptive field providing broader views of the images. From this review, it is perceived that recent
automated PE detection systems are based on pre-trained CNN models and they are adapted to the CTPA
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image dataset by transfer learning. A COVID-19 specific characteristics confound both the diagnosis and
treatment of PE. Hence, the modification of established algorithms [23]. An advantage of a team-based
method for decision-making and coordination of care, such as that offered by pulmonary embolism
response teams.

3 Materials and Methods

3.1 Dataset and Implementation

In this research, the proposed model has been trained and tested with two publicly available datasets
namely the FUMPE (Ferdowsi University of Mashhad’s PE) [24] dataset and the CAD-PE challenge
dataset. The FUMPE dataset consists of 3D CTPA a volume of 35 different patients with 8792 slices
altogether and the CAD-PE dataset contains 91 CTPA volumes.

Initially, the superpixel CNN is trained to segment the PE candidates from the CTPA slices with a
training dataset comprising 1000 images from each dataset. This dataset is augmented with 1000 more
image slices from each dataset by scaling, rotation, and flipping operations on the original slices. The
superpixel CNN trained with these 4000 slices is tested with 1000 images from each dataset.

The UNet model is trained and tested to segment the PEs from the PE candidates with slices of both
datasets. Initially, the UNet segmentation model is fine-tuned with 2000 images from the FUMPE dataset,
augmented with 2000 additional images and 9736 slices of 20 CTPA volumes from the CAD-PE dataset.
This model is tested with 6792 CTPA slices of the FUMPE dataset and 8487 slices from 20 CTPA
volumes of the CAD-PE dataset. Due to the large volume of slices in the 91 CTPA volume CAD-PE
dataset, slices are considered only from twenty independent CTPA volumes.

The proposed model performance is evaluated with the ground truth labels accompanying the CTPA
volumes of both datasets. The description of the dataset is represented in Tab. 1.

It must be noted that the CAD-PE UNet training dataset is not augmented, as it fine-tunes the already
trained UNet. In the above table, images refer to CTPA slices.

Both the FUMPE and CAD-PE datasets consist of grayscale images and binary labels of dimension
512 � 512. The CTPA slices are converted into RGB images of size 256 � 256 and the labels are
resized to 256 � 256. The testing datasets are subsets of the original datasets without augmentation
which do not overlap with the training images. The proposed method is applied with Matlab 2020b
software in an i7-7700 K processor with 32GB DDR4 RAM equipped with an NVIDIA Ge Force
GTX1060 3GB Graphics card.

Table 1: Training and testing dataset

Dataset No. of training
images

No. of training
images after image
Augmentation

No. of testing images Total No. of training
images

Super pixel
CNN

UNet Super pixel
CNN

UNet Super pixel
CNN

UNet Super pixel
CNN

UNet

FUMPE 1000 2000 2000 4000 1000 6792 3000 10792

CAD-PE 1000 9736 2000 9736 1000 8487 3000 18223
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3.2 Super Pixel Segmentation

The features of compactness, consistency, and expandability for data augmentation can be realized with
a less computational intensive superpixel segmentation approach. A superpixel is a concise semantic
representation of a pixel’s group with similar pixel intensities. Superpixel segmentation has a wide range
of scientific and surveillance applications including tissue/organ segmentation in medical images, object
recognition, detection, etc. With the introduction of the Simple Linear Iterative Clustering (SLIC) [25]
algorithm, several superpixel segmentation algorithms have been proposed. This algorithm clusters pixels
within rectangular windows into superpixels based on distance measures between color and spatial
vectors of the image pixels. Recently, conventional deep-learning classification or segmentation models,
which accept raw input images, are integrated with superpixel segmentation algorithms. The superpixel-
driven CNN models are comparatively better in capturing salient regions and objects from images and
they find applications in medical image investigation [26,27].

In this paper, a superpixel CNN based on Gaussian Mixture Model (GMM) [28] superpixels has been
employed as a sub-network for PE candidate selection and false-positive elimination. The GMM superpixels
are superior to the SLIC superpixels in capturing homogeneous regions of arbitrary shape and size without
constraints on the shape of the superpixels. An illustration of the SLIC and GMM superpixel segmentations
on CTPA images is shown in Fig. 1. It is seen that the segmentation accuracy is better with GMM
superpixels.

The mathematical aspects of GMM superpixel segmentation are given below. Generally, a Gaussian
process is stochastic which demonstrates a normal distribution on the linear combination of random
variables of a finite set. This feature is leveraged in diverse clustering algorithms in machine vision
problems. A Gaussian model learns from the training data points and predicts the response for an
arbitrary input. In a Gaussian model, each pixel is modeled with a Gaussian distribution mixture so that,
it is extended to superpixel segmentation where each superpixel is associated with one of the
distributions. A superpixel label is assigned to a pixel-based on Expectation-Maximization (EM) and
posterior probability described as below.

Assumed an image I of sizeM�N, the total number of pixels in the image is T=M�N. Each pixel in the
image is allocated with an index i in the range [0 T-1]. Unlike the SLIC algorithm in which the user inputs the
number of superpixels, the GMM superpixel algorithm accepts the inputs dx and dy that is maximum window
sizes of the superpixels along the vertical and horizontal path. These values are chosen such that M mod dx
and N mod dy evaluate 0 and the number of superpixels L is computed as in Eq. (1). The set of L superpixel
labels is defined as {0, 1,… L-1}.

Figure 1: SuperPixel segmentation of CTPA images (a) CTPA slice (b) SLIC super pixel segmentation (c)
GMM super pixel segmentation

IASC, 2022, vol.34, no.2 1127



kx ¼ M

dx

� �
; ky ¼ N

dy

� �
; L ¼ kx : ky (1)

Generally, the probability density function (pdf) for a random variable x following a normal distribution
is given in Eq. (2).

fX ðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr

p exp �ðx� lÞ2
2r2

" #
; �1, x,1 (2)

where σ is the standard deviation and μ is the mean. A superpixel l E L is related with a Gaussian distribution
defined via the p. d. f p(z; ϴl) as in Eq. (3) for the variable z.

pðz; hlÞ ¼ 1

ð2pÞD=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðPlÞ

p exp � 1

2
ðz� ll ÞT

X�1

l

ðz� ll Þ
" #

(3)

where ϴl={μl,∑l} and D is the number of components in z.

A pixel i belongs to a superpixel l, only if i exists in the pixels set Il which is defined via the Eq. (4),
where b and c refer to the lower and upper bounds of the superpixel l, respectively.

Il ¼ fijxl;b , xi , xl;c; yl;b, yi, yl;c; iEIg (4)

where

xl;b ¼ maxð0; dxðlx � 1ÞÞ (5)

xl;c ¼ minðM ; dxðlx þ 2ÞÞ (6)

yl;b ¼ maxð0; dyðly � 1ÞÞ (7)

yl;c ¼ minðN ; dyðly þ 2ÞÞ (8)

For a superpixel l E L, lx=l mod kx and ly ¼ b l
ky
c and for any pixel i E {0, 1,..T-1} the superpixel Label Lbi

is computed as in (9).

Lbi¼argl maxl2Li
pðz; hlÞP
l E Li pðz; hlÞ

(9)

From the illustrations and the mathematics behind the GMM superpixel segmentation, it is seen that
these pixels offer a good trade-off between regularity and precision. Further, the mathematical
computations in GMM superpixel segmentation can be parallelized by increasing the segmentation speed.
In this paper, a GMM superpixel-based CNN subnet has been built based on the ResNet18 model pre-
trained with the ImageNet [29] dataset for PE candidate selection and false-positive removal.

4 Proposed System

A proposed PE detection network is modeled as a segmentation system as exposed in the schematic
diagram in Fig. 2. The training and the testing phases of the two subnets are defined in the following
subsections.
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4.1 Superpixel CNN Training and Testing

As shown in Fig. 2, each CTPA slice is segmented into superpixels and the superpixel CNN is trained
with each superpixel extracted from the superpixel map. The PE candidate selection and false-positive
removal operations are explained with GMM superpixel segmentation and pooling operations as below.
The superpixel pooling layer is added to the ResNet18 model as shown in Fig. 3.

Figure 2: Schematic of SCNN-UNet PE detection model

Figure 3: Superpixel CNN architecture
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Given a CTPAvolume V comprising a set of N slices {Si| iɛ[1 N]}, each slice Si is converted into an RGB
image Ii. By GMM superpixel segmentation, each image Ii is divided into a set of L superpixels {SPi| iɛ[1
L]}. The ResNet18 based Superpixel CNN is trained to discriminate each superpixel SPi into a PE candidate
or background based on the mean color of the superpixel. By labeling the superpixels with the mean color
superpixel regions, it is understood that these superpixels carry one of the color labels in the set {’Yellow’,
‘Olive’, ‘Teal’, ‘Blue’, ‘Aqua’, ‘Silver’, ‘Navy’} as shown in Fig. 4. It can be seen that the superpixels
labeled ‘Silver’, ‘Aqua’ and ‘Teal’ are prospective PE candidates while the others can be eliminated as
background. The steps for the extraction of PE candidates from the slices are given in Algorithm 1.

The superpixel CNN is trained with color-labeled superpixels extracted from the training dataset to
discriminate the PE candidates and the background by superpixel pooling which is implemented as a
maximization operation.

After color labeling, each superpixel is resized to 224 � 224 � 3 to match the ResNet18 network input
size. Corresponding to each color label, the target class of each superpixel is assigned to be PE or
background. In the ResNet18, a binary classifier is trained with these superpixels to classify them into the
target classes and it assigns a class score CSi to each superpixel SPi. The superpixel pooling layer
performs a maximization operation on the class scores as in Eq. (10) to select the superpixels ascribing to
the PE regions for each slice Sj to separate the PE candidate Segj.

Segj ¼ argmaxf CSiji ¼ ½1 L� g; j ¼ 1 . . .N (10)

After training, this network is tested to segment PE candidates of arbitrary CTPA slices. The training and
the testing accuracies of the superpixel subnet are shown in the plots in Fig. 5 which depict the learning
ability of the subnet.

Algorithm-PE Candidate

Segmentation Input: CTA Slice S

Output: Segmented PE candidates

PEC Steps:

1 Initialize the variable i and the PE candidates PEC

a. i)1

b. PEC){NULL}

2. Initialize colors of PE candidates to array Clr

Figure 4: Color labels and PE candidates of superpixels

(Continued)
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3. Clr){’Silver’, ‘Aqua’, ‘Teal’}

4. Construct GMM superpixels from S and assign a label to each superpixel SPi a. SPi){1, 2,..L}

5. Repeat for each segmented superpixel SPi

a. Compute the Mean Red, Green, and Blue intensities MRi, MGi and MBi

b. Map the mean values to RGB color RGBi

i. { MRi, MGi, MBi }→RGBi

6. Continue

7. Repeat for each super pixel SPi

a. If RGBi EClr

i. PEC){PEC}+{SPi}

Else select the next superpixel

i. i)i+1

8. Continue

9. Show PEC

10. End

4.2 UNet Training and Testing

The UNet CNN features an asymmetric design with contracting and increasing directions at the left and
right, respectively. The three stages UNet schematic employed in PE segmentation is exposed in Fig. 6. This
network is applied with 46 layers with encoder each stage comprising two sequences of the ReLU layers and

Algorithm-PE Candidate: (continued).

Figure 5: Training and testing accuracy of superpixel subnet
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3 � 3 convolutional followed via 2 � 2 Maxpooling layer. And also, the decoder contains a deconvolution
layer, two sets of 3� 3 convolutional and ReLU layers in each stage. Further, this network also contains two
dropout layers to prevent the network from overfitting.

Finally, a convolutional layer in the expansion step is tracked via a pixel classification layer and softmax
layer. The normalized exponential softmax function used in this layer is a multiclass generalization of the
conventional sigmoid function. A pixel-wise softmax function combined by Binary Cross-Entropy (BCE)
loss function is implemented on the feature map obtained from the last convolutional layer. The softmax
layer determines the probability that each pixel belongs to a specific class. A softmax layer, pixel
classification layer allocates a category label to every pixel in the input image. while minimizing a BCE
loss function.

4.2.1 Regularization of UNet
An L2 regularisation term to the BCE loss function in addition to including two dropout layers in the

UNet. The BCE loss function is provided in Eq. (11). For a classification model that encodes the given
input into C mutually exclusive classes.

CE ¼ �
XI

i¼1

XC
j¼1

Tij lnYij (11)

where I is the total number of inputs, Tijis the indicator that the sample I belongs to a class, and Yijis the
probability by which i belongs to j, as evaluated by the softmax function. For a binary classification
model proposed in this research, which segments PE and background pixels, given image I of dimension
M � N, with P=M � N pixels, the BCE loss function can be expressed as in Eq. (12).

BCE ¼ �
XP
i¼1

X2
j¼1

TijlnYij (12)

where Tij denotes the pixel target class i, i.e., PE or background and Yij is the probability with which i belongs
to PE or background as evaluated via a softmax function. The PE segmentation problem can be
conceptualized as a classification problem by minimizing the cross-entropy loss. A large margin
regularization approach for cross-entropy loss optimization introduced in [30] determines better

Figure 6: Three-stage U-Net architecture
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optimization and generalization compared to new optimization functions. Regularization is proposed in the
deep learning method via adding the regularization term to the loss functions to suppress overfitting and to
enable the models to generalize to new input. In the proposed PE segmentation problem, the
L2 normalization is employed by adding a regularization term to the loss function as in Eq. (13).

BCE ¼ �
XP
i¼1

X2
j¼1

TijlnYij þ kW 2 (13)

where W is the weight of the model and is the regularization parameter.

It is seen that the cross-entropy loss is influenced via the model weight then regularization is controlled
via λ. When the value of λ is small, the model will tend to overfit and it will tend to underfit for larger values.
The Stochastic Gradient Descent with Momentum (SGDM) is maximized by assuming 0.9 for the
momentum. The parameters for training the superpixel CNN and the UNet Networks are given in Tab. 2.

5 Experimental Results

The performance of the segmentation framework has been evaluated on the FUMPE and the CAD-PE
datasets. The test images are overlaid with ground truth labels, PE candidates, segmented PEs, and the
overlays of segmented labels and the test images are shown in Fig. 7. It is noted that the PEs are
precisely segmented from the test images. It is also seen that the false positives are eliminated attributed
to the superpixel CNN. The proposed model performance is calculated with quantitative metrics for the
two datasets as in Tab. 3.

It can be identified that the best performance metrics are attained for the CAD-PE dataset. Compared to
the conventional performance metrics, sensitivity analysis is highly desirable in PE detection as it evaluates
the ability of the system to correctly identify the affected subjects. Hence, the PE detection systems are
evaluated and compared to sensitivity rather than any other metrics. For a fair evaluation, the proposed
sensitivity model is compared with that of the state-of-the-art methods at localization errors ɛ assuming 0,
2, and 5 mm, at two false positives per scan with the CAD-PE dataset.

A comparison of the per embolus sensitivity and false positives is presented with state-of-the-art
approaches in Tab. 4.

Table 2: SuperPixel and UNet training parameters

Parameter Value

Maximum epochs 30

Mini batch size 128

Momentum 0.9000

Learning rate 0.100

Optimization SGDM

L2 Regularization parameter 1.0000e-04

dx 16

dy 16
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Figure 7: PE segmentation results (a) CTPA slice (b) CTPA slice in RGB (c) Superpixel segmented CTPA
(d) PE candidate (e) segmented PE (f)segmented PE on CTPA slice (f) ground truth

Table 3: PE segmentation-performance metrics

Dataset Global Accuracy Weighted IoU Mean BFScore

FUMPE 0.99887 0.99774 0.99679

CAD-PE 0.99892 0.99785 0.99708

Table 4: Sensitivity-false positive comparison

Model ɛ=0 mm ɛ=2 mm ɛ=5 mm

Sensitivity False
positive

Sensitivity False
positive

Sensitivity False
positive

SCNN-UNet proposed 88.43% 2 88.36% 2 89.93% 2

Yang et al. [30](2019) 75.4% 2 75.4% 2 75.4% 2

UA2D [31](2020) 49% 1.5 56% 1.45 59% 1.35

UA2.5D [31](2020) 48% 0.65 54% 0.55 63% 0.50

UA3D [31](2020) 55% 1.00 61% 1.00 68% 0.95

VOIR [32](GoogleNet)(2019) 33% 2 - - - -
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It has been already established in [30] that the 3D CNN-based framework is superior to the best models
proposed in the CAD-PE challenge. Hence for comparison, the model proposed in [31], three models of [32],
and the GoogleNet trained on the CTPA images following VOIR have been considered. However, the models
in [33] are evaluated only under ɛ=0 mm and out of which, the deepest GoogleNet is chosen. High sensitivity
and low false positives in the range from 1 to 5 are highly desirable in PE detection systems. Hence, the
model sensitivity is evaluated at two false positives.

Sensitivity is a significant metric in the PE detection models. Excluding the proposed model, high
sensitivity is observed for the 3D model when compared to the 2D and 2.5 models. However, an increase
in false positives is also seen in the 3D model. The sensitivity is constant for two false positives under
the three localization errors [34]. The quantitative outcomes exposed that the proposed design comprising
2D convolution networks is superior to the state-of-the-art methods under all the localization errors with
high sensitivity at ɛ=5 mm.

6 Discussions

Though the construction of 3D network classifiers processing 3D CTPA volumes is comparatively less
complex, the robustness of these models depends on complex algorithms for semantic segmentation of PE
candidates across multiple slices and discrimination of PEs from non-PEs. Though image features aggregated
from multiple slices are used in PE detection in 3D CNNs, detection accuracy is independently improved
considering the 2D slices, as the PE is observed in multiple slices. Further, processing 3D slice volumes
directly will considerably reduce the training speed of the network.

In addition to sensitivity, the Area Under Curve (AUC), accuracy, and F1 scores are evaluated for the
proposed system. Though the proposed model demonstrates high-performance metrics for the FUMPE
and CAD-PE datasets, comprehensive results are not available for these datasets with representative
works. It is seen from Tab. 5 that the best AUC, accuracy, and F1 values achieved by the SCNN-UNet
model are very high compared to the state-of-the-art models.

It is seen that the PE detection models differ from the underlying learning models and the loss functions
employed in fine-tuning the models by updating the model weights to reduce the segmentation error in
subsequent epochs. It has been established in [33] that the PE-Net which is a 77-layer 3D CNN is
comparatively better than the ResNet-based 3D CNN models.

Table 5: Comparison of state-of-the-art models performance

Method PE detector Loss function Dataset Test data
size

AUC Accuracy F1 Score

Proposed SCNN-UNet BCE FUMPE 6792 slices 0.95 0.99 0.99

CAD-PE 8487 slices 0.94 0.99 0.99

PE-Net 3D CNN BCE focal
loss

Internal 169 volumes 0.84 0.81 -

External 200 volumes 0.84 0.77 -

Pi-PE CLSTM+Max Pooling BCE Focal
loss

Internal 1103 slices 0.94 0.88 0.91

CLSTM+Max Pooling BCE 0.91 0.86 0.90

CLSTM+Average
pooling

BCE 0.90 0.84 0.88
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The Pi-PE model demonstrates improved performance than PE-Net as it is based on MIL which
processes each CTPA slice independently. It is observed that the Pi-PE model achieves the best
performances for the CLSTM with a max-pooling approach, fine-tuned with the BCE focal loss function.

Similar to the Pi-PE model, the proposed SCNN-UNet model is also a two-stage model trained on the
CTPA slices, nevertheless demonstrating superior performance. Though the Pi-PE model also employs the
2D UNet similar to the proposed model, there are two distinctions between them. While the UNet is
employed for PE candidate detection in the Pi-PE model, it is carried out with the SCNN in the proposed
model, considerably reducing the computational overheads. Similarly, PE detection is performed by
feature extraction and aggregation in the Pi-PE model while the proposed model employs L2 regularized
UNet for semantic segmentation of the PEs from the PE candidates. Further, the FBCE loss function used
in the Pi-PE model reduces the weights of the network for the correct classifications and increases the
weights for misclassifications. The BCE loss function employed in the proposed SCNN-UNet model
penalizes the misclassifications rather than rewarding the correct classifications which attribute to the
superior results achieved via a proposed model.

The proposed framework accuracy is ascribed to the segmentation of the PE candidate regions with very
few false positives with the superpixel CNN. As the PE targets are relatively very small to the size of the
image slices, a sliding window is employed to select 24 image slices to relatively optimize the model. In
the proposed model, the RoI is extracted from the image slices rather than considering an entire image
volume. This operation localizes the PE candidates and trains the model with significant features which
subsequently improves the performance parameters of the network.

As the FUMPE and CAD-PE datasets consist of both PE regions of arbitrary shape, size, and non-PE
regions, it is ensured that the training and the testing datasets are considerably large with distinct samples.
The cross-entropy loss function of the network neutralizes the effect of imbalances in training and testing
datasets. Further, it is L2 regularized by a regularization factor 1.0000e-04, enhancing the UNet PE
detection model to generalize. This is very well evidenced by the high sensitivities achieved with the
CAD-PE dataset. Hence, the proposed model can be extended to other PE datasets by transfer learning.

Generally, PEs manifests filling defects within pulmonary CTPA images. As small PEs on the axial,
sagittal, and coronal planes are not visible, the models mentioned in Tab. 4 perform vessel alignment
along the longitudinal axis of the vessels to detect PE candidates. In the proposed model, this operation is
simplified with superpixel CNN as it performs color-based segmentation. It is clear that the GMM
superpixels precisely segment different regions of the CTPA slices, with which even the very small PE
candidates regions are extracted. Hence, the proposed superpixel CNN is a potential model for the
segmentation of organs, tissues, and markers in imaging examinations of various pathologies.

We present a comparative analysis of the segmentation metrics of the proposed framework and UNet
variants for the FUMPE dataset in Tab. 6. The UNet variants are complex compared to the regularized
UNet employed in this research. Performance analysis also reveals that best segmentation metrics are
achieved by this UNet compared to the UNet variants despite their design considerations for better
segmentations. This evaluation shows that segmentation of prospective PE candidates can increase the
accuracy of segmentation of PEs with a conventional UNet.

Further, ablation studies are performed on the proposed SCNN-UNet model changing the values of dx
and dy. The performance metrics in Tab. 3 are presented for an arbitrary value 16 assigned to these
parameters. The parameters are assigned values smaller and larger than 16 to investigate the performance
of the model under smaller and larger superpixels generated from the image slices. The performance
metrics of the model are shown in Tab. 7 for two different values of dx and dy; the same values are
assigned to dx and dy as the dimensions M and N are the same for a CTPA slice.
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It is observed that when dx and dy are assigned to 32, resulting in a larger but smaller number of
superpixels, the performance of the model degrades considerably. However, subtle degradations are
observed when these parameters are assigned to 8, resulting in a large number of smaller superpixels.
These results show that the size of the superpixels influences the segmentation accuracy. However, ideal
values of the dx and dy parameters must be empirically evaluated. Despite the demonstrated potential of
the proposed model, it suffers from two major limitations. The first limitation is concerned with the lack
of empirical results on testing PE segmentation models with the FUMPE and CAD-PE data sets.
The second limitation is the lack of benchmarks for PE segmentation and detection. These drawbacks
lead to difficulties in the interpretation of results and evaluating the consistencies of the findings among
relevant works.

Rising clinical evidence on the association of PE and COVID-19, and a dearth of automated PE
detection models call for extensive studies in this context to develop deep learning models for PE and
COVID-19 detection. The SCNN-UNet model proposed in this paper is an appropriate solution for PE
screening which may subsequently increase the detection rate of COVID-19 cases, for rapid care regimens.

7 Conclusion

In this paper, a novel two-stage deep learning framework has been proposed for PE detection and
segmentation called the SCNN-UNet. It is realized as a cascade of a superpixel CNN and regularized
UNet networks. Trained and tested with two standard datasets, the proposed model exhibits high
sensitivities of 88.43%, 88.36%, and 89.93% at 0, 2, and 5 mm localization errors for two false positives,
respectively and they are superior compared to the state-of-the-art approaches. However, it is seen that
the proposed model detects more false positives in the sub-segmental and segmental regions, as it is
difficult to discriminate the image artifacts from the fine PEs. Further, vascular enlargements in the

Table 6: Comparative analysis with UNet variants on FUMPE dataset

Method Segmentation model Global accuracy Weighted IoU Mean BF score

Proposed SCNN-UNet 0.99887 0.99774 0.99679

Raj et al. [27] (2021) UNet 0.8809 0.8762 0.8983

AG-UNet 0.8912 0.8834 0.873

DA-UNet 0.8976 0.8891 0.8751

IDA-UNet 0.9206 0.9248 0.9210

ADID-UNet 0.9512 0.9450 0.9310

Table 7: Segmentation results on ablation studies

Dataset dx dy Global accuracy Weighted IoU Mean BFScore

FUMPE 8 0.99312 0.99194 0.99142

16 0.99887 0.99774 0.99679

32 0.91053 0.90852 0.91065

CAD-PE 8 0.99018 0.99147 0.99011

16 0.99892 0.99785 0.99708

32 0.90012 0.91053 0.90651
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segmental or sub-segmental regions of the chest CT have been identified to be prospective signs of COVID-
19 and they are attributed to pulmonary parenchymal damage, PE, and hemoptysis induced by PE. This
operation can be accomplished by training the SCNN-UNet with location-specific information. With this
refinement, the proposed model will be a prospective tool for PE and COVID-19 detections for timely
clinical interventions.
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