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Abstract: The generalized structure of deoxyribonucleic acid (DNA) is based on
the rules of topological spaces. DNA recombination is one of the most important
processes within DNA, as it is essential in the pharmaceutical industry as well as
in gene therapy. In this paper, we are discussing the relationship between rough
sets, nano topological spaces (J17s), nano Z open (N Z0) sets, and DNA recombi-
nation. We also created a new recombination mapping using the properties of the
DNA recombination process. Further, by using the process of cutting and sticking
of a sequence of genes, new topological structures are constructed and some of
their properties and characterizations are investigated. Moreover, we study recom-
bination operators in the statement “Sticky Ends”. Furthermore, we use nano
topological structures to prove the validity of the mathematical model of the
recombination process and the extent to which the topological mathematical prop-
erties correspond to the biological properties. Finally, we use nano Z-open sets to
study many topological characteristics of the neighborhood, closure, interior, limit
points, frontier, border and exterior.
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1 Introduction

Liellis Thivagar [1] invented the notion of nano topological spaces (short for Jzs)), which define a
subset of a universe using upper, lower approximations and a boundary region defined by an equivalence
relation on it. Nano open (nano closed, nano-interior and nano-closure) sets (briefly, 30, e, Nint and
Ncl) as being defined by him. El-Maghrabi and Mubarki [2] defined Z-open sets in topological structures
and investigated several of their features. The concept of nano Z-open sets plays a role in topological
structures and their applications in domains such as mathematics, biology and other aspects of life. The
goal of this research is to look at how mathematics is used in biological applications (DNA
recombination) and prove the validity of the mathematical model of the recombination process using
nano topology and 91Z0. The extent to which the topological mathematical properties correspond to the
biological properties. We also use nano Z-open sets to study many topological characteristics of the
neighborhood, closure, interior, limit points, frontier, border and exterior.
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Proposition 1.1. [3] If (U, R) is an approximation space and X, Y C U, then

(i) Lr(X) C X C Ur(X),

(i) Lr(p) = Ur(p) = p and Lr(U) = Ur(U) = U,
(lll) UR (XU Y) UR( )U UR( )),

(iv) Ur (X N Y)C Ur(X) N Ur(Y)),

(v LR (XU Y)D LR( ) ULR(Y),

(vi) Lg (X N Y)=Lg(X) N Lg(Y),

(V ) If)( C Y then LR( ) - LR(Y) and UR(X) - UR(Y),
(viii) Ur(X°) = [Lr(X)]® and Lr(X*) = [Ur(X)]",

(ix) UpUR(X) = LrUR(X) = Ur(X),

(x) LrLr(X) = UpLr(X) = Lr(X).

Definition 1.2 [1] Let H C U and (U,1g(X)) be a Nts. Then H is a nano regular open (Jro) if
H = Nint(Ncl(H)).

Definition 1.3 [4]1IfH C U and (U, 1g(X)) be a Nts. Then the nano O-interior(resp. nano 6 closure) of H
is defined by ONintyH)=U{E:EisaN0 set and Ncl(E)CH} (resp. Ninty(H)
=U{x € E:NclNH # I, E is a NOset , x € E}.

Definition 1.4 [4] A subset H of U is said to be a nano 0 open (960)(resp. nano 0-closed(N0)) set if H=
(resp. HC is a nano 6 open set ).

Definition 1.5 [51IfH C U and (U, 1z(X)) is Jts, then the nano J-interior(resp. nano o closure) of H is
defined by Nints(Hy=J {x € E : Nroset, E C H} (resp.Ncls(Hy=U{x € U : RNint(Ncl(H)) "H # I, E is a
No set ,x € E}.

Definition 1.6 [5] A subset H of U is said to be a nano ¢ open (9do)(resp. nano d-closed(Noc)) set if H=
Nints(H) (resp. HE is a nano 0 open set ).

Definition 1. 1 Let K C U and (U, tr(X)) be a Jits. Then K is said to be:

(/) nano d-preopen [5] (briefly, NoPO)set if K C int(INcls(K),

(ii) nano d-semiopen [5] (briefly, NoS0)set if K C Nel(Nints(K),

(iif) nano e-open [6] (briefly, NeO)set if K C Nint(INels(K) U Nel(Nints(K),
(iv) nano 0-semiopen [6] (briefly, NOSO set if el (Ninty(K),

1.1 DNA Recombination

DNA recombination is one of the most important processes within DNA, as it is essential in the
pharmaceutical industry as well as in gene therapy. Bacteria can acquire new genes by incorporating
environmental DNA into their genomes [7], and the recombination process may be used for gene
reproduction or tissue culture, and defects in homologous recombination may lead to a gastric cancer
mutation [8]. However, recombination is not accurate [9]. Since the adoption of computer programmes
depends on mathematics and the description of operations before their implementation, making a
simulation of any problem requires a mathematical model of the problem, so we made a mathematical
model of the recombination process and verified the validity of the mathematical model using nano-
topological structure and nano Z-open and we also made a conclusion. Some mathematical results on
nano Z-open.

Fig. 1 depicts the steps involved in creating recombinant DNA as:
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Figure 1: Recombinant DNA process

o Treat the DNA taken from both sources with the same restriction end nuclease.

e The restriction enzyme is an enzyme that cleaves DNA into fragments at or near specific recognition
sites, such as sticky ends (EcoRI recognizes the sequence G | AATTC CTTAATG) and at blunt ends
for example (Hpal restriction enzyme recognizes the sequence GTT| AACCAATTTG.

e Sticky ends are an overhanging segment of single-stranded DNA at the cut's ends.

These sticky ends can base pair with any complementary sticky end-containing DNA molecule.
When put together, complementary sticky ends can form a pair.
A DNA ligase is used to covalently join the two strands of recombinant DNA into a molecule.

Recombinant DNA must be copied several times before it can be used.

1.1.1 Mathematical of DNA Recombination

Mathematical modelling of biological processes is very useful in identifying the processes and designing
programs that help in investigating possible solutions and avoiding errors. These models have helped in the
development of other sciences and mathematics. Representing the problem of life or any process does not
stop when building the mathematical model, but continues to prove the validity of the mathematical
model and match the mathematical solution with the practical solution (to solve the problem of life). To
prove the validity of the model, we use mathematical methods (topological, numerical analysis,
differential equations, etc.). But during our work, we use topological methods more than any other branch
of mathematics. Recombination is the production of offspring with combinations of hits that differ from
those found in either parent. Stadler & Stadler [10,11] had defined the recombination process (most
applications are inherited) and had problems with the definition, since the recombination of R(x, x) will
not always give the x. Therefore, we will build on the definition of Stadler & Stadler definition of genetic
re-synthesis, which is more commonly used in the manufacture of medicine and gene therapy. The DNA
recombination process makes it possible to cut different strands of genotypes with a restriction enzyme
(sticky ends) and join the genotypes together via complementary base pairing [12—14]. In this study, we
consists of mathematical modelling of the recombination process. Also, we consider a method for
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generating nano topologies by (recombination operator deduce the equivalence classes) rough set theory via
one of the biological applications (DNA recombination processes). We will investigate the topological
properties of nano Z-open sets using nano topological structures. Finally, we explore the extent of the
match between mathematical and biological results.

1.2 The DNA Recombination Operator

“A new mathematical representation is proposed for the configuration structure induced by
recombination. It consists of the mapping of pairs of objects to a power set of all objects in the search
space. The mapping assigns to each pair of parental (genotypes) the set of all recombinant genotypes
obtainable from the parental ones.”

Definition 1.3.1 [10] Let X be any set of types “strings of bites, vectors, DNA, ribonucleic acid (RNA)
sequence ...etc.” A recombination operator on X that is defined by F : 4 x 4 — P(4) the following
condition holds VA, k € A4:

(i) F(h,k) = F(k, h)
(ii) F(h,h) = {h}

(iii) {h,k} C F(h,k)

() [F(r,v)ll = |E (R, K, ¥y € F(hy k).

2 Topological Spaces of DNA Recombination

By constructing a new recombination mapping based on the properties of the recombination process, we
aim to use topological concepts to build flexible mathematical models in biomathematics. In addition, we
investigate the topological qualities of the newly formed map as well as the topological structures of
DNA that are related to it. We study the properties of recombination mapping, new topological structures,
and characterizations by using the new concepts “Cut and Sticks” for sequences of genotypes. Further,
we define recombination mathematically by a matrix where enzymes can be cut and the integration of
two “types” introduces the meaning of the process of recombination, and as a result of improved
optimization of this definition, more than once, it’s a description of the recombination process is more
accurate. The process of recombination consists of three elements: a gene, an enzyme, and plasma to
form the mathematical model and then replace the enzyme with the slicing Boolean matrix. The functions
(gene slicing and plasma slicing) and recombination composition were explained well by the way
recombination between genes occurs. We have greater accuracy and better places to cut the injured part
from the rest of the injured part.

Definition 2.1

Let X be a set of types “strings of bites, vectors, DNA, RNA sequence ...etc.” and the span of X contains
all the linear combination elements of X as well as recombinant. Then the topological DNA recombination
operator R, : X X X — spanX, is defined by
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I ]
n
R, (x,y):U{c;‘xg,+c;‘l4y1,cj’.‘x§,+c,’;7jy2}, Since, C; =+ "~
i=1
1000 ... 000 ... I 1
0100 ... 000
G =1 000 ...1 000
000 000

where “I € {0, 1} and the matrix represents the unity of level i x n, O a zero matrix, C; is called the matrix
slicing and C; € M,(f) [Boolean matrix] and the sense strand of DNA X53,’, the antisense strand of
DNA X3.”

We will conduct a new topological study on DNA recombination in which recombination between types
x and y occurs, where x is the first gene and y is the plasmid.

Proposition 2.2 Let R, : X X X — spanX be the recombination operator, defined by

Ry(x,y) = U {cixd + ¢y, cj’-‘xgi + ¢;_pn}, Ry(x,y) consists of (offspring) can be induced by x, y and
i=1
it satisfies the following:

o {x,y} €R(x.»).
R(x,y) # Rs(y,x) -
Vz € Ry(x,y) = [IRs(x,2)|| < [|R(x,y)[|Vx,y,2 € X.
R(x,x) = 2x
Ry(x,y) C Span{x,y}.

Proof. Obvious.

In this section, we present the definition of closure recombination space by using a recombination
function.

Definition 2.3 Let A C X. We take Ty (A) represents the closure recombination (“sticky end”) operator,
since T (4) = UR(x,»).

We work with the topological recombination (“sticky ends”) operator. The closure recombination space
from the recombination operator R; is denoted by (X, 7% ).

Theorem 2.4 The closure recombination structure (X, Ty ) arising from recombination operator
satisfies:

o Tz (p) = ¢,

e If H is a group of genes, then H C Tj; (H),

o If H C K, then Ty (H) C Ty (K),

Tx (H)U Ty (K) =T (HUK) and Ty (H) N T (K) 2 T (HNK),

Ty (Ty,(H)) 2 T (K).

Proof. Obvious.

A space (X, Ty, ), is called R; DNA recombination structure useful for DNA recombination.
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2.1 The Upper and The Lower Approximation on DNA Recombination

In the following, we study the connection between rough sets [15] concepts and DNA recombination.
Also, we investigate new definitions of the class of elements depend on definitions of recombination sets that
result from the definition of recombination function, which identifier as follows, R; : X x X — spanX. Since

n

Ry(x,y) = U {eixd + iy, €y + ci_ya )
i=1

Definition 2 .1.1 Set of all recombination products can be done or (offspring can be obtained) caused by
x,y, let’s call it Ry (x, y).

Definition 2.1.2 Let R, (x,y) be a recombination set. Then the recombination class of x can be defined as

]z, ={y €U :y€R(x,y)} and the lower and the upper approximation of a subset X of U are
defined as:

R(X) = (r€ U )y, ©X).
R(X)={xcU:[xlp NX #J}.

Example 2.1.3 Let the recombination process consists of three key pillars are: genes (g), plasmids(p),
enzymes(e) and elements of recombination process (U) i.e. U = {g , e, p}, the recombination class of
gene [g]r ={e},[p]r = {e} and [e]r = {g, p} and A any subsets of U (see, Tab. 1)

Table 1: Recombination topology

A Ri(4) R5(4) b(4) T3 (4)

U U U %) {U,p}

® © ® © {Up}

{g} ® {e} {e} {Up,{e}}

{e} {g, p} {g, p} © {Up.{g, p}}

{p} ® {e} {e} {Up,{e}}

{g, e} {g, p} U {e} {Up,{e}, {g p}}
{g, p} {e} {e} ® {Up,{e}}

{e, p} {g, p} U {e} {Up,{g, p}, {e}}

From Tab. 1, the set of all recombination open (closed) sets consists of the indiscrete recombination
space when using the general topology, and this result applies to the nano topological structure defined on
the set U (enter all items of DNA recombination). But when using the nano topology, more than one
topology appears. For example, when using the enzyme, only group B appears, as the effect of the
enzyme is practically on the gene and the plasm. When using the gene or the plasma only, the enzyme
appears, and this applies as a cofactor. These results are consistent with the biological results.

Proposition 2.1.4 let (U, T, ) be an indiscrete recombination space, H C U.Then the limit point of H is
given by

%) if H=0
Hr={ U-{p} if H={P}
U if H contains more then one element matrix.

Proof. Obviously



TASC, 2022, vol.34, no.2 775

These results mean that:

1. That there is always an end point to the process.
2. There is an output of the process of recombination, and this is applicable to the biological concept.
Remark 2.1.5 Every subset of an indiscrete recombination space is dense. The sense that it produces a

very large number of plasma carrying the gene The aim of the following proposition is to describe any item in
the recombination process.

Proposition 2.1.6 Every indiscrete recombination space is a regular space. We note that from Tab. 1, the
appearance of more than nano topology structures, but it appears one topological structure.

3 Nano Z-Open Sets

“Throughout this paper (U, tx(X)) is a Its with respect to X where X C U and R is an equivalence
relation on U. Then U/R denotes the family of equivalence classes of U by R.' [1,3,15]

Definition 3.1 [1]1If H C U and (U, 7r(X)) is a ts, then H is a nano Z -open(briefly, NZo) (resp. nano
Z-closed(briefly, NZc)) set if H C Nint(Ncl(H)UINcl(Nints(H), (resp. HD Nint(Nels(H)NIel(Nint(H)). The
family of all NZo (resp. NZc) sets are denoted by NZO(U, tr(X) (resp. NZ C(U, 1r(X)).

Definition 3.2 If HC U and (U, 1g(X)) is a Jits, then H is a nano e*-open(briefly Ne*o) set if
H C Jtcl(Nint(Nels;(H))). The family of all Ne*o sets are dented by Ie*O(U, tr (X)).

Example 3.3 From Example 2.1.3.

From Tab. 2 the set of all nano Z-open sets to nano topological structure defined on the set U(enter all
items of DNA recombination) is the discrete recombination space.

Table 2: Recombination and nano Z-open sets

A R(4)  R(4)  b(A) T (4) NZO(U, tx(A4))

U U © {Usp } P(U)

® ® ® © {Up } P(U)

{g} ® {e} {e} {U,p,{e}} {Uwp.{e, g}, {e}, {e, p}}

{e} {g.p} {g.p} © {Up.{g, p}} {Up.{g, p}, {8}, {p}, {& ¢}, {e, p}
{p} ® {e} {e} {U,p,{e}} {Up,{e}, {g.e}.{ep}}

{g, e} {g.p} U {e} {Ueplel, {gp}}  PU)

{g, p} {e} {e} ® {U,p,{e}} {Up,{e}, {g.e}.{ep}}

{e, p} {g.p} U {e} {U,p,{g.p},{e}} P(U)

Definition 3.4 [16] IfH C U and (U, tr (X)) is a its, then a nano Z-interior of H is the union of all NZo
sets contained in H (briefly, NZint(H).

Definition 3.5 [16] Let H C U and (U, tr (X)) be a Jits. Then a nano Z-closure of H is the intersection of
all NZc sets containing H (briefly, NZcl(H)).

Remark 3.6 Every NZ-open set is Nb-open (resp. e-open and e*-open ).
Lemma 3.7 Let G be a subset of a space U. Then the following statement are satisfied:

(1) RPints(NPcl(G))=RPcl(G))NRint(Nels(G)),
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(2) NPcls(NPint(G))=NPint(G))IMNcl(Nints(G)).
Proof. (1)  Since,  NPints(NPcl(G))

Nint(Nels (G U Nint(Ncl(G)) = NPcl(G) N Nint(Nel;(G))
(2) It follows from (1).

Definition 3.8 [17] A subset Z, C U is called a nano Z (resp. nano ¢*) neighbourhood (briefly, ZNbd
(resp. Ne*Nbd)) of a point x € U if there exists H € NZO(U, tr(X)) (resp. x € H C Zy and a point x is
called NZNbd (resp. INe*Nbd) point of the set H. The family of all ZNbd (resp. Ne*Nbd) of a point
x C U is called NZNbd (resp. Ne*Nbd ) system of x (briefly, NZNbd S(x)) (resp. Ne*NbdS (x)).

Theorem 3.9 An arbitrary union of NZNbd (resp. Ne*Nbd) of a point x € U is again NZNbd (resp.
INe*Nbd) of a point x € U.

Proof. Let {H, : i € I} be an arbitrary collection of NZNbd of x € U. Since Vi € I, A; is NZNbd of x,
AL; € NZO(U, tx(X)) such that. x € L; C H;, but for each i € I, H; C UH,, therefore x € H; C UA; which
implies that UH; is again NZNbd of x. The other cases are similar.

Lemma 3.10 The intersection of NZNbd (resp. Ne*Nbd) of a point x € U is not a NZNbd (resp.) of the p
Ne*Nbd oint x € U in general.

Example 3.11 From Example 3.3. and Tab. 2, let A = {e}. Then the Jts 7r (X) = {U, ¢, {g,p}}. In the
Jts, (U, tr(X)), the sets {g, e} and {e,p} are NZNbd (e) but {g,e}N{e,p} = {e} is not a NZNbd (e).
Theorem 3.12 1f (U, 1x(Y)) is a Jits, then

EveryNONbd(y)is NNbd(y), Yy € U,

EveryNoNbd(y) is NZNbd(y),Vy € U,

EveryNoSNbd(y) is NZNbd(y),Vy € U,

EveryNPSNbd(y) is NZNbd(y),Vy € U,

EveryNZNbd(y)isNbNbd(y),Vy € U,

EveryNZNbd(y) is NeNbd(y),Vy € U,

EveryNZNbd(y) is Ne*Nbd(y), Vy € U,

Proof. (3) Let A be an arbitrary NOSNbd of y € U. Then3H € NoSO(U, (X)) such thaty € H C A.

Since every 9dSo is NZo, then H NZo, therefore y € H C A. Then A is NZNbd of y. The other cases are
similar.

Definition 3.13 Let H C U and (U, 7g(X)) be a nano topological structure. Then H is called nano Z
(briefly, 3Z)-dense subset if NZcl(H) = U.

Definition 3.14 A nano topological structure is said to be a nano Z-extremally disconnected space
(briefly, NZEDS) if the nano Z-closure of NZo set is NZo set for each INZo subset of U.

Definition 3.15 A nano topological space is called nano Z-submaximal (briefly, RZE0) if each NZ-dense
subset of U is NZo set.

Remark 3.16 A nano topological space is NZEM and NZEDES, then every NZNbd is NISNbd and
9NPNbd of x € U.

Theorem 3.17 For any point x € U, NZNbdS(x) satisfies

(1) NZNbAS(x)#£ ©.

(2) if H C U and H € NZNbdS(x), then x € H.

(3) if H C U and H € NZNbdS(x), H C C then C € NZNbdS(x).

NPcl(G) N Nint(Nels(NPcl(G)) = NPcl(G)N

NS R



TASC, 2022, vol.34, no.2 777

(4) if HC U and H € NZNbdS(x) then IB € NZNbdS(x)S(x) such that B C H, H € NZNbdS
(),¥y € B.

Proof. (1) Since, Vx € U and U is a 3Zo set, Then x € U implies that U is NZNbd of x. Then
U € NZNbdS(x)= NZNbAS(X)# .

(2) Let H € NZNbdS(x). Then H is a NZNbd of x implies that 3B € NZO(U, (X)) =x € BC H.

Thusx € H.

(3) Let H € INZNbdS(x). Then that 3B € NZO(U,w%r(X)) =x€BCH and HCC

= x € BC H C C. Therefore C € NZNbdS(x).

(4) From (3) it is obvious.

Theorem 3.18 Let NZO(U, (X)) be closed under finite intersection, H be JZc subset of U and
x € U — H. Then there exists a IZNbdA of x such that HN A = ¢.

Proof. Let H be a NZc set. Then U — H is a NZoINZo set. Therefore U — H is NZNbd of each of its
points. If x € U — H, implies that 4 € NZo, sincex € A C U — H ,then HNA = ¢.

Definition 3.19 [2] A point x € U is called a nano Z- limit point of H, if for each K € NZO(U, 7r (X))
containing x satisfies KN(H — x) # .

Definition 3.20 The set of all nano Z-limit points of H is a nano Z-derived set (briefly, Dz (H)).

Theorem 3.21 If H and K are subsets of a space U, then the following are hold.

(1) NtDz(¢) = ¢,

(2) if x € NDz(H), therefore x € ND;(H — x).

Proof. (1) Suppose that x € U and G, € RZO(U, 1x(X)). Therefore (G —x) N = ¢ = x¢ND4(¢),
then Vx € Ux¢NDz(¢). Thus NDz(P) = ¢.

(2) If x e NDz(H) = GN (H —x) # ¢ and VG, € NZO(U, 1x(X)) and contains at least one point

other than x of H — x. Thus x € NDz(H — x).

Theorem 3.22 If H C U and (U, 1 (X)) is a Jits, then:

1. fNZZC(U, (X)) is closed under arbitrary union, then H UNDz(H) is NZc set,

2. RZel(H) =H URD,(H).

Proof. To show thatH U RNDz(H ) is a NZc set, we want to prove U — (H UNDz(H)) is a NZo set,we
have two cases:

Case 1: Let U — (H UNDz(H)). Then the result is clear.

Case2:Let U — (HUNDz(H)) # ¢. Thenx € U — (H UND,(H)) implies that x¢ (H U ND,(H)) and
hence x¢H, x¢NDz(H) = G, € NZO(U, tx(X)). Since GN(H —x) =p such that x ¢ H = GNH = ¢
implies x€eGCU—-H. Thus GNNDz(H)= ¢ impliess x€GCU-—-NDz(H). Then
X€GC (U-H)N(U—-NDy(H)) =U — (HURDZ(H)) implies that x € G C U — (H URNDz(H)).
Therefore U — (H UMNDz(H))) is a NZbd of each of its points. U — (H UNDz(H)) is a NZo set and then
(HUINDz(H)) is NZc.

(2)By (1), if HUNDz(H) is a NZc set, then H UND,(H) is a NZc set containing H. Therefore NZcl
HZHURXD,(H) and H C NZcl(H), implies that NDz(H) C NDz(NZcl(H) C NZcl(H) because
NZcl(H) is NZc. Hence H UND,(H) C NZcl(H). Thus NZcl(H)y=H UND,(H)

Theorem 3.23 If H C U and (U, tr(X)) is a Nts, then the following holds:
1. 9NZcI(H) is the smallest NZc super set of H,
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2. His a NZc set iff NZcl(H) = H.

Proof. (1) Let{F;:i€l},F; CU,F;beadZcsetand H C F; Vi € I. Then NZcl(H) = N{F; : i € [},
hence N{F;:ie€l} is a NZc set. Therefore NZclH) is a NZc set. Also, H CF,
Viel=HCn{F;:ic€l} = NZcl(H). Then NZcl(H) is a INZc set containing H such that NZcl
(H) = n{F;:iel}, therefore NZcI(H)C F;, Vi€ l. Consequently, NZcl(H) is the smallest NZc
superset of H.

(2) Let H be a tZc set. Then N Zc is the superset of H and hence NZcl(H)=H. Thus H is a 3Zc set. Then

H is a 9Zc set iff NZcl(H)= H.

Proposition 3.24 1f H and K are two subsets of a space U, then the following properties hold:

(1) If NZe(U, (X)) is closed under finite union, then NZcl(H U K) = NZcl(H)UNZcl(K) for every

H,K € NZc(U, (X)),

(2) If Nec(U, (X)) is closed under finite union, then Necl/(H U K) = Necl(H) U Necl(K) for every

H.,K € Nec(U, tr(X)).

Proof. (1) Let H and K be NZc sets in U. By hypothesis, HUK is IZc. Thus
NZcl(HUK) =HUK =NZcl(H) UNZcl(K)

(2) Likewise (1).

Theorem 3.25 If H and K are two subsets of a space U, Then the following are holds:

1. 9NZin(H) is the largest NZo set contained in H.

2. His a NZo set iff H = NZin(H).

3. NZint(¢) = ¢ and NZin(U) = U.

4. NZint(NZint(H))) = NZint(H).

Proof. (1) Let B € NZo(U,tr(X)), B C H.Ifx € B, thereforex € B C H,B € NZo(U, (X)), Then H

is NZbd of x and hence x € B = x € NZint(H). Therefore every J1Zo subset of H is contained in NZint(H).
Hence 9Zint(H) is the largest NZo set contained in H.

(2) Let H € NZO(U,1r(X)), H C H and H be the largest NZo subset of H. By (1), NZint(H) is the
largest NZo subset of H. Hence H = NZint(H).

(3) It is clear.

(4) By (2), H is a 9 Zoset iff H=91Zint(H) and by (1), 3Zint(H) is the largest 9NZo set contained in H.
Then NZint(RZint(H))) = NZint(H).

Theorem 3.26 1f H and K are two subsets of a space U, then NZint(H) = H — N, (U — H).

Proof. Let x € (H—RN3(U — H)) = x € Handx¢ND3(U — H). Then 3G, € RZO(U, 1x(X))
such that G:N(U—-H)=J= G, CH. Hence x€GCH=xecNZin(H). Then
H —ND3(U — H) € NZin(H).

If x € NZin(H) = x € H and NZin(H), x € NZin(H) N (U — H). Therefore x¢ND3(U — H)). Then
x € (H—ND3(U — H)). Hence NZin(H) C H — ND3(U — H). Then NZin(H)=H — ND3(U — H).

Theorem 3.27 For H, T C U, then NZin(H — T) C NZint(H) — NZint(T).

Proof. Let NZin(H—T) =RZin(HN (U - T)) C NZint(H) NNZint(U — T) C NZint(H)
N(U — NZint(T)) = NZint(H) — NZint(T).
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4 Nano Z-Exterior, Eorder and Frontier Sets

Definition 4.1 For HC U, then a nano Z exterior (briefly, NZGCr) of H is defined as
NZint(H) = NZint(U — H).

Definition 4.2 [17] For H C U, then a nano Z border (briefly, WZBr) of H is defined as NZBt (H) = H -
NZint(H).

Theorem 4.3 If H and K are two subsets of a space U, then the following are satisfied:

REISS(H) C RZCI(H),
REOP(H) C RZGH(H),
RZGH(H) = U — NZclH),
NZEI(H UK) = NZCo(H) N NZEI(K),
NZint(H ), NZEJ(H )are mutually disjoint and U = RZEI(H) U NZint(H),
HNNZEI(H) = I,
NZEo(H) CU —H
NZEI(H) C NZint(H®),
Proof. (1) For KCU, NSints(K) C NZint(K). Put K=U-H, then
RSints (U — H) C RZint(U — H). This implies REISS(H) C RZGI(H).
(2) ForK C U, NPint(K) C NZint(K) Put K = U — H, then NPint(U — H) C NZint(U — H). This
implies NEJOS(H) C NZCI(H) .
(3) By the definition of NZCr(H) = NZint(U — H) = U — NZcl(H).
(4) Consider RZGr(H UK) = NZint(U — (H UK)) = RZint((U — H) N (U — K)) 2 RZint(U — H)N
NZint(U — K) = NZECI(H) N NZEI(K). That is, RZEI(H U K) D NZEI(H) NNZEI(K).(1)
Also, we have HCHUK, KCHUK, then NZCr(HUK)C NZCr(H) and
NZCr(H UK) C NZEr(K). Hence,

RZGr(H UK) C RZGr(H) N RZGEr(K). 2)

S AN S

(5) Assume that NZCr(H) NNZint(H) # . Then, Ix € NZEr(H) NNZint(H) therefore
dx € NZCr(H) and xeNZint(H) =>xecU—-H and x€ H.  contradiction,  then
NZEr(H) NNZint(H) = . Similarly, U = NZEI(H) U NZint(H).

(6) As NZCr(H)NH = HNNZint(U — H) CHN (U — H) = J. Therefore H N NZEI(H) = .
(7) By the definition of NZCr(H) = NZint(U — H) C U — H.

(8) This case is similar to (3).

Theorem 4.4 1f H and K are two subsets of a space U, then the following are satisfied:

(\RZBIH)C RBISS(H),

(it) RZBA (H)C RBO p(H),

(iii)) H is NZo set iff RZBI(H)=,

(iv) RZBr (Hy=H-NZint(H) = H N RZl(U — H),

(v) If H C K, Then NZDBr(K) C RZBr(H),

(vi) NZBr(HUK) C RZBr(HUNZBr(K),

(vil) RZBr(H)NNZBr(K)C NZBr(HNK),

(viii) RZBr(H)=ND3(U-H) and ND3(H) = NZBr(U—H).

Proof. (i) Since, NSints(H) C NZint(H) = U — NZint(H) C U — NSints(H)
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= HN (U —-NZint(H)) CHN (U —NSints(H)) = H —NZint(H) C H — NSints(H). Therefore,
NZBr(H)C NBroS(H).

(i) Since, NPint(H) C NZint(H) = U — NZint(H) C U —NPint(H) = HN (U — NZint(H)) C HN

(U — RPint(H)) = H — NZint(H) C H — RPint(H). Then RZBI (H)C NBI p(H).

(iii) Let H C U be a NZo set iff H = NZint(H) < H — NZint(H) = J < RZBr(H)=D

(iv) Since, NZBr(H)=H — NZint(H) = H N (U — NZint(H)) = H NNZcl(U — H).

(WIfH C K, thenRZint(H) € RZint(K) = U — NZint(K) € U — RZint(H) = H N (U — RZint(K))

C HN (U —NZint(H)) = K — RZint(K) C H — NZint(H) = RZBr(K) C RZSBr (H).

(vi) Since, HCHUK, KCHUK, hence by (ix) NZBr(H)2DNZBr(HUK),

NZBr(K) 2 NZBr(H UK), then NZBr(H UK) C NZBr(K) U RZBr(H).

(vil) As HNK C H HNK C H by (ix) NZBr(H) C RZBr(HNK) andNZBr(K) C NZBr(HNK),

therefore) NZBr(H)NNZBr(K)C NZBr(HNK).

(viii) By the definition of NZBr(H)= H — NZint(H) = H — (H — ND3(U — H)) = ND3(U — H)

and NV3(-HNZBr(U — H) is obtained by replacing H by U — H.

Definition 4.5 For H C U, then a nano Z-frontier (briefly NZ§0) of H is defined as, NZFo (H)= NZcl
(H)-NZint(H).

Theorem 4.6 1f H and K are two subsets of a space U, then the following are satisfied:

i) NZFo (H)C NFIGS(H),
i) NZF (H)C RFO p(H),
i) NZBI (H)C NZ§o (H),
iv) NZcl(H) = NZint(H) UNZFo (H),
v) NZint(H) NNZFo (H)= I,
vi) RZFI (H)=NZBd (H)UNRD3(H),
vii) H is NZo set iff NZFO (H)=ND3(H),
viily RZFA (H)=RZ\(H) N RZel(U — H),
ix) NZKI (H)=RZFJ (U-H).
X) NZFO (H) is a NZc set ,
xi) NZint(H) = H — NZF0 (H),
xii) NZF0 (H)=D iff H is bothNZo set andNZc set,
xiil) NZFI(NZint(H)) C NZF (H),
xiv) U —NZFo (H)= NZint(H) UNZint(U — H),
xv) NZEO NZcl(H)) C NZSI (H),
xvi) NZcl(H)=HUNRZFo (HINZF0 (H),
xvii) 230 (RZF0 (H)) € RZ0 (H),
xviil) NZEI (H)NMNZEI(H) = O,
xix) NZFI (H)UNRZCH(H)=RZc(H°),
xx) NZCI(H), NZint(H )and NZFI (H) are forms a partition.

Proof. (i) Since, Ninty(H) C NZint(H) implies that U — NZint(H)) C U — NZinty(H). Also,
NZcl(H) C NScls(H). Therefore NZcl(H) N (U —NZint(H)) C NScls(H) N U — NZintg(H). This
implies NZcl(H) — NZint(H)) C NScls(H) — NSinty(H). Hence, NZFI (H)C NFIIS(H).

(i)  Since,  NPint(H) C NZint(H)  implies U —NZint(H) C U — NPint(H).  Also,
NZcl(H) C NPcl(H). ThereforeRZcl(H) N (U — NZint(H)) C NPcl(H) N (U — NPint(H). This implies
that NZcl(H) — NZint(H) C NPcl(H) — NPint(H ). Hence NZFo (H)C NFO p(H).
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(i) Since, H CNZcl(H) = HN (U —NZint(H)) C RZcI(H) N (U — NZint(H)).  Therefore
H — NZint(H)) € NRZcl(H) — RZint(H). Thus RZBI (H)C NZF0 (H).

(iv) NZint(H) UNZFr(H) = NZint(H) U (NZcl(H) N (U — NZint(H)) = (NZint(H) U NZcl(H))N
(NZint(H) U (U — NZint(H)) = NZl(H) N U = NZcl(H).

(v) NZint(H) NNZFr(H) = NZint(H) N (NZI(H) N (U — NZint(H)) = (NZint(H) N NZcl(H))N
(NZint(H) N (U — NZint(H)) = NZint(H) N D = &.

(vi) From (iv), RZcl(H) = RZint(H) UNZSFO (H). Then HUND3(H)=NZcl(H) = NZint(H) U NZF0
(H. But H=NZCo(H)UNZint(H) by Theorem 3.22. Therefore NZEI(H) U NZint(H) U ND3(H)
=NZint(H) UNZFr(H). Hence NZF0 (H)=NZBd (H)UND3(H).

(vii) Let H be a MZo set and by Theorem 4.4., and (iv), NZBJ (H) = ¢ From (vi) NZFO (H)=NZBo
(H\UND3(H)=ND3(H). Therefore if A is NZo set, NZFd (H)=ND3(H). Conversely. Suppose
NZFr(H) = ND3(H) from (iv), NZcl(H)=NZint(H) UNZFO(H). That is HUND3 (H)
= NZint(H) UNZF Jd (H) by Theorem 3.22, implies HUND3 (H) = NZint(H) UND3 (H) by
hypothesis. Therefore H = NZint(H) and hence H is a NZo set.

(viii)

NZSr(H) = NZcl(H) — NZint(H) = NZI(H) N (U — NZint(H)) = NZcl(H) N NZcl(U — H).

(ix) RZFr(U—H) = RZl(U —H)—NZint (U-H) = (U —NZint(H))—(U — RZel(H))
=NZcl(H) — NZint(H)=NZFr(H)

(x) Since, a subset H of U is a NZcset iff H = NZcl(H). Consider, NZcI(NZSEr(H)) =
NZANZN(H) — NZint(H)) = RZI(NZl(H) N (U — NZint(H))) = RZI(NZcI(H)) N
NZeW(U — NZint(H)) = NZA(NZI(H)) N RZA(NRZN(U — H)) € RZN(H) NRZW(U — H) =NZSr(H)
by (iii), NZI(NZEr(H)) CRZF 0 (H). But NZFr(H) C NZI(NZFr(H)) is always true. Therefore
NZA(NZFr(H)) = NZFr(H) and hence NZF 0 (H) is a NZc set.

i) H—RZGr(H)=HN(U-RZZr(H)) = H NU— (RZA(H)NRZl(U —H) = H
N(U = NZcl(H)) U (U =NRZ(U — H)) = (HN (U —NZcl(H)) U (HN (U = NZel(U - H) = U
(HNNZint(H) = NZint(H).

(xii) If H is both NZo and NZc sets, then H = NZint(H ) and H = NZcl(H). Now NZF (H) = NZcl(H)
—NZint(H) = H — H = ¢. Conversely, NZFd (H)=p implies, NZcl(H) —NZint(H) = ¢ which implies,
NZcl(H) —NZint(H) C H. That is, NZcl(H) C H. But, HC NZcl(H) is always true. Therefore
H = NZcl(H). Hence H is a NZc set. Again NZFo (H) = ¢ implies NZcl(H) — NZint(H) = ¢ which
implies NZcl(H) = NZint(H) implies H UND3(H)=NZint(H) which implies HC NZint(H). But
NZint(H) C H is always true. Therefore NZint(H) = H. Hence H is NZo set.

(xiii) Now, NZFd (NZint(H)) = NRZcI(NZint(H)) —RZint(RZint(H)) C NRZcl(H) —NZint(H) as
NZint(H) C H. This implies RZFd (NZint(H)) € NZFJ (H).

(xiv) Consider,
U — RZGr(H) = U — (RZel(H) — NZint(H)) = (U — RZel(H)) UNZint(H)) = RZint(U — H)U
NZint(H)).

(xv) NowRZ§ o0 (NZcl(H)) = NZA(NZcl(H)) — NZint(NZcl(H)) = NZcl(NZel(H))N
(U = NZint(NZcl(H))) = NZel(H) N NZl(U — NZcl(H)). Also, HC NZcl(H)
= U—-NZcl(H) CU — H = NZcl(U — NZcl(H)) C RZW(U — H) RZFONZcl(H)) C NZcl(H )-
NZl(U — H)=NZF(H). Thus NZFr(RZcl(H)) C RZFo (H).

(xvi) From (iv), NZcl(H) = RZint(H)) URZZI(H) C H URZFZI(H )as NZint(H)) C H. Also, from
(iv), NZFI(H) C NZcl(H) and HC NZcl(H) is always true. Therefore HUNZSI(H) C NZcl(H). It
follows that, HUNZSI(H ) = NZcl(H).
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(xviii) from (vi) RZFO(H)_RZ(H) rRZcl(U —H) and RZCI(H)=U-NZcl(H), then
RZFO(H) NRZEH(H) = RZcI(H) NRZel(U — H) N(U — RZl(H)) = .

(xix) It is clear from (xviii).

(xx) It is clear from (xix).

5 Conclusion

We consist of mathematical modelling of the recombination process and considering the method for
generating nano topologies by (recombination operator deducing the equivalence classes) rough set
theory via one of its biological applications (DNA recombination processes). Through the nano
topological structure, we shall study the topological features of nano Z-open sets. Finally, we are
exploring the extent of the match between mathematical and biological results.
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