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Abstract: Crop yield is an extremely difficult trait identified using many factors
like genotype, environment and their interaction. Accurate Crop Yield Prediction
(CYP) necessitates the basic understanding of the functional relativity among
yields and the collaborative factor. Disclosing such connection requires both
wide-ranging datasets and an efficient model. The CYP is important to accom-
plish irrigation scheduling and assessing labor necessities for reaping and storing.
Predicting yield using various kinds of irrigation is effective for optimizing
resources, but CYP is a difficult process owing to the existence of distinct factors.
Recently, Deep Learning (DL) approaches offer solutions to complicated data like
weather parameters, maturity groups, genotype, etc. In this aspect, this paper pre-
sents an Automated Crop Yield Prediction utilizing Chaotic Political Optimizer
with Deep Learning (ACYP-CPODL) model. The proposed ACYP-CPODL tech-
nique involves different processes namely pre-processing, prediction and para-
meter optimization. In addition, the hybrid Convolutional Neural Network
(CNN) Long-Short Term Memory (LSTM) technique is designed for the predic-
tion process. Moreover, the hyperparameter tuning of the CNN-LSTM approach
is performed by the CPO algorithm. The proposed ACYP-CPODL technique has
produced an effective result with an MSE of 0.031 and R2 Score of 0.936,
whereas the BLSTM model has produced a near-optimal results. As a result,
the proposed ACYP-CPODL method has proven to be an effective tool for pre-
dicting the crop yields. For validating the improved predictive performance of
the ACYP-CPODL technique, a wide range of simulations take place on bench-
mark datasets and the comparative results highlighted the betterment of the
ACYP-CPODL technique over the recent methods.
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1 Introduction

Crop Yield Prediction (CYP) is very important in global food productions. The policy making depends
on precise forecasts of appropriate export and import decisions to reinforce the national food security [1].
Deep learning (DL) approach answers to complex data such as weather parameters, maturity groups,
genotype and so on. Seed corporations must forecast the efficiency of novel hybrids in different
environments in order to breed a good variety. Also, farmers and Growers consider yield prediction in
making financial decisions [2]. The impact of genetic marker evaluated depends on communications with
field management practices and environmental conditions. Several researchers focus on describing the
phenotypes (like yield) as obvious functions of genotype (G), environment (E) and its relations (G×E).
The most common and straightforward approach considers only the additive impacts of G and E and
process its interaction as noise [3,4].

The common method to examine the G×E effects is to find the interactions and effects of mega
environment instead of extra advanced environment modules. Also, the FA method could increase
probability up to 6% if there is a complicated G×E pattern from the information. The linear mixed
method has also been employed for studying the interactive and additive impacts of environments and
individual genes [5]. In recent years, ML methods are employed for CYP, along with DT, multivariate
regression, ANNs and association rule mining.

Conventional linear models like Autoregressive Integrated Moving Average (ARIMA) are employed for
time series prediction issues [6]. For time series predictive task, DNN shows effective result to noisy input
and have the capacity to estimate random non-linear function [7,8]. DL method could offer solution in the
existence of complicated data including maturity groups and zones, genotype information and distinct
weather variables.

This method could be very effective in learning the nonlinear dependencies among predicted yield and
the multi-variate input data (cluster information, weather variables and maturity group). LSTM network is
highly helpful for time series modelling as it could capture the long-term temporal dependency in difficult
multivariate sequences [9]. LSTM model has demonstrated advanced results in many applications
involving engineering systems, offline handwriting recognition and NLP. Also, LSTM method is
efficiently utilized for multi-variate time series predictive tasks. LSTM based models are employed in
corn yield prediction [10], however, this model lacks temporal resolution of everyday weather data and
lacks interpretability that depends on geospatial information without field scale farming management.

This paper focuses on the design of an Automated Crop Yield Prediction using Chaotic Political
Optimizer with Deep Learning (ACYP-CPODL) model. The proposed ACYP-CPODL technique involves
different processes namely pre-processing, prediction and parameter optimization. In addition, the hybrid
Convolutional Neural Network (CNN) Long-Short Term Memory (LSTM) model is designed to carry out
the prediction process. The design of CPO algorithm for hyperparameter optimization of HCNN-LSTM
model shows the novelty of the study. The performance validation of the ACYP-CPODL technique is
carried out on benchmark dataset and the results are examined under varying aspects.
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2 Related Works

Shook et al. [11] utilized performance records from UST in North America for building an LSTM-RNN
based method which leverages weekly weather parameters and pedigree relatedness measures to predict and
dissect genotype respond in various environments. Shahhosseini et al. [12] examined both ML and crop
modelling that enhances corn yield prediction in the US Corn Belt. The primary goal is to investigate a
hybrid model (crop modelling and ML) for improved prediction, to explore the combination of hybrid
method for precise prediction and establish the features from crop modelling that is highly efficient with
ML for corn yield predictions. The 5 ML methods (LR, LASSO, LightGBM, RF and XGBoost) and
6 ensemble methods are developed for addressing the study problems.

In Abbas et al. [13], the entire possibility of this precision agriculture technology might be employed and
advanced methods of data processing like MLmodels for extraction of valuable data to control the crop yield.
In Shetty et al. [14], an MLP-NN model and RF regression methods are trained with the data gathered from
four main crops grown in Karnataka district for which past yield data and weather data of thirty regions of
Karnataka are gathered. Weather information consists of average, minimum and maximum values of
pressure, temperature and humidity. Then, these two databases are preprocessed and merged to train these
models. To evaluate the trained method, assessment metrics like MAE, MSE and RMSE were employed.

In Rajaram et al. [15], ML method was utilized for predicting four common yields that are mainly
cultivated throughout India. When the crop yield site is precisely forecasted, the inputs like fertilizer
might be variably employed based on the soil and crop. In this work, ML methods are employed for
developing a trained method to recognize the pattern amongst data and it can be utilized in predicting the
crops. Elavarasan et al. [16] described a new hybrid feature extraction process, i.e., a combination of the
CFS and RFRFE architecture. The presented model focuses on identifying optimum subclasses of
features from a group of groundwater, climate and soil features to construct a crop-yield prediction ML
method with outstanding accuracy and performance. In Agarwal et al. [17], the presented method has
been improved by employing DL methods and crop prediction. An accurate data is attained with respect
to the number of soil ingredients required by their expenditures. This could provide a higher precision
compared to the present methods. It analyses the provided information and assists the farmers in
forecasting crops that in turn assist in gaining benefits. The soil and climatic situations of land are
considered for predicting an appropriate yield.

Kang et al. [18] proposed a comprehensive analysis of county-level maize yield predictions in U.S.
Midwest with six ML or statistical methods (Lasso, SVR, RF, XGBoost, LSTM and CNN) and a wider
range of environment variables acquired from weather data, satellite observations, soil maps, crop
progress reports. Obsie et al. [19] estimated the comparative significance of weather factors and bee
species composition in adaptable wild blueberry agroecosystem. This aims to disclose how weather and
bee species composition affects crops and to forecast optimum weather condition and attain optimal
yields using ML models and computer simulation. The MLR, BDT, RF and XGBoost are estimated as
prediction tools.

3 The Proposed ACYP-CPODL Model

In this study, an efficient ACYP-CPODL technique is derived for automated prediction of crop yield.
The proposed ACYP-CPODL technique involves different processes. The detailed working of these
processes is offered in the subsequent sections.

3.1 Pre-processing

During this phase, the data has been pre-processed in 2 levels such as data alteration and data
normalization. In the data alteration procedure, the input data from .xls format has been changed to .csv
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format. In addition, data normalization has been implemented with the min-max manner, in which the
maximum and minimum values are considered with the available data. It proposes the normalization of
samples to minimum value of zero and maximum value of one. It is given in Eq. (2).

Min�Max:Norm ¼ x� xmin
xmax � xmin

(1)

3.2 HCNN-LSTM Based Prediction Process

The prediction process is carried out using (i) hybrid Convolutional Neural Network (CNN), (ii) Long-
Short Term Memory (LSTM) model. During the prediction process, the HCNN-LSTM model receives the
pre-processed data as input and generates the output. The presented 1D CNN-LSTM technique has an
input layer, 4 convolution layers, 1 pooling layer, 2 LSTM layers, 4 Fully Connected (FC) layers and
softmax resultant layer. For multi-variate time series prediction tasks, the LSTM method was found to be
an effective tool. For corn yield prediction, LSTM-based models are used, but this model lacks temporal
resolution of everyday weather data and interpretability because it relies on geospatial data without field
scale farming management.

Initially, the 1D EEG signal information has been directly utilized as input for presented technique and
the shape of input data is 178� 1: The input data is passed to the primary convolution layer for extracting the
abstract features of raw signal information, where the count of 1D convolution kernel from the Conv_Layl is
64, the shape of all convolution kernels is 3� 1 and the stride of convolution kernel is 1. The convolution
layer at ReLU activation layer that establishes a non-linearity with the presented technique. At this point, the
mathematical explanation of 1D convolution function and the ReLU activation has been explained as,

conv1D wl
i;j; x

l�1
i

� �
þ blj

XNl�1

i¼1

ylj ¼ r

(2)

where xl�1
i implies the ith feature map (FM) from the l � 1ð Þth layer, ylj signifies the jth FM from the lth

layer, wl
i;j stands for the trainable convolution kernel, Nl�1 refers to the number of FMs at 1� 1ð Þth layer,

convlD demonstrates the 1D convolutional function without zero-padding. The dimensional of FM from
the lth layer has been lesser than that of l-1th layer, blj indicates the bias of jth FM from the lth layer, rðÞ
denotes the ReLU activation function that is used to avoid the over-fitting issue, determined as,

r xð Þ ¼ 0; x � 0
x; x. 0

�
(3)

Followed by, the convolutional and activations, 64 FMs with the size of 176� 1 has been sent as output
[20]. Then, the outcome of Conv_Layl is passed through max-pooling layer. At this point, the mathematical
expression of 1D max-pooling function is explained as,

pai ¼ max pa
0

i : a � a0 , aþ s
� �

(4)

where pa
0

i implies the a0th neurons from ith FM previous max pooling function and pai refers to the a
th neuron

from ith FM later max pooling function and s refers to the size of pooling window. Fig. 1 depicts the
architecture of CNN-LSTM model.
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It considerably minimizes the number of trained parameters from the presented technique and
accelerating the trained procedures. The pooling function, 64 FMs by size of 88� 1 is obtained as
output. Next, 3 convolution layers are followed to extract superior-level features that helps in the
classification. It can be Conv_Lay2, Conv_Lay3, Conv_Lay4, that contains 128 kernels with the shape of
3� 1 under the Conv_Lay 2, 512 kernels of similar shape in Conv_Lay3 and 1024 kernels of similar
shape in Conv_Lay4.

Then the FM passing with every 1D convolution layer, the reached 1024 FMs with size of 82� 1 has
been fed in to 1 FC_Lay with 256 neurons and dropout has later implemented to the resultant of FC_Lays.
The FC_Layl has been concatenating the outcome in the convolutional layer and lesser the dimensional of
FM for fitting the input of LSTM layers.

Next passing to the FC_Layl, the resultant features are fed into the LSTM layer that can prevent the long-
term dependencies issue from the classical RNN. It is collaborating with everyone for preserving the
preceding data and enhances the capability of learning helpful data in the EEG time series information. It
contains 64 neurons from combined LSTM Layer1 and LSTM Layer2. Later, the features passing through
the LSTM layers, the resultant features are later fed into 3 FC_Lays. At last, a softmax outcome layer
presented a technique for last recognition. The comprehensive configuration of the presented technique
has been used to predict the crop yield.

3.3 Design of CPO Based Hyperparameter Tuning

For optimally adjusting the hyperparameters involved in the HCNN-LSTMmodel, the CPO algorithm is
utilized. Chaotic maps are combined and derived from the CPO algorithm to improve the efficiency of the PO
algorithm. PO is stimulated using the western political process of optimization, involving two major
concepts. The primary consideration is that every citizen aims to optimize the selective. Then, every party
works to achieve many seats in the parliament. It includes 5 stages namely party formation and
constituency allocation, election promotion, party transferring, interparty election and parliaEven. Though
the author could describe the proposed model’s final achievements in the conclusion section, the resultant
parameters are perfectly and appreciable. These processes are elaborated as follows.

The whole population undergoes separation to n political parties, as defined below.

P ¼ P1;P2;P3; . . . ;Pnf g (5)

Figure 1: Structure of CNN-LSTM
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The party includes n party members, as given below.

Pi ¼ p1i ; p
2
i ; p

3
i ; . . . ; p

n
i

� �
(6)

Every member in a party contains d dimension as defined in Eq. (7)

pji ¼ pji;1; p
j
i;2; p

j
i;3; . . . ; p

j
i;d

T
(7)

The solution can be the selective candidate [21]. Assume there are n electoral districts as provided in
Eq. (8).

C ¼ C1;C2;C3; . . . ;Cnf g (8)

Consider n members in every individual constituency, as given in Eq. (9).

cj ¼ pj1; p
j
2; p

j
3; . . . ; p

j
n

� �
(9)

The party leader is determined using the member with an optimal fitness in party, as given below.

q ¼ argmin1�j�nf pj1
� �

;8ie 1; . . . ; nf g (10)

pji ¼ pqi

Every party member can be represented using Eq. (11).

Pj ¼ pj1; p
j
2; p

j
3; . . . ; p

j
n

� �
(11)

The dissimilar electorates are named as the members of parliament, as defined in Eq. (12).

C ¼ cj1; c
j
2; c

j
3; . . . ; c

j
n

� �
(12)

At the time of selection promotions, Eqs. (13) and (14) are utilized to upgrade the locations of the
significant solutions.

pji;k zþ 1ð Þ ¼

ifpji;k z� 1ð Þ � pji;k zð Þ � mj _ pji;k z� 1ð Þ � pji;k zð Þ � mj;

mj þ r mj � pji;k zð Þ
� �

;

ifpji;k z� 1ð Þ � mj � pjik zð Þ _ pji;k z� 1ð Þ � m � pji;k zð Þ;
mj þ 2r � 1ð Þ mj � pji;k zð Þ

			 			;
ifmj � pji;k z� 1ð Þ � pji;k zð Þ _ mj � pji;k z� 1ð Þ � pji;k zð Þ;

mj þ 2r � 1ð Þ mj � plik z� 1ð Þ		 		;

8>>>>>>>>>><
>>>>>>>>>>:

(13)

pji;k zþ 1ð Þ ¼

ifpji;k z� 1ð Þ � pji;k zð Þ � mj _ pji;k z� 1ð Þ � pji;k zð Þ � mj;

mj þ 2r � 1ð Þ mj � pji;k zð Þ
			 			;

ifpji;k z� 1ð Þ � mj � pji;k zð Þ _ pji;k z� 1ð Þ � mj � pji;k zð Þ;
pji;k z� 1ð Þ þ r pji;k zð Þ � pji;k z� 1ð Þ

� �
;

ifmj � pii;k z� 1ð Þ � pji;k zð Þ _ mj � pji;k z� 1ð Þ � pji;k zð Þ;
mj þ 2r � 1ð Þ mj � pji;k z� 1ð Þ

			 			;

8>>>>>>>>>>><
>>>>>>>>>>>:

(14)

For managing both explorations and exploitation processes, party transferring is accepted. A dynamic
variable λ is utilized that gets linearly reduced from 0 to 1 at the time of whole repetitive process. Every
candidate is chosen based on the probability λ and swapped with the poorest member of an arbitrarily
designated party, as defined in Eq. (15)
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q ¼ argmaxi�j�nf pji
� �

(15)

During the selection process, the vector can be obtained using Eq. (16)

q ¼ argmini�j�nf pji
� �

(16)

cjj ¼ pjq

For improving the efficiency of the PO algorithm, chaotic maps are integrated and derived from the CPO
algorithm. Chaos defines a status or a state of higher disorder or confusion. The chaotic technique is a
deterministic system which demonstrates random nature and a sensitive dependency on the initial
condition. It is a familiar criterion in non-linear system, whose action is difficult and arbitrary [22,23]. It
studied the nature of the system following deterministic laws, however, appears arbitrary and random.
The chaotic parameters undergo every state in particular interval, based on the individual regularity with
no iterativeness. Owing to ergodic and adaptive characteristics of the chaos variables, chaos searching has

Figure 2: Flowchart of PO
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the higher capability. A chaotic map demonstrates a kind of chaotic nature. The generic logistic map can be
defined by Eq. (17):

xkþ1 ¼ axk 1� xkð Þ; (17)

where xk 2 0; 1ð Þ with the limitation of x0 2 0; 1½ �; 0, a � 4 and k denote the round number. Fig. 2
demonstrates the flowchart of PO technique.

Algorithm 1: Pseudocode of PO

Input: n (number of constituencies, political parties and party members), kmax (upper restrict of party
switching rate), Tmax (entire number of iterations)

Output: last population P Tmaxð Þ
Initialized n � nð Þ candidate member P

calculate the fitness of all members pji

calculate the group of party leader P and the group of constituencies

winners C

t ¼ 1;

P t � 1ð Þ ¼ P;

F P t � 1ð Þð Þ ¼ f Pð Þ;
k ¼ kmax;

while t � Tmax do

Ptemp ¼ P;

f Ptemp

� � ¼ f Pð Þ
for each Pj 2 P do

for each pji 2 Pj do

pji ¼ElectionCampaign (pji; p
j
i t � 1ð Þ; pjicj;

end

end

PartySwitching P; kð Þ;
calculate the fitness of all the members pji

calculate the group of party leader P and the group of constituencies

winners Cj

Parliamentary Affairs Cj;Pð Þ;
P t � 1ð Þ ¼ Ptemp;

F P t � 1ð Þð Þ ¼ f Ptemp

� �
;

k ¼ k� kmax=Tmaxð Þ;
t ¼ t þ 1;

end
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4 Experimental Validation

Tab. 1, Figs. 3 and 4 provides the predictive result analysis of the ACYP-CPODL technique on tomato
yield prediction. The results are examined under distinct batch sizes and runs. The results depicted that the
ACYP-CPODL technique has resulted in an effective outcome with the minimum MSE and maximum
R2 score values. For instance, under run-1 and BS = 16, the ACYP-CPODL technique has MSE and
R2 scores of 0.017 and 0.991 respectively.

Table 1: Tomato yield prediction

No. of runs MSE values R2 score

Run-1

Batch Size = 16 0.017 0.991

Batch Size = 32 0.015 0.992

Batch Size = 64 0.014 0.993

Run-2

Batch Size = 16 0.015 0.992

Batch Size = 32 0.014 0.993

Batch Size = 64 0.013 0.994

Run-3

Batch Size = 16 0.016 0.990

Batch Size = 32 0.015 0.992

Batch Size = 64 0.013 0.994

Figure 3: MSE analysis of ACYP-CPODL technique on tomato yield prediction
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Tab. 2, Figs. 5 and 6 offers the predictive result analysis of the ACYP-CPODL method on potato yield
prediction. The outcomes are examined under different batch sizes and runs. It shows that the ACYP-CPODL
approach has resulted in an effectual outcome with the minimal MSE and maximal R2 score values. For
instance, under run-1 and BS = 16, the ACYP-CPODL method has an existing MSE and R2 scores of
0.036 and 0.931 respectively.

Figure 4: R2 score analysis of ACYP-CPODL technique on tomato yield prediction

Table 2: Potato yield prediction

No. of runs MSE values R2 score

Run-1

Batch Size = 16 0.036 0.931

Batch Size = 32 0.034 0.928

Batch Size = 64 0.032 0.921

Run-2

Batch Size = 16 0.037 0.933

Batch Size = 32 0.035 0.930

Batch Size = 64 0.032 0.921

Run-3

Batch Size = 16 0.034 0.928

Batch Size = 32 0.032 0.921

Batch Size = 64 0.031 0.936
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Tab. 3 provides a comparative result analysis of the ACYP-CPODL with recent techniques in terms of
different measures. Figs. 7 and 8 demonstrates the MSE and R2 score analysis of the ACYP-CPODL
technique on the tomato yield prediction. The figure shows that the RF, MLP-3 layer, MLP-4 layer and
MLP-5-layer techniques have obtained an ineffective outcome with the higher MSE and lower R2 Score
values. Besides, the CNN-3 layer and CNN-2-layer models have attained slightly reduced MSE and
certainly increased R2 Score values. Though the BLSTM model has an optimal outcome, the proposed
ACYP-CPODL technique has the minimal MSE of 0.013 and R2 Score of 0.994.

Figure 5: MSE analysis of ACYP-CPODL technique on potato yield prediction

Figure 6: R2 analysis of ACYP-CPODL technique on potato yield prediction

Table 3: Result analysis of existing with proposed model on tomato yield prediction

Methods MSE values R2 score

ACYP-CPODL 0.013 0.994

BLSTM 0.017 0.990

CNN-2 Layer 0.099 0.910
(Continued)
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Figure 7: Comparative MSE analysis of ACYP-CPODL model on tomato yield prediction

Table 3 (continued)

Methods MSE values R2 score

CNN-3 Layer 0.075 0.934

MLP-3 Layer 0.126 0.081

MLP-4 Layer 0.133 0.884

MLP-5 Layer 0.143 0.876

Random Forest 0.107 0.901

Figure 8: Comparative R2 analysis of ACYP-CPODL model on tomato yield prediction
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Tab. 4 offers a comparative analysis of the ACYP-CPODL with state-of-art techniques in terms of
various measures [24]. Figs. 9 and 10 shows the MSE and R2 score analysis of the ACYP-CPODL
technique on potato yield prediction. The figure shows that the RF, MLP-3 layer, MLP-4 layer and MLP-
5-layer systems have an ineffective outcome with the higher MSE and lower R2 Score values. Followed
by the CNN-3 layer and CNN-2-layer approaches have attained a slightly reduced MSE and enhanced
R2 Score values. Though the BLSTM model has an optimal outcome, the proposed ACYP-CPODL
technique has obtained an effective and lesser MSE of 0.031 and R2 Score of 0.936.

Table 4: Result analysis of existing with proposed model on potato yield prediction

Methods MSE values R2 score

ACYP-CPODL 0.031 0.936

BLSTM 0.039 0.988

CNN-2 Layer 0.791 0.792

CNN-3 Layer 0.615 0.792

MLP-3 Layer 0.870 0.601

MLP-4 Layer 0.643 0.711

MLP-5 Layer 1.270 0.428

Random Forest 0.500 0.872

Figure 9: Comparative MSE analysis of ACYP-CPODL model on potato yield prediction
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5 Conclusion

In this study, an efficient ACYP-CPODL technique is derived for automated prediction of crop yield.
The proposed ACYP-CPODL technique involves different processes namely pre-processing, HCNN-
LSTM based prediction and CPO based parameter optimization. The inclusion of CPO algorithm helps to
optimally determine the hyperparameter involved in the HCNN-LSTM model and it results in an
improved prediction performance. For investigating the ACYP-CPODL technique, a comprehensive
experimental analysis is made using benchmark dataset and the comparative result highlights the
betterment of the ACYP-CPODL technique over the recent methods. While the BLSTM model produced
an optimal result, the proposed ACYP-CPODL technique has produced an effective result with an MSE
of 0.031 and an R2 Score of 0.936. Therefore, the proposed ACYP-CPODL technique appears to be an
effective tool to predict the crop yield. In future, the predictive outcome can be improved by designing
fusion-based prediction models.
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