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Abstract: The generalized structure of deoxyribonucleic acid (DNA) is based on
the rules of topological spaces. DNA recombination is one of the most important
processes within DNA, as it is essential in the pharmaceutical industry as well as
in gene therapy. In this paper, we are discussing the relationship between rough
sets, nano topological spaces (N�s), nano Z open (NZ0) sets, and DNA recombi-
nation. We also created a new recombination mapping using the properties of the
DNA recombination process. Further, by using the process of cutting and sticking
of a sequence of genes, new topological structures are constructed and some of
their properties and characterizations are investigated. Moreover, we study recom-
bination operators in the statement “Sticky Ends”. Furthermore, we use nano
topological structures to prove the validity of the mathematical model of the
recombination process and the extent to which the topological mathematical prop-
erties correspond to the biological properties. Finally, we use nano Z-open sets to
study many topological characteristics of the neighborhood, closure, interior, limit
points, frontier, border and exterior.
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1 Introduction

Liellis Thivagar [1] invented the notion of nano topological spaces (short for Nss)), which define a
subset of a universe using upper, lower approximations and a boundary region defined by an equivalence
relation on it. Nano open (nano closed, nano-interior and nano-closure) sets (briefly, N0;Nc;Nint and
Ncl) as being defined by him. El-Maghrabi and Mubarki [2] defined Z-open sets in topological structures
and investigated several of their features. The concept of nano Z-open sets plays a role in topological
structures and their applications in domains such as mathematics, biology and other aspects of life. The
goal of this research is to look at how mathematics is used in biological applications (DNA
recombination) and prove the validity of the mathematical model of the recombination process using
nano topology and NZ0. The extent to which the topological mathematical properties correspond to the
biological properties. We also use nano Z-open sets to study many topological characteristics of the
neighborhood, closure, interior, limit points, frontier, border and exterior.
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Proposition 1.1. [3] If ðU;RÞ is an approximation space and X;Y � U, then

ðiÞ LRðX Þ � X � URðX Þ,
ðiiÞ LRð’Þ ¼ URð’Þ ¼ ’ and LRðUÞ ¼ URðUÞ ¼ U ,
ðiiiÞ UR (X [ Y )=URðX Þ [ URðY ÞÞ,
ðivÞ UR (X \ Y )� URðX Þ \ URðY ÞÞ,
ðvÞ LR (X [ Y )� LRðX Þ [ LRðY Þ,
ðviÞ LR (X \ Y )=LRðX Þ \ LRðY Þ,
ðviiÞ IfX � Y then LRðX Þ � LRðY Þ and URðX Þ � URðY Þ,
ðviiiÞ URðX cÞ ¼ ½LRðX Þ�c and LRðX cÞ ¼ ½URðX Þ�c,
ðixÞ URURðX Þ ¼ LRURðX Þ ¼ URðX Þ,
ðxÞ LRLRðX Þ ¼ URLRðX Þ ¼ LRðX Þ.
Definition 1.2 [1] Let H � U and ðU; sRðXÞÞ be a Nts. Then H is a nano regular open (Nro) if

H ¼ NintðNclðHÞÞ:
Definition 1.3 [4] If H � U and ðU ; sRðX ÞÞ be aNts. Then the nano h-interior(resp. nano h closure) of H

is defined by NN inthðHÞ ¼ [fE : E is a Nh set and NclðEÞ � Hg (resp. Ninth(H)
=[fx 2 E : Ncl \ H 6¼ [, E is a Nhset , x 2 Eg.

Definition 1.4 [4] A subset H of U is said to be a nano h open (Nh0)(resp. nano h-closed(Nh)) set if H=
(resp. Hc is a nano h open set ).

Definition 1.5 [5] If H � U and ðU ; sRðX ÞÞ is Nts, then the nano d-interior(resp. nano d closure) of H is
defined by Nintd(H)=

S fx 2 E : Nroset;E � Hg (resp.Ncld(H)=[fx 2 U : NintðNclðHÞÞ \ H 6¼ [, E is a
No set , x 2 Eg.

Definition 1.6 [5] A subset H of U is said to be a nano d open (Ndo)(resp. nano d-closed(Ndc)) set if H=
Nintd(H) (resp. Hc is a nano d open set ).

Definition 1. 1 Let K � U and ðU; sRðXÞÞ be a Nts. Then K is said to be:

ðiÞ nano d-preopen [5] (briefly, NdP0)set if K � NintðNcld(K),
ðiiÞ nano d-semiopen [5] (briefly, NdS0)set if K � NclðNintd(K),
ðiiiÞ nano e-open [6] (briefly, Ne0)set if K � NintðNcld(K) [ NclðNintd(K),
ðivÞ nano h-semiopen [6] (briefly, NhSO set if NclðNinth(K),

1.1 DNA Recombination

DNA recombination is one of the most important processes within DNA, as it is essential in the
pharmaceutical industry as well as in gene therapy. Bacteria can acquire new genes by incorporating
environmental DNA into their genomes [7], and the recombination process may be used for gene
reproduction or tissue culture, and defects in homologous recombination may lead to a gastric cancer
mutation [8]. However, recombination is not accurate [9]. Since the adoption of computer programmes
depends on mathematics and the description of operations before their implementation, making a
simulation of any problem requires a mathematical model of the problem, so we made a mathematical
model of the recombination process and verified the validity of the mathematical model using nano-
topological structure and nano Z-open and we also made a conclusion. Some mathematical results on
nano Z-open.

Fig. 1 depicts the steps involved in creating recombinant DNA as:
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� Treat the DNA taken from both sources with the same restriction end nuclease.

� The restriction enzyme is an enzyme that cleaves DNA into fragments at or near specific recognition
sites, such as sticky ends (EcoRI recognizes the sequence G #AATTC CTTAA"G) and at blunt ends
for example (HpaI restriction enzyme recognizes the sequence GTT# AACCAA"TTG.

� Sticky ends are an overhanging segment of single-stranded DNA at the cut's ends.

� These sticky ends can base pair with any complementary sticky end-containing DNA molecule.

� When put together, complementary sticky ends can form a pair.

� A DNA ligase is used to covalently join the two strands of recombinant DNA into a molecule.

� Recombinant DNA must be copied several times before it can be used.

1.1.1 Mathematical of DNA Recombination
Mathematical modelling of biological processes is very useful in identifying the processes and designing

programs that help in investigating possible solutions and avoiding errors. These models have helped in the
development of other sciences and mathematics. Representing the problem of life or any process does not
stop when building the mathematical model, but continues to prove the validity of the mathematical
model and match the mathematical solution with the practical solution (to solve the problem of life). To
prove the validity of the model, we use mathematical methods (topological, numerical analysis,
differential equations, etc.). But during our work, we use topological methods more than any other branch
of mathematics. Recombination is the production of offspring with combinations of hits that differ from
those found in either parent. Stadler & Stadler [10,11] had defined the recombination process (most
applications are inherited) and had problems with the definition, since the recombination of R(x, x) will
not always give the x. Therefore, we will build on the definition of Stadler & Stadler definition of genetic
re-synthesis, which is more commonly used in the manufacture of medicine and gene therapy. The DNA
recombination process makes it possible to cut different strands of genotypes with a restriction enzyme
(sticky ends) and join the genotypes together via complementary base pairing [12–14]. In this study, we
consists of mathematical modelling of the recombination process. Also, we consider a method for

Figure 1: Recombinant DNA process
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generating nano topologies by (recombination operator deduce the equivalence classes) rough set theory via
one of the biological applications (DNA recombination processes). We will investigate the topological
properties of nano Z-open sets using nano topological structures. Finally, we explore the extent of the
match between mathematical and biological results.

1.2 The DNA Recombination Operator

“A new mathematical representation is proposed for the configuration structure induced by
recombination. It consists of the mapping of pairs of objects to a power set of all objects in the search
space. The mapping assigns to each pair of parental (genotypes) the set of all recombinant genotypes
obtainable from the parental ones.”

Definition 1.3.1 [10] Let X be any set of types “strings of bites, vectors, DNA, ribonucleic acid (RNA)
sequence …etc.” A recombination operator on X that is defined by F : A� A ! PðAÞ the following
condition holds 8h; k 2 A:

ið Þ F h; kð Þ ¼ F k; hð Þ
iið Þ F h; hð Þ ¼ hf g
iiið Þ h; kf g � F h; kð Þ
ivð Þ F h; vð Þk k ¼ F h; kð Þk k; 8v 2 F h; kð Þ:

2 Topological Spaces of DNA Recombination

By constructing a new recombination mapping based on the properties of the recombination process, we
aim to use topological concepts to build flexible mathematical models in biomathematics. In addition, we
investigate the topological qualities of the newly formed map as well as the topological structures of
DNA that are related to it. We study the properties of recombination mapping, new topological structures,
and characterizations by using the new concepts “Cut and Sticks” for sequences of genotypes. Further,
we define recombination mathematically by a matrix where enzymes can be cut and the integration of
two “types” introduces the meaning of the process of recombination, and as a result of improved
optimization of this definition, more than once, it’s a description of the recombination process is more
accurate. The process of recombination consists of three elements: a gene, an enzyme, and plasma to
form the mathematical model and then replace the enzyme with the slicing Boolean matrix. The functions
(gene slicing and plasma slicing) and recombination composition were explained well by the way
recombination between genes occurs. We have greater accuracy and better places to cut the injured part
from the rest of the injured part.

Definition 2.1

Let X be a set of types “strings of bites, vectors, DNA, RNA sequence…etc.” and the span of X contains
all the linear combination elements of X as well as recombinant. Then the topological DNA recombination
operator Rs : X � X ! spanX , is defined by
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Rs (x,y)¼
Sn
i¼1
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where “I 2 f0; 1g and the matrix represents the unity of level i� n, O a zero matrix, C�
i is called the matrix

slicing and C�
i 2 Mnðf Þ [Boolean matrix] and the sense strand of DNA X 30

50 , the antisense strand of
DNA X 50

30 .”

We will conduct a new topological study on DNA recombination in which recombination between types
x and y occurs, where x is the first gene and y is the plasmid.

Proposition 2.2 Let Rs : X � X ! spanX be the recombination operator, defined by

Rsðx; yÞ ¼
Sn
i¼1

fc�i x3
0
50 þ c�n�iy1; c

�
j x

50
30 þ c�n�jy2g, Rsðx; yÞ consists of (offspring) can be induced by x; y and

it satisfies the following:

� fx; yg 2 Rsðx; yÞ.
� Rsðx; yÞ 6¼ Rsðy; xÞ .
� 8z 2 Rsðx; yÞ ) Rsðx; zÞkk 
 Rsðx; yÞkk 8x; y; z 2 X .

� Rsðx; xÞ ¼ 2x

� Rsðx; yÞ � Spanfx; yg.
Proof. Obvious.

In this section, we present the definition of closure recombination space by using a recombination
function.

Definition 2.3 Let A � X. We take T�
Rs
ðAÞ represents the closure recombination (“sticky end”) operator,

since T�
Rs
ðAÞ ¼ S

x;y
Rsðx; yÞ:

We work with the topological recombination (“sticky ends”) operator. The closure recombination space
from the recombination operator Rs is denoted by ðX ; T�

Rs
Þ.

Theorem 2.4 The closure recombination structure ðX;T�
Rs
Þ arising from recombination operator

satisfies:

� T�
Rs
ð’Þ ¼ ’,

� If H is a group of genes, then H � T�
Rs
ðHÞ,

� If H � K, then T �
Rs
ðHÞ � T�

Rs
ðKÞ,

� T�
Rs
ðHÞ [ T�

Rs
ðKÞ ¼ T �

Rs
ðH [ KÞ and T�

Rs
ðHÞ \ T �

Rs
ðKÞ � T�

Rs
ðH \ KÞ,

� T�
Rs
ðT �

Rs
ðHÞÞ � T �

Rs
ðKÞ.

Proof. Obvious.

A space ðX ;T �
Rs
Þ, is called Rs DNA recombination structure useful for DNA recombination.
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2.1 The Upper and The Lower Approximation on DNA Recombination

In the following, we study the connection between rough sets [15] concepts and DNA recombination.
Also, we investigate new definitions of the class of elements depend on definitions of recombination sets that
result from the definition of recombination function, which identifier as follows, Rs : X � X ! spanX . Since

Rsðx; yÞ ¼
Sn
i¼1

fc�i x3
0

50 þ c�n�iy1; c
�
j x

50
30 þ c�n�jy2g.

Definition 2 .1.1 Set of all recombination products can be done or (offspring can be obtained) caused by
x,y, let’s call it Rsðx; yÞ.

Definition 2.1.2 Let Rs (x,y) be a recombination set. Then the recombination class of x can be defined as
½x�Rs

¼ fy 2 U : y 2 Rsðx; yÞg and the lower and the upper approximation of a subset X of U are
defined as:

RsðX Þ ¼ fx 2 U : ½x�Rs
� Xg:

�RsðX Þ ¼ fx 2 U : ½x�Rs
\ X 6¼ [g:

Example 2.1.3 Let the recombination process consists of three key pillars are: genes (g), plasmids(p),
enzymes(e) and elements of recombination process (U) i.e. U = {g , e, p}, the recombination class of
gene [g]R ={e},[p]R = {e} and [e]R = {g, p} and A any subsets of U (see, Tab. 1)

From Tab. 1, the set of all recombination open (closed) sets consists of the indiscrete recombination
space when using the general topology, and this result applies to the nano topological structure defined on
the set U (enter all items of DNA recombination). But when using the nano topology, more than one
topology appears. For example, when using the enzyme, only group B appears, as the effect of the
enzyme is practically on the gene and the plasm. When using the gene or the plasma only, the enzyme
appears, and this applies as a cofactor. These results are consistent with the biological results.

Proposition 2.1.4 let ðU;T�
Rs
Þ be an indiscrete recombination space, H � U.Then the limit point of H is

given by

H 0 ¼
[ if H ¼ [

U � pf g if H ¼ fPg
U if H contains more then one element matrix:

8<
:

Proof. Obviously

Table 1: Recombination topology

A Rs Að Þ Rs Að Þ b Að Þ T �
Rs
ðAÞ

U U U ’ {U,’}

’ ’ ’ ’ {U,’}

{g} ’ {e} {e} {U,’,{e}}

{e} {g, p} {g, p} ’ {U,’,{g, p}}

{p} ’ {e} {e} {U,’,{e}}

{g, e} {g, p} U {e} {U,’,{e}, {g, p}}

{g, p} {e} {e} ’ {U,’,{e}}

{e, p} {g, p} U {e} {U,’,{g, p}, {e}}
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These results mean that:

1. That there is always an end point to the process.

2. There is an output of the process of recombination, and this is applicable to the biological concept.

Remark 2.1.5 Every subset of an indiscrete recombination space is dense. The sense that it produces a
very large number of plasma carrying the gene The aim of the following proposition is to describe any item in
the recombination process.

Proposition 2.1.6 Every indiscrete recombination space is a regular space. We note that from Tab. 1, the
appearance of more than nano topology structures, but it appears one topological structure.

3 Nano Z-Open Sets

“Throughout this paper ðU ; sRðX ÞÞ is a Nts with respect to X where X � U and R is an equivalence
relation on U. Then U=R denotes the family of equivalence classes of U by R.' [1,3,15]

Definition 3.1 [1] If H � U and ðU; sRðXÞÞ is a Nts, then H is a nano Z -open(briefly, NZo) (resp. nano
Z-closed(briefly, NZc)) set if H � NintðNcl(H)[NclðNintd(H), (resp. H� NintðNcld(H)\NclðNint(H)). The
family of all NZo (resp. NZc) sets are denoted by NZOðU; sRðXÞ (resp. NZ CðU; sRðXÞÞ.

Definition 3.2 If H � U and ðU; sRðXÞÞ is a Nts, then H is a nano e�-open(briefly Ne�o) set if
H � NclðNintðNcld(H))). The family of all Ne�o sets are dented by Ne�OðU; sRðXÞÞ.

Example 3.3 From Example 2.1.3.

From Tab. 2 the set of all nano Z-open sets to nano topological structure defined on the set U(enter all
items of DNA recombination) is the discrete recombination space.

Definition 3.4 [16] If H � U and ðU; sRðXÞÞ is a Nts, then a nano Z-interior of H is the union of all NZo
sets contained in H (briefly,NZintðHÞ.

Definition 3.5 [16] Let H � U and ðU; sRðXÞÞ be aNts. Then a nano Z-closure of H is the intersection of
all NZc sets containing H (briefly, NZclðHÞÞ.

Remark 3.6 Every NZ-open set is Nb-open (resp. e-open and e�-open ).

Lemma 3.7 Let G be a subset of a space U. Then the following statement are satisfied:

(1) NPintd(NPclðG))=NPclðG))\NintðNcld(G)),

Table 2: Recombination and nano Z-open sets

A Rs Að Þ Rs Að Þ b Að Þ T�
Rs

Að Þ NZOðU ; sRðAÞÞ
U U U ’ {U,’ } P(U)

’ ’ ’ ’ {U,’ } P(U)

{g} ’ {e} {e} {U,’,{e}} {U,’,{e, g}, {e}, {e, p}}

{e} {g,p} {g,p} ’ {U,’,{g, p}} {U,’,{g, p}, {g}, {p}, {g, e}, {e, p}

{p} ’ {e} {e} {U,’,{e}} {U,’,{e}, {g,e},{e,p}}

{g, e} {g,p} U {e} {U,’{e}, {g,p}} P(U)

{g, p} {e} {e} ’ {U,’,{e}} {U,’,{e}, {g,e},{e,p}}

{e, p} {g,p} U {e} {U,’,{g,p},{e}} P(U)
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(2) NPcld(NPintðG))=NPintðG))[NclðNintd(G)).
Proof. (1) Since, NPintd(NPclðG)) = NPclðGÞ \NintðNcldðNPcl Gð ÞÞ ¼ NPclðGÞ\

NintðNcldðG [ NintðNcl Gð ÞÞ ¼ NPclðGÞ \NintðNcld Gð ÞÞ
(2) It follows from (1).

Definition 3.8 [17] A subset Zx � U is called a nano Z (resp. nano e�) neighbourhood (briefly, NZNbd
(resp. Ne�Nbd)) of a point x 2 U if there exists H 2 NZOðU; sRðXÞÞ (resp. x 2 H � Zx and a point x is
called NZNbd (resp. Ne�Nbd) point of the set H. The family of all NZNbd (resp. Ne�Nbd) of a point
x � U is called NZNbd (resp. Ne�Nbd ) system of x (briefly, NZNbd S(x)) (resp. Ne�NbdS (x)).

Theorem 3.9 An arbitrary union of NZNbd (resp. Ne�Nbd) of a point x 2 U is again NZNbd (resp.
Ne�Nbd) of a point x 2 U.

Proof. Let fHi : i 2 Ig be an arbitrary collection of NZNbd of x 2 U . Since 8i 2 I , Ai is NZNbd of x,
9Li 2 NZOðU ; sRðX ÞÞ such that. x 2 Li � Hi, but for each i 2 I , Hi � [Hi, therefore x 2 Hi � [Ai which
implies that [Hi is again NZNbd of x. The other cases are similar.

Lemma 3.10 The intersection ofNZNbd (resp. Ne�Nbd) of a point x 2 U is not a NZNbd (resp.) of the p
Ne�Nbd oint x 2 U in general.

Example 3.11 From Example 3.3. and Tab. 2, let A ¼ feg. Then the Nts sRðXÞ = fU; ’; fg; pgg. In the
Nts, ðU; sRðXÞÞ, the sets fg; eg and fe; pg are NZNbd (e) but {g,e}\ e; pf g ¼ feg is not a NZNbd (e).

Theorem 3.12 If ðU ; sRðY ÞÞ is a Nts, then
1. EveryNdNbd yð Þis NNbd yð Þ;8y 2 U;

2. EveryNdNbd yð Þ is NZNbd yð Þ; 8y 2 U;

3. EveryNdSNbd yð Þ is NZNbd yð Þ;8y 2 U;

4. EveryNPSNbd yð Þ is NZNbd yð Þ;8y 2 U;

5. EveryNZNbd yð ÞisNbNbd yð Þ;8y 2 U ;

6. EveryNZNbd yð Þ is NeNbd yð Þ; 8y 2 U;

7. EveryNZNbd yð Þ is Ne�Nbd yð Þ; 8y 2 U;

Proof. (3) Let A be an arbitrary NdSNbd of y 2 U : Then9H 2 NdSOðU ; sRðX ÞÞ such that y 2 H � A.
Since every NdSo is NZo, then H NZo, therefore y 2 H � A. Then A is NZNbd of y: The other cases are
similar.

Definition 3.13 Let H � U and ðU; sRðXÞÞ be a nano topological structure. Then H is called nano Z
(briefly, NZ)-dense subset if NZcl(H) = U.

Definition 3.14 A nano topological structure is said to be a nano Z-extremally disconnected space
(briefly, NZEDS) if the nano Z-closure of NZo set is NZo set for each NZo subset of U.

Definition 3.15A nano topological space is called nano Z-submaximal (briefly,NZEð) if eachNZ-dense
subset of U is NZo set.

Remark 3.16 A nano topological space is NZEM and NZEDS, then every NZNbd is NdSNbd and
NPNbd of x 2 U.

Theorem 3.17 For any point x 2 U , NZNbdS(x) satisfies

(1) NZNbdS(x)6¼ ’.
(2) if H � U and H 2 NZNbdS(x), then x 2 H .
(3) if H � U and H 2 NZNbdS(x), H � C then C 2 NZNbdS(x).
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(4) if H � U and H 2 NZNbdS(x) then 9B 2 NZNbdS(x)S(x) such that B � H , H 2 NZNbdS
(y),8y 2 B.

Proof. (1) Since, 8x 2 U and U is a NZo set, Then x 2 U implies that U is NZNbd of x. Then
U 2 NZNbdS(x)) NZNbdS(x)6¼ ’.

(2) Let H 2 NZNbdS(x). Then H is a NZNbd of x implies that 9B 2 NZOðU ; sRðX ÞÞ ) x 2 B � H .
Thus x 2 H .
(3) Let H 2 NZNbdS(x). Then that 9B 2 NZOðU ; sRðX ÞÞ ) x 2 B � H and H � C
) x 2 B � H � C. Therefore C 2 NZNbdS(x).
(4) From (3) it is obvious.

Theorem 3.18 Let NZOðU; sRðXÞÞ be closed under finite intersection, H be NZc subset of U and
x 2 U� H. Then there exists a NZNbdA of x such that H \ A ¼ ’.

Proof. Let H be a NZc set. Then U � H is a NZoNZo set. Therefore U � H is NZNbd of each of its
points. If x 2 U � H , implies that A 2 NZo, since x 2 A � U � H , then H \ A ¼ ’.

Definition 3.19 [2] A point x 2 U is called a nano Z- limit point of H, if for each K 2 NZOðU; sRðXÞÞ
containing x satisfies K\ðH� xÞ 6¼ [.

Definition 3.20 The set of all nano Z-limit points of H is a nano Z-derived set (briefly, NDZðHÞ).
Theorem 3.21 If H and K are subsets of a space U, then the following are hold.

(1) NDZ fð Þ ¼ f,

(2) if x 2 NDZðHÞ, therefore x 2 NDZðH � xÞ.
Proof. (1) Suppose that x 2 U and Gx 2 NZOðU ; sRðX ÞÞ. Therefore ðG� xÞ \ ’ ¼ ’ ) x=2NDZðfÞ,

then 8x 2 U ,x=2NDZðfÞ. Thus NDZ fð Þ ¼ f:

(2) If x 2 NDZðHÞ ) G \ ðH � xÞ 6¼ ’ and 8Gx 2 NZOðU ; sRðX ÞÞ and contains at least one point
other than x of H � x. Thus x 2 NDZðH � xÞ.
Theorem 3.22 If H � U and ðU; sRðXÞÞ is a Nts, then:
1. If NZZCðU ; sRðX ÞÞ is closed under arbitrary union, then H [ NDZ Hð Þ is NZc set,
2. NZcl(H) =H [NDZ Hð Þ.
Proof. To show thatH [ NDZ Hð Þ is a NZc set, we want to prove U � H [ NDZ Hð Þð Þ is a NZo set,we

have two cases:

Case 1: Let U � H [ NDZ Hð Þð Þ. Then the result is clear.

Case 2: LetU � H [NDZ Hð Þð Þ 6¼ f. Then x 2 U � H [NDZ Hð Þð Þ implies that x=2 H [ NDZ Hð Þð Þ and
hence x=2H , x=2NDZðHÞ ) Gx 2 NZOðU ; sRðX ÞÞ. Since G \ ðH � xÞ ¼ ’ such that x 62 H ) G \ H ¼ ’
implies x 2 G � U � H . Thus G \ NDZðHÞ= ’ implies x 2 G � U �NDZ Hð Þ. Then
x 2 G � ðU � HÞ \ ðU � NDZ Hð ÞÞ =U � H [NDZ Hð Þð Þ implies that x 2 G � U � H [ NDZ Hð Þð Þ.
Therefore U � H [ NDZ Hð Þð Þ) is a NZbd of each of its points. U � H [NDZ Hð Þð Þ is a NZo set and then
H [ NDZ Hð Þð Þ is NZc.

(2) By (1), if H [ NDZ Hð Þ is a NZc set, then H [NDZ Hð Þ is a NZc set containing H. Therefore NZcl
(H)� H [NDZ Hð Þ and H � NZcl(H), implies that NDZ Hð Þ � NDZ NZclðHð Þ � NZcl(H) because
NZclðHÞ is NZc. Hence H [NDZ Hð Þ � NZcl(H). Thus NZcl(H)=H [ NDZ Hð Þ

Theorem 3.23 If H � U and ðU; sRðXÞÞ is a Nts, then the following holds:

1. NZcl(H) is the smallest NZc super set of H,
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2. H is a NZc set iff NZcl Hð Þ ¼ H .

Proof. (1) Let fFi : i 2 Ig, Fi � U , Fi be a NZc set and H � Fi 8i 2 I . Then NZcl(H) ¼ \fFi : i 2 Ig,
hence \fFi : i 2 Ig is a NZc set. Therefore NZcl(H) is a NZc set. Also, H � Fi,
8i 2 I ) H � \fFi : i 2 Ig = NZcl(H). Then NZcl(H) is a NZc set containing H such that NZcl
(H) = \fFi : i 2 Ig, therefore NZcl(H)� Fi, 8i 2 I . Consequently, NZcl(H) is the smallest NZc
superset of H.

(2) Let H be a NZc set. Then NZc is the superset of H and hence NZcl(H)= H. Thus H is a NZc set. Then
H is a NZc set iff NZcl(H)= H.

Proposition 3.24 If H and K are two subsets of a space U , then the following properties hold:

(1) If NZcðU ; sRðX ÞÞ is closed under finite union, then NZclðH [ KÞ ¼ NZcl(H)[NZclðK) for every
H ;K 2 NZcðU ; sRðX ÞÞ,
(2) If NecðU ; sRðX ÞÞ is closed under finite union, then Necl H [ Kð Þ ¼ NeclðHÞ [ NeclðKÞ for every
H ;K 2 NecðU ; sRðX ÞÞ.
Proof. (1) Let H and K be NZc sets in U. By hypothesis, H [ K is NZc. Thus

NZcl H [ Kð Þ ¼ H [ K ¼ NZclðHÞ [ NZclðKÞ
(2) Likewise (1).

Theorem 3.25 If H and K are two subsets of a space U, Then the following are holds:

1. NZinðHÞ is the largest NZo set contained in H.

2. H is a NZo set iff H = NZinðHÞ.
3. NZintð’Þ ¼ ’ and NZinðUÞ ¼ U .

4. NZint(NZintðHÞÞ) = NZintðHÞ.
Proof. (1) Let B 2 NZoðU ; sRðX ÞÞ, B � H . If x 2 B, therefore x 2 B � H ,B 2 NZoðU ; sRðX ÞÞ, Then H

is NZbd of x and hence x 2 B ) x 2 NZintðHÞ. Therefore every NZo subset of H is contained in NZintðHÞ.
Hence NZintðHÞ is the largest NZo set contained in H.

(2) Let H 2 NZO U ; sR Xð Þð Þ, H � H and H be the largest NZo subset of H. By (1), NZintðHÞ is the
largest NZo subset of H. Hence H = NZintðHÞ.
(3) It is clear.
(4) By (2), H is a NZoset iff H=NZintðHÞ and by (1), NZintðHÞ is the largest NZo set contained in H.
Then NZint(NZintðHÞÞ) = NZintðHÞ.
Theorem 3.26 If H and K are two subsets of a space U, then NZint Hð Þ ¼ H� NDZ U� Hð Þ:
Proof. Let x 2 H �NDZ U � Hð Þ� � ) x 2 Handx=2NDZ U � Hð Þ: Then 9Gx 2 NZO U ; sR Xð Þð Þ

such that Gx \ U � Hð Þ ¼ [ ) Gx � H : Hence x 2 G � H ) x 2 NZinðHÞ. Then
H � NDZ U � Hð Þ � NZinðHÞ.

If x 2 NZinðHÞ ) x 2 H and NZinðHÞ, x 2 NZinðHÞ \ ðU� HÞ. Therefore x=2NDZ U � Hð Þ). Then
x 2 H � NDZ U � Hð Þ� �

. Hence NZinðHÞ � H � NDZ U � Hð Þ. Then NZinðHÞ=H � NDZ U � Hð Þ:
Theorem 3.27 For H;T � U, then NZinðH� TÞ � NZintðHÞ � NZintðTÞ.
Proof. Let NZin H� Tð Þ ¼ NZin H \ U� Tð Þð Þ � NZint Hð Þ \ NZint U � Tð Þ � NZint Hð Þ

\ U � NZint Tð Þð Þ ¼ NZint Hð Þ � NZint Tð Þ:
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4 Nano Z-Exterior, Eorder and Frontier Sets

Definition 4.1 For H � U, then a nano Z exterior (briefly, NZEr) of H is defined as
NZint(H) = NZintðU � HÞ.

Definition 4.2 [17] For H � U, then a nano Z border (briefly, NZBr) of H is defined as NZBr (H) = H -
NZintðHÞ.

Theorem 4.3 If H and K are two subsets of a space U, then the following are satisfied:

1. NEðdSðHÞ � NZEððHÞ,
2. NEðPðHÞ � NZEð Hð Þ;
3. NZEð Hð Þ ¼ U � NZclH),

4. NZEð H [ Kð Þ ¼ NZEððHÞ \NZEððKÞ,
5. NZint Hð Þ;NZEð Hð Þare mutually disjoint and U ¼ NZEððHÞ [ NZint Hð Þ,
6. H \NZEð Hð Þ ¼ [,

7. NZEð Hð Þ � U � H

8. NZEððHÞ � NZintðHcÞ,
Proof. (1) For K � U, NSintd Kð Þ � NZint Kð Þ. Put K ¼ U � H , then

NSintd U � Hð Þ � NZint U � Hð Þ. This implies NEðdSðHÞ � NZEððHÞ.
(2) ForK � U, NPint Kð Þ � NZint Kð Þ Put K ¼ U � H , then NPint U � Hð Þ � NZint U � Hð Þ. This
implies NEðdSðHÞ � NZEððHÞ .
(3) By the definition of NZEr Hð Þ ¼ NZint U � Hð Þ ¼ U � NZcl Hð Þ:
(4) ConsiderNZEr H [ Kð Þ ¼ NZint U � ðH [ KÞð Þ ¼ NZintð U � HÞ \ ðU � KÞð Þ � NZint U � Hð Þ\
NZint U� Kð Þ ¼ NZEððHÞ \ NZEððKÞ. That is, NZEð H [ Kð Þ � NZEððHÞ \ NZEð Kð Þ:ð1Þ
Also, we have H � H [ K, K � H [ K, then NZEr H [ Kð Þ � NZErðHÞ and

NZEr H [ Kð Þ � NZErðKÞ. Hence,
NZEr H [ Kð Þ � NZErðHÞ \NZErðKÞ: (2)

(5) Assume that NZErðHÞ \NZintðHÞ 6¼ [. Then, 9x 2 NZErðHÞ \ NZintðHÞ therefore
9x 2 NZErðHÞ and x2 NZintðHÞ ) x 2 U � H and x2 H . contradiction, then
NZEr Hð Þ \ NZint Hð Þ ¼ [. Similarly, U ¼ NZEð Hð Þ [NZint Hð Þ:
(6) As NZEr Hð Þ \ H ¼ H \ NZint U � Hð Þ � H \ U � Hð Þ ¼ [: Therefore H \ NZEð Hð Þ ¼ [.
(7) By the definition of NZErðHÞ = NZintðU � HÞ � U � H .
(8) This case is similar to (3).

Theorem 4.4 If H and K are two subsets of a space U, then the following are satisfied:

ið ÞNZBð(H)� NBðdS(H),
(ii) NZBð (H)� NBð p(H),
(iii) H is NZo set iff NZBð(H)=[;

(iv) NZBrðH)=H�NZint Hð Þ ¼ H \ NZcl U � Hð Þ,
(v) If H � K, Then NNZBrðKÞ � NZBrðHÞ;
(vi) NZBrðH [ KÞ � NZBrðH)[NZBrðK),
(vii) NZBrðH)\NZBrðK)� NZBrðH\K);
(viii) NZBrðH)=NDZ(U-H) and NDZ Hð Þ ¼ NZBrðU�H).

Proof. (i) Since, NSintd Hð Þ � NZint Hð Þ ) U � NZint Hð Þ � U � NSintd Hð Þ
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) H \ U � NZint Hð Þð Þ � H \ U � NSintd Hð Þð Þ ) H �NZint Hð Þ � H � NSintd Hð Þ: Therefore,
NZBr(H)� NBrdS(H).

(ii) Since, NPint Hð Þ � NZint Hð Þ ) U � NZint Hð Þ � U � NPint Hð Þ ) H \ U � NZint Hð Þð Þ � H\
U �NPint Hð Þð Þ ) H � NZint Hð Þ � H �NPint Hð Þ. Then NZBð (H)� NBð p(H).

(iii) Let H � U be a NZo set iff H ¼ NZint Hð Þ , H � NZint Hð Þ ¼ [ , NZBr(H)=[

(iv) Since, NZBr(H)=H � NZint Hð Þ ¼ H \ U � NZint Hð Þð Þ ¼ H \NZcl U � Hð Þ:
ðvÞIfH � K; thenNZint Hð Þ � NZint Kð Þ ) U �NZint Kð Þ � U �NZint Hð Þ ) H \ ðU �NZint Kð ÞÞ
� H \ ðU � NZint Hð ÞÞ ) K � NZint Kð Þ � H � NZint Hð Þ ) NZBrðKÞ � NZBr (H).
(vi) Since, H � H [ K, K � H [ K, hence by (ix) NZBrðHÞ � NZBrðH [ KÞ,
NZBr Kð Þ � NZBr H [ Kð Þ; then NZBr H [ Kð Þ � NZBrðKÞ [ NZBr(H).
(vii) As H \ K � H ;H \ K � H by (ix) NZBrðHÞ � NZBr(H\K) andNZBrðKÞ � NZBr(H\K),
therefore) NZBrðH)\NZBrðK)� NZBrðH\K).
(viii) By the definition of NZBr(H)¼ H � NZint Hð Þ ¼ H � H �NDZ U � Hð Þ� � ¼ NDZðU � HÞ
and NDZ(-HNZBr U � Hð Þ is obtained by replacing H by U � H.

Definition 4.5 For H � U, then a nano Z-frontier (briefly NZFð) of H is defined as, NZFð (H)= NZcl
(H)-NZint(H).

Theorem 4.6 If H and K are two subsets of a space U, then the following are satisfied:

i) NZFð (H)� NFðdS(H),
ii) NZFð (H)� NFð p(H),
iii) NZBð (H)� NZFð (H);
iv) NZcl Hð Þ ¼ NZint Hð Þ [NZFð (H),
v) NZint Hð Þ \NZFð (H)¼ [,
vi) NZFð (H)=NZBð (H)[NDZ(H),
vii) H is NZo set iff NZFð (H)=NDZ(H),
viii) NZFð (H)=NZcl Hð Þ \NZcl U � Hð Þ,
ix) NZFð (H)=NZFð (U-H).
x) NZFð (H) is a NZc set ,
xi) NZint Hð Þ ¼ H �NZFð (H);
xii) NZFð (H)=[ iff H is bothNZo set andNZc set,
xiii) NZFð NZint Hð Þð Þ � NZFð (H);
xiv) U � NZFð (H)¼ NZint Hð Þ [ NZint U � Hð Þ;
xv) NZFð (NZcl Hð ÞÞ � NZFð (H);
xvi) NZcl Hð Þ=H[NZFð (H)NZFð (H);
xvii) NZFð (NZFð (H)Þ � NZFð (H);
xviii) NZFð (H)\NZEð Hð Þ ¼ [;

xix) NZFð (H)[NZEððHÞ=NZcl Hcð Þ;
xx) NZEððHÞ, NZint Hð Þand NZFð (H) are forms a partition.

Proof. (i) Since, Ninth Hð Þ � NZint Hð Þ implies that U � NZint Hð ÞÞ � U � NZinth Hð Þ. Also,
NZcl Hð Þ � NScld Hð Þ. Therefore NZcl Hð Þ \ ðU� NZint Hð ÞÞ � NScld Hð Þ \ U � NZinth Hð Þ. This
implies NZcl Hð Þ � NZint Hð ÞÞ � NScld Hð Þ � NSinth Hð Þ. Hence, NZFð (H)� NFðdS(H).

(ii) Since, NPint Hð Þ � NZint Hð Þ implies U � NZint Hð Þ � U � NPint Hð Þ: Also,
NZcl Hð Þ � NPcl Hð Þ. ThereforeNZcl Hð Þ \ ðU �NZint Hð ÞÞ � NPcl Hð Þ \ ðU � NPint Hð Þ: This implies
that NZcl Hð Þ � NZint Hð Þ � NPcl Hð Þ � NPint Hð Þ. Hence NZFð (H)� NFð p(H).
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(iii) Since, H � NZcl Hð Þ ) H \ U � NZint Hð Þð Þ � NZcl Hð Þ \ U � NZint Hð Þð Þ: Therefore
H � NZint Hð ÞÞ � NZcl Hð Þ � NZint Hð Þ: Thus NZBð (H)� NZFð (H).

(iv) NZint Hð Þ [NZFr Hð Þ ¼ NZint Hð Þ [ ðNZcl Hð Þ \ U � NZint Hð Þð Þ ¼ ðNZint Hð Þ [ NZcl Hð ÞÞ\
ðNZint Hð Þ [ U � NZint Hð Þð Þ ¼ NZcl Hð Þ \ U ¼ NZcl Hð Þ.

(v) NZint Hð Þ \NZFr Hð Þ ¼ NZint Hð Þ \ ðNZcl Hð Þ \ U � NZint Hð Þð Þ ¼ ðNZint Hð Þ \ NZcl Hð ÞÞ\
ðNZint Hð Þ \ U � NZint Hð Þð Þ ¼ NZint Hð Þ \[ ¼ [:

(vi) From (iv), NZcl Hð Þ ¼ NZint Hð Þ [NZFð (H). Then H[NDZ(H)=NZcl Hð Þ ¼ NZint Hð Þ [ NZFð
(H). But H ¼ NZEð Hð Þ [ NZint Hð Þ by Theorem 3:22: Therefore NZEð Hð Þ [ NZint Hð Þ [NDZ(H)
=NZint Hð Þ [NZFrðH). Hence NZFð (H)=NZBð (H)[NDZ(H).

(vii) Let H be a NZo set and by Theorem 4.4., and (iv), NZBð (H) = ’ From (vi) NZFð (H)=NZBð
(H)[NDZ(H)=NDZ(H). Therefore if A is NZo set, NZFð (H)=NDZ(H). Conversely. Suppose
NZFrðHÞ = NDZ(H) from (iv), NZcl Hð Þ=NZint Hð Þ [ NZFð(H). That is H [ NDZ (H)
¼ NZint Hð Þ [NZF ð (H) by Theorem 3.22, implies H [ NDZ (H) = NZint Hð Þ [NDZ (H) by
hypothesis. Therefore H = NZint Hð Þ and hence H is a NZo set.

(viii)
NZFrðHÞ ¼ NZcl Hð Þ � NZint Hð Þ ¼ NZcl Hð Þ \ U � NZint Hð Þð Þ ¼ NZcl Hð Þ \NZcl U � Hð Þ.

(ix) NZFrðU � HÞ = NZcl U � Hð Þ � NZint (U-H) = (U �NZint Hð Þ)�(U �NZcl Hð Þ)
=NZcl Hð Þ � NZint Hð Þ=NZFrðHÞ

xð Þ Since; a subset H of U is a NZcset iff H ¼ NZcl Hð Þ: Consider; NZcl NZFrðHÞð Þ ¼
NZcl NZcl Hð Þ �NZint Hð Þð Þ ¼ NZcl NZcl Hð Þ \ U �NZint Hð Þð Þð Þ ¼ NZcl NZcl Hð Þð Þ \
NZcl U � NZint Hð Þð Þ ¼ NZcl NZcl Hð Þð Þ \ NZcl NZcl U � Hð Þð Þ � NZclðHÞ \ NZclðU � HÞ = NZFrðHÞ
by (iii), NZcl NZFrðHÞð Þ � NZF ð (H). But NZFrðHÞ � NZcl NZFrðHÞð Þ is always true. Therefore
NZcl NZFrðHÞð Þ ¼ NZFrðHÞ and hence NZF ð (H) is a NZc set.

(xi) H �NZFr Hð Þ ¼ H \ U � NZFr Hð Þð Þ = H \ðU � ðNZcl Hð Þ \ NZcl U � Hð Þ = H
\ððU � NZcl Hð ÞÞ [ ðU � NZcl U � Hð ÞÞ ¼ ðH \ ðU � NZcl HÞÞ [ ððH \ ðU � NZclðU� Hð Þ ¼ [[
ðH \ NZint Hð Þ ¼ NZint Hð Þ:

(xii) If H is both NZo and NZc sets, then H = NZint Hð Þ and H = NZcl Hð Þ. Now NZFð (H) = NZcl Hð Þ
�NZint Hð Þ = H � H ¼ ’. Conversely, NZFð (H)=’ implies, NZcl Hð Þ �NZint Hð Þ ¼ ’ which implies,
NZcl Hð Þ �NZint Hð Þ � H . That is, NZcl Hð Þ � H . But, H� NZcl Hð Þ is always true. Therefore
H = NZcl Hð Þ. Hence H is a NZc set. Again NZFð (H) = ’ implies NZcl Hð Þ � NZint Hð Þ ¼ ’ which
implies NZcl Hð Þ ¼ NZint Hð Þ implies H [ NDZ(H)=NZint Hð Þ which implies H� NZint Hð Þ. But
NZint Hð Þ � H is always true. Therefore NZint Hð Þ ¼ H. Hence H is NZo set.

(xiii) Now, NZFð (NZint Hð ÞÞ = NZcl NZint Hð Þð Þ �NZint NZint Hð Þð Þ � NZcl Hð Þ �NZint Hð Þ as
NZint Hð Þ � H . This implies NZFð (NZint Hð ÞÞ � NZFð (H).

(xiv) Consider,
U � NZFr Hð Þ ¼ U � NZcl Hð Þ � NZint Hð Þð Þ ¼ ðU � NZcl Hð ÞÞ [NZint Hð ÞÞ ¼ NZint U � Hð Þ[
NZint Hð ÞÞ:

(xv) Now NZF ð (NZcl Hð ÞÞ = NZcl NZcl Hð Þð Þ � NZint NZcl Hð Þð Þ ¼ NZcl NZcl Hð Þð Þ\
U � NZint NZcl Hð Þð Þð Þ ¼ NZcl Hð Þ \ NZcl U� NZcl Hð Þð Þ: Also, H� NZcl Hð Þ
) U� NZcl Hð Þ � U � H ) NZcl U� NZcl Hð Þð Þ � NZcl U � Hð Þ.NZFð(NZcl Hð ÞÞ � NZcl Hð Þ-
NZcl U � Hð Þ=NZFð Hð Þ: Thus NZFrðNZcl Hð ÞÞ � NZFð (H).

(xvi) From (iv), NZcl Hð Þ = NZint Hð ÞÞ [NZFððHÞ � H [ NZFð Hð Þas NZint Hð ÞÞ � H . Also, from
(iv), NZFððHÞ � NZcl Hð Þ and H� NZcl Hð Þ is always true. Therefore H[NZFððHÞ � NZcl Hð Þ. It
follows that, H[NZFð Hð Þ ¼ NZcl Hð Þ.
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(xviii) from (vii) NZFððHÞ¼NZcl Hð Þ \NZcl U � Hð Þ and NZEððHÞ=U-NZcl Hð Þ, then
NZFððHÞ \ NZEððHÞ = NZcl Hð Þ \NZcl U � Hð Þ \ðU� NZcl Hð ÞÞ = ’.

(xix) It is clear from (xviii).

(xx) It is clear from (xix).

5 Conclusion

We consist of mathematical modelling of the recombination process and considering the method for
generating nano topologies by (recombination operator deducing the equivalence classes) rough set
theory via one of its biological applications (DNA recombination processes). Through the nano
topological structure, we shall study the topological features of nano Z-open sets. Finally, we are
exploring the extent of the match between mathematical and biological results.
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