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Abstract: The real-world applications and analysis have a significant role in the
scientific literature. For instance, mathematical modeling, computer graphics,
camera, operating system, Java, disk encryption, web, streaming, and many more
are the applications of real-world problems. In this case, we consider disease mod-
eling and its computational treatment. Computational approximations have a sig-
nificant role in different sciences such as behavioral, social, physical, and
biological sciences. But the well-known techniques that are widely used in the lit-
erature have many problems. These methods are not consistent with the physical
nature and even violate the actual behavior of the continuous model. The structur-
al properties needed for such disciplines, as dynamical consistency, positivity, and
boundedness, are the critical requirements of the models in these fields. We stu-
died the transmission of Lassa fever dynamically and numerically. The model’s
positivity, boundedness, reproduction number, equilibria, and local stability are
investigated in dynamical analysis. In numerical analysis, we developed some
explicit and implicit methods. Unfortunately, explicit methods like Euler and
Runge Kutta are time-dependent and violate the physical properties of the disease.
Then, the proposed implicit method for the said model, the non-standard finite dif-
ference, is independent of the time step, dynamically consistent, positive, and
bounded. In the end, a comparison of methods is presented.

Keywords: Lassa fever disease; epidemic model; computational approximations;
convergence analysis

1 Literature Survey

Lassa fever is an intense hemorrhagic illness caused by the Lassa virus (member of the arenavirus).
Lassa virus carries a rat, which is very common in West Africa. It is also known as a zoonosis, which
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means that disease spreads from animal to human. People usually become infected with Lassa fever because
of food and household items’ exposure to urine of infected Mastomys rats. Its symptoms are varied and
include cardiac, neurological, and pulmonary problems. In some West Africa, this disease is endemic to
the rodent population. It is most common in Liberia, Sierra Leone, Guinea, and Nigeria. Lassa fever is
transmitted by playing, touching, and cutting up a rat’s dead body. In 2018, Usman et al. analyzed the
Lassa fever virus infection for the transmission dynamics of qualitative and analytic activities of a
mathematical model [1]. In 2020, Peter et al. studied Lassa fever’s dynamics, and the solution model
stayed and verified boundedness and positivity of basic properties [2]. In 2017, Olayiwola et al. analyzed
in the lowliest endemic countries people with an ultimate risk of infection and need for constant
investigation develops commanding in the endemic region like Africa with Nigeria at the essential
attention will help in no small processes in scheming the scourge [3]. Woyessa et al. investigated the
private and public health facilities, control interventions, and prevent infection when feverish patients
avoid nosocomial infections [4]. In 2013, Ajayi et al. have studied that Epidemic contained rejoinder
schemes and testing to control exertions comprised fright between health staffs, insufficient/poor quality
of defensive things, insufficient extra preparation, and poor local laboratory capability [5]. In 2019, Ilori
et al. analyzed the activity supporting improving planned for patient care and LLC, emerging infectious
diseases, and Medscape through applied epidemiological characteristics and clarifying factors associated
with mortality [6]. Adewuyi et al. studied the disease have the probable of actuality organize an
infectious menace that essential be controlled by way of biological weapon and currently, vaccine of
Lassa fever no available and some natural problems occurs for development of vaccines so prevention the
way by control the rodent [7]. Iroezindu et al. analyzed Lassa fever spread; challenges, letdown to use
proper defensive tackle, stigmatization of associates, and absence of a purpose-built isolation facility [8].
In 2019, Amodu et al. have studied Lassa fever as an acute disease of scarceness, high endemicity by
way of cooperated environmentally-friendly sanitation, and relics susceptible populations to community
health problems in Nigeria. Public meeting defense for attractive prevention strategy remains particular
sanitation [9]. In 2019, Kangbai et al. highlighted that seasonal epidemics use an effective treatment to
make a stratagem, which can control procedures of Lassa fever prevention and control the connection
between humans to rodents [10]. Makinde et al. investigated Lassa fever to identify when a
nonconformity toward the prestige quo has happened [11]. In 2020, Zhao et al. analyzed quantify of this
impact in Nigeria’s presence of Lassa fever significance measure the connotation among local
precipitation and infection reproduction number which facts has probable elect applied as a bad sign for
Lassa fever epidemics [12]. In 2017, Obabiyi et al. developed a mathematical model for transmission of
Lassa fever dynamics with the behavior of susceptible humans, recovered humans divided the population
into two parts such as human populations, and rodent population by using the positivity, bounded
theorem, and suggested the stability hygiene of environment [13]. In 2018, Akpede et al. studied the
necessities for achievement and enduring capacity of the control exertions in Nigeria and the sub-region.
In wholly these, the Nigerian administration with NCDC necessity carries a huge responsibility for the
organization, supply deployment, and support. If necessary, even persuade sub-regional administrations
addicted to action. In addition, there should be expected through determined action [14]. In 2019,
Mazzola et al. explored the Diagnostics necessary for acknowledging and controlling epidemics of LASV,
unique prevailing and genetically various mediators of VHF, that use scenarios with different
performance requirements for text complexity, sensitivity, specificity, and development time [15]. In
2019, Nwafor et al. examined the Lassa fever outbreak in Nigeria; the Health maintenance workers
necessity, take a high index of doubt of the infection and follow IPC measures even though provided that
maintenance for all patients. Explaining health maintenance workers by the new strategies mentioned
above is also significant to reduce the menace of nosocomial transmission of Lassa fever [16]. In 2018,
Shehu et al. studied that the Occurrence of rural to urban change of clinical and epidemiological reduced
the Lassa fever cases during 2016 for morbidity and mortality [17]. In 2007, Ogbu et al. discussed the
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situation of Lassa fever in the sub-region of West Africa and suggested strategies for socioeconomic behavior
that control the shortage of health care system [18]. In 2020, Tewogbola et al. analyzed the overview and
discussed the main reasons it damaged the human population and recommended the control measure of
Lassa fever [19]. In 2014, Ajayi et al. reported a case of 59 years that recovers without taking a vaccine
such as ribavirin. The symptoms of this disease increase day by day because few people do not use the
main precautions to control Lassa fever [20]. Some well-known numerical models related to diseases are
studied [21–26].

2 Formulation of Lassa Fever Model

The variables and parameters are described of the lassa fever model as follows: SH tð Þ: denoted as the
susceptible class at any time t, IH tð Þ: characterized as the infectious class at any time t, RH tð Þ:
characterized as the recovered class at any time t, SR tð Þ: characterized as the susceptible rodent vectors at
any time t, IR tð Þ: characterized as the infectious rodent vectors at any time t, NH tð Þ: characterized as
whole humans’ population at any time t, m = NR

NH
: characterized as the number of infectious rodent vectors

by the human host, a1: described as the rate at which contagious rodent vectors and a susceptible class of
humans interact with each other, a2: defined as the force of infection, a3: defined as the rate at which
sensitive rodent vectors and an infectious class of humans interact with each other, sc: denoted the speed
at which infectious human hosts comply with the drug, snc: indicated the rate at which infectious human
hosts do not comply with the drug, rc: denoted the rate at which infectious human hosts are educated to
adhere to the medication, δ: indicated the rate of mortality of an infectious class, c: indicated the rate at
which humans may lose their immunity. The leading equations of the model are as follows:

dSH tð Þ
dt

¼ �H � a1a2SH tð ÞIR tð Þ
NH

þ cRH tð Þ þ sncIH tð Þ � lHSH tð Þ; t � 0: (1)

dIH tð Þ
dt

¼ a1a2SH tð ÞIR tð Þ
NH

� scIH tð Þ � rcIH tð Þ � sncIH tð Þ � dIH tð Þ � lHIH tð Þ; t � 0: (2)

dRH tð Þ
dt

¼ scIH tð Þ þ rcIH tð Þ � cRH tð Þ � lHRH tð Þ; t � 0: (3)

dSR tð Þ
dt

¼ �R � a1a3SR tð ÞIH tð Þ
NH

� lRSR tð Þ; t � 0: (4)

dIR tð Þ
dt

¼ a1a3SR tð ÞIH tð Þ
NH

� lRIR tð Þ; t � 0: (5)

where SH 0ð Þ � 0; IH 0ð Þ � 0;RH 0ð Þ � 0; SR 0ð Þ � 0; IR 0ð Þ � 0.

2.1 Fundamental Properties of Model

We studied the feasible region, positivity, and boundedness of the model at any time, t ≥ 0, as follows:

�¼ SH ; IH ;RH ;SR; IRð ÞER5
þ : SH þ IH þRH � �H

lH
;SRþ IR� �R

lR
;SH � 0; IH � 0;RH � 0;SR� 0; IR� 0

n o
.

Lemma 1: The solutions SH ; IH ;RH ; SR; IRð ÞER5
þ of Eqs. (1)–(5) is positive at any time t ≥ 0, with given

non-negative initial conditions.

Proof: It is clear from Eqs. (1)–(5),
dSH
dt

��
SH¼0

¼ �H þ cRH þ sncIH � 0, dIH
dt

��
IH¼0

¼ a1a2SH IR
NH

� 0, dRH
dt

��
RH¼0

¼ scIH þ rcIH � 0, dSR
dt

��
SR¼0

¼
�R � 0, dIRdt

��
IR¼0

¼ a1a3SRIH
NH

� 0; as desired.
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Lemma 2: Forgiven any non-negative initial conditions for the solution of the system (1)–(5) is bounded
if lim

t!1 Sup NH tð Þ � �H
lH

; lim
t!1 Sup NR tð Þ � �R

lR
:

Proof: let us consider the population function as follows:

NH tð Þ ¼ SH þ IH þ RH ;
dNH

dt
¼ dSH

dt
þ dIH

dt
þ dRH

dt
;
dNH

dt
¼ �H � lHNH ;

NH tð Þ ¼ Aþ �H

lH

By the Gronwall’s inequality, we get

NH tð Þ � NH 0ð Þ þ �H

lH
; t � 0; lim

t!1Sup NR tð Þ � �H

lH

NR tð Þ ¼ SR þ IR;
dNR

dt
¼ dSR

dt
þ dIR

dt
;
dNR

dt
¼ �R � lRNR

NR tð Þ ¼ Bþ �R

lR

By the Gronwall’s inequality, we get

NR tð Þ � NR 0ð Þ þ �R

lR
; t � 0

lim
t!1 Sup NR tð Þ � �R

lR
, as desired.

2.2 Steady States of Lassa fever Model

There are two steady states of Eqs. (1) to (5), as follows: disease-free equilibrium (DFEÞ ¼
SH ; IH ;RH ; SR:IRð Þ ¼ �H

lH
; 0; 0; �R

lR
; 0

� �
and endemic equilibrium (EEÞ ¼ SH

�; IH �;RH
�; S�R; I

�
R

� �
,

R�
H ¼ ðsc þ rcÞI�H

cþ lH
¼ A1I

�
H ;A1 ¼ ðsc þ rcÞ

cþ lH
;S�H ¼ �H þ cA1I�H � A2I�H

lH
;A2 ¼ sc þ rc þ dþ lH ; I

�
R ¼ a1a3S�RI

�
H

lR
;

S�R ¼ �R

a1a3I�H þ lR
; I�H ¼ �H � A4lR

A4a1a3 � cA1 þ A2
;A3 ¼ sc þ rc þ snc þ dþ lH ;A4 ¼ A3lHlR

a21a2a3�R
:

3 Reproduction Number of Lassa Fever Model

In this section, we shall find the two types of matrices like transmission and transition by assuming the
disease-free equilibria in the system (1)–(5) by using the next-generation matrix method, furthermore,
considering the infected classes as follows:

F¼
a1a2�H
lHNH

0 0
0 0 0
0 0 a1a2�R

lRNH

2
4

3
5; V�1¼

lRðcþlHÞ 0 0
lRðscþrcÞ lRðscþrcþsncþdþlHÞ 0

0 0 ðscþrcþsncþdþlHÞðcþlHÞ

2
4

3
5

ðscþrcþsncþdþlH ÞðcþlH ÞlR .

FV�1¼ 1

scþrcþsncþdþlHð Þ cþlHð ÞlR

a1a2�H
lHNH

lRð Þ cþlHð Þ 0 0
0 0 0
0 0 a1a2�R

lRNH
scþrcþsncþdþlHð Þ cþlHð Þ

2
4

3
5:
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Thus, the dominant eigenvalue of the matrix is called reproduction number and denoted as follows:

R0 ¼
a1a2�H

lHNH

ðsc þ rc þ snc þ dþ lHÞ
.

4 Local Stability

In this section, we present two well-known theorems for stability in the sense of local. Again, consider
the system (1)–(5) as function of A;B;C;D andE as follows:

A ¼ �H � a1a2SHIR
NH

þ cRH þ sncIH � lHSH : (6)

B ¼ a1a2SHIR
NH

� scIH � rcIH � sncIH � dIH � lHIH : (7)

C ¼ scIH þ rcIH � cRH � lHRH : (8)

D ¼ �R � a1a3SRIH
NH

� lRSR: (9)

E ¼ a1a3SRIH
NH

� lRIR: (10)

Theorem 1: The disease-free equilibrium is locally asymptotically stable for the system (6)–(10). If
R0, 1 and otherwise unstable if R0 . 1.

Proof: First, we take the partial derivates of the system (6)–(10) concerning state variables as follows:

@A

@SH
¼ �a1a2IR

NH
� lH ;

@A

@IH
¼ snc;

@A

@RH
¼ c;

@A

@SR
¼ 0;

@A

@IR
¼ �a1a2SH

NH
.

@B

@SH
¼ a1a2IR

NH
;
@B

@IH
¼ �sc � rc � snc � d� lH ;

@B

@RH
¼ 0;

@B

@SR
¼ 0:

@B

@IR
¼ a1a2SH

NH
;
@C

@SH
¼ 0

@C

@IH
¼ sc þ rc;

@C

@RH
¼ �c� lH ;

@C

@SR
¼ 0;

@C

@IR
¼ 0;

@D

@SH
¼ 0;

@D

@IH
¼ �a1a3SR

NH
;
@D

@RH
¼ 0;

@D

@SR
¼ �a1a3IH

NH
� lR;

@D

@IR
¼ 0;

@F

@SH
¼ 0;

@F

@IH
¼ a1a3SR

NH
;
@F

@RH
¼ 0;

@F

@SR
¼ a1a3IH

NH
;
@F

@IR
¼ �lR:

Here, the Jacobian matrix as follows:

J ¼

�a1a2IR
NH

� lH snc c 0 �a1a2SH
NH

a1a2IR
NH

�sc � rc � snc � d� lH 0 0 a1a2SH
NH

0 sc þ rc �c� lH 0 0
0 �a1a3SR

NH
0 �a1a3IH

NH
� lR 0

0 a1a3SR
NH

0 a1a3IH
NH

�lR

2
666664

3
777775
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The Jacobian matrix at the disease-free equilibria of the system (6)–(10) as follows:

J E0ð Þ ¼ J �H
lH

;0;0; �R
lR
;0

� �
¼

�lH snc c 0 �a1a2�H
lHNH

0 �sc � rc � snc � d� lH 0 0 a1a2�H
lHNH

0 sc þ rc �c� lH 0 0
0 �a1a3�R

lRNH
0 0� lR 0

0 a1a3�R
lRNH

0 0 �lR

2
666664

3
777775
.

J � �Ij j ¼

�lH � � snc c 0 �a1a2�H
lHNH

0 ð�sc � rc � snc � d� lHÞ � � 0 0 a1a2�H
lHNH

0 sc þ rc �c� lH � � 0 0
0 �a1a3�R

lRNH
0 0� lR�� 0

0 a1a3�R
lRNH

0 0 �lR � �

�����������

�����������
¼ 0:

�1 ¼ �lH , 0; �2 ¼ �lR , 0; �3 ¼ �ðcþ lHÞ, 0:

J� �Ij j ¼ ð�sc � rc � snc � d� lHÞ � � a1a2�H
lHNH

a1a3�R
lRNH

�lR � �

�����
����� ¼ 0.

�2 þ � a1 þ lRð Þ þ a1lR � a2 ¼ 0.

where, a1 ¼ sc þ rc þ snc þ dþ lH ; a2 ¼ a1a2�H
lHNH

� �
a1a3�R
lRNH

� �
Since all the coefficients of the polynomial are positive, therefore, by using Routh Hurwitz Criteria for

2nd order, the disease-free equilibria are locally asymptotically stable.

Theorem 2: The endemic equilibrium is locally asymptotically stable for the system (6)–(10) if R0 . 1.

Proof: The Jacobian matrix at the endemic equilibria of the system (6)–(10) is as follows:

J E�ð Þ ¼ J SH
�; IH �;RH

�;S�R;I
�
R

� �¼

�a1a2I�R
NH

�lH snc c 0 �a1a2SH
�

NH
a1a2I�R
NH

�sc� rc�snc�d�lH 0 0 a1a2SH �
NH

0 scþ rc �c�lH 0 0

0
�a1a3S�R

NH
0 �a1a3IH �

NH
�lR 0

0
a1a3S�R
NH

0 a1a3IH �
NH

�lR

2
6666664

3
7777775
.

J � �Ij j ¼

�B1 � lH � � snc c 0 �B2

B1 �B3 � � 0 0 B2

0 B4 �B5 � � 0 0
0 �B6 0 �B7 � lR � � 0
0 B6 0 B7 �lR � �

����������

����������
¼ 0.

where; B1 ¼ a1a2I�R
NH

;B2 ¼ a1a2SH
�

NH
;B3 ¼ sc þ rc þ snc þ dþ lH ;B4 ¼ sc þ rc;B5 ¼ cþ lH ;B6 ¼ a1a3S�R

NH
;

B7 ¼ a1a3IH �
NH

:
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J��Ij j¼ �B1�lH��ð Þ
�B3�� 0 0 B2

B4 �B5�� 0 0
�B6 0 �B7�lR�� 0
B6 0 B7 �lR��

��������

��������
�B1

snc c 0 �B2

B4 �B5�� 0 0
�B6 0 �B7�lR�� 0
B6 0 B7 �lR��

��������

��������
¼0.

J��Ij j¼ �B1�lH��ð Þ B5þ�ð Þ �B3��ð Þ �B7�lR�� 0

B7 �lR��

����
����þB2

�B6 �B7�lR��

B6 B7

����
����

� �

þ �B1ð Þ �cð Þ ðB4Þ
�B7�lR�� 0

B7 �lR��

����
����

� �

þ �B1ð Þ B5þ�ð Þ snc
�B7�lR�� 0

B7 �lR��

����
�����B2

�B6 �B7�lR��

B6 B7

����
����

� �
¼0:

�5 þ �4 2lR þ B3 þ lH þ B7 þ B5 þ B1½ � þ �3 B7lR þ lR
2 þ 2B3lR þ 2B5lR þ 2B1lR þ B3B7 þ B5B7½

þB1B7 þ B3B5 þ B1B3 � B2B6 þ B5lH þ B3lH þ B7lH þ 2lRlH þ B1B5 � B1snc� þ �2½B3B7lR þ
B5B7lR þ B1B7lR þ B3lR

2 þ B5lR
2 þ B1lR

2 þ 2B3B5lR þ 2B1B3lR þ 2B1B5lR þ B3B5B7 þ B1B3B7 þ
B1B5B7 þ B1B3B5 þ B1B4c� 2B1lRsnc � B1B7snc � B1B5snc � B1B2B6 þ B3B7lH þ B7B5lH �
2B2B6lH þ 2B3lRlH þ 2B5lRlH þ B7lRlH � B2B5B6� þ �½B3B5B7lR þ B1B3B7lR þ B1B5B7lR þ
B3B5lR

2 þ B5lR
2 þ B1B5lR

2 þ 2B1B3B5lR � B2B6B5lR � 2B1B2B5B6 þ 2B1B4clR � B1B2B6c�
2B1B5snclR � B1B5B7snc þ B7B3B5lH þ 2B3B5lRlH � 2B1B2B7B6 � 2B1B2B6lR þ B5B3B7lH þ
B7B5lRlH þ B3B7lRlH � B2B6lRlH � B2B6B5lH � B1B2B6� þ B1B3B5B7lR þ B1B3B5lR

2 þ
B1B4B7clR þ B1B4clR

2 � B1B5B7snclR þ B1B2B6clR � B1B5snclR
2 þ B1B3B7B5 � 2B1B2B5B6lR �

2B1B2B5B7B6 � B2B5B6lRlH þB5B3B7lRlH þ B3B5lR
2lH ¼ 0.

�5a1 þ �4a2 þ �3a3 þ �2a4 þ �a5 þ a6 ¼ 0.

where, a1 ¼ 1½ �; a2 ¼ � 2lR þ B3 þ lH þ B7 þ B5 þ B1½ �:
a3 ¼ �	

B7lR þ lR
2 þ 2B3lR þ 2B5lR þ 2B1lR þ B3B7 þ B5B7 þ B1B7 þ B3B5 þ B1B3 � B2B6

þ B5lH þ B3lH þ B7lH þ 2lRlH þ B1B5 � B1snc


:

a4 ¼ �½B3B7lR þ B5B7lR þ B1B7lR þ B3lR
2 þ B5lR

2 þ B1lR
2 þ 2B3B5lR þ 2B1B3lR þ 2B1B5lR

þB3B5B7 þ B1B3B7 þ B1B5B7 þ B1B3B5 þ B1B4c� 2B1lRsnc � B1B7snc � B1B5snc
�B1B2B6 þ B3B7lH þ B7B5lH � 2B2B6lH þ 2B3lRlH þ 2B5lRlH þ B7lRlH � B2B5B6�.

a5 ¼ �	
B3B5B7lR þ B1B3B7lR þ B1B5B7lR þ B3B5lR

2 þ B5lR
2 þ B1B5lR

2 þ 2B1B3B5lR
� B2B6B5lR � 2B1B2B5B6 þ 2B1B4clR � B1B2B6c� 2B1B5snclR � B1B5B7snc þ B7B3B5lH
þ 2B3B5lRlH � 2B1B2B7B6 � 2B1B2B6lR þ B5B3B7lH þ B7B5lRlH þ B3B7lRlH � B2B6lRlH
� B2B6B5lH � B1B2B6



:

a6 ¼ �	
B1B3B5B7lR þ B1B3B5lR

2 þ B1B4B7clR þ B1B4clR
2 � B1B5B7snclR þ B1B2B6clR

�B1B5snclR
2 þ B1B3B7B5 � 2B1B2B5B6lR � 2B1B2B5B7B6 � B2B5B6lRlH

þB5B3B7lRlH þ B3B5lR
2lH



:

The Routh Hurwitz criteria of the 5th order are satisfied. Hence, the endemic equilibria are locally
asymptomatically stable.
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5 Computational Approximations

In this section, we present the well-known approximations like Euler, Runge Kutta, and non-standard
finite difference for the system (1)–(5) as follows:

5.1 Euler Approximation

The discretization of the system (1)–(5) under the rules of the Euler approximation is as follows:

Snþ1
H ¼ SnH þ h½�H � a1a2snHI

n
R

NH
þ cRn

H þ sncI
n
H � lHS

n
H �: (11)

Inþ1
H ¼ InH þ h

a1a2SnHI
n
R

NH
� scI

n
H � rcI

n
H � sncI

n
H � dInH � lHI

n
H

� �
: (12)

Rnþ1
H ¼ Rn

H þ h scI
n
H þ rcI

n
H � cRn

H � lHR
n
H

	 

: (13)

Snþ1
R ¼ SnR þ h �R � a1a3SnRI

n
H

NH
� lRS

n
R

� �
: (14)

Inþ1
R ¼ InR þ h½a1a3S

n
RI

n
H

NH
� lRI

n
R�: (15)

where h is any discretization parameter and n � 0:

5.2 Runge-Kutta Approximation

The discretization of the system (1)–(5) under the rules of the Runge Kutta approximation is as follows:

Stage#1

K1 ¼ h �H � a1a2snH I
n
R

NH
þ cRn

H þ sncInH � lHS
n
H

h i
.

L1 ¼ h
a1a2SnH I

n
R

NH
� scInH � rcInH � sncInH � dInH � lHI

n
H

h i
.

M1 ¼ h scInH þ rcInH � cRn
H � lHR

n
H

	 

.

O1 ¼ h �R � a1a3SnRI
n
H

NH
� lRS

n
R

h i
.

P1 ¼ h
a1a3SnRI

n
H

NH
� lRI

n
R

h i
.

Stage#2

K2 ¼ h �H � a1a2 SnHþ
K1
2ð Þ InRþ

P1
2ð Þ

NH
þ c Rn

H þ M1
2

� �þ snc InH þ L1
2

� �� lH SnH þ K1
2

� �� �
.

L2 ¼ h
a1a2 SnHþ

K1
2ð Þ InRþ

P1
2ð Þ

NH
� sc InH þ L1

2

� �� rc InH þ L1
2

� �� snc InH þ L1
2

� �� d InH þ L1
2

� �� lH InH þ L1
2

� �� �
.

M2 ¼ h sc InH þ L1
2

� �þ rc InH þ L1
2

� �� c Rn
H þ M1

2

� �� lH Rn
H þ M1

2

� �	 

.

O2 ¼ h �R � a1a3 SnRþ
O1
2ð Þ InHþ

L1
2ð Þ

NH
� lR SnR þ O1

2

� �� �
.

P2 ¼ h
a1a3 SnRþ

O1
2ð Þ InHþ

L1
2ð Þ

NH
� lR InR þ P1

2

� �� �
.

Stage#3

K3 ¼ h �H � a1a2 SnHþ
K2
2ð Þ InRþ

P2
2ð Þ

NH
þ c Rn

H þ M2
2

� �þ snc InH þ L2
2

� �� lH SnH þ K2
2

� �� �
.
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L3 ¼ h
a1a2 SnHþ

K2
2ð Þ InRþ

P2
2ð Þ

NH
� sc InH þ L2

2

� �� rc InH þ L2
2

� �� snc InH þ L2
2

� �� d InH þ L2
2

� �� lH InH þ L2
2

� �� �
.

M3 ¼ h sc InH þ L2
2

� �þ rc InH þ L2
2

� �� c Rn
H þ M2

2

� �� lH Rn
H þ M2

2

� �	 

.

O3 ¼ h �R � a1a3 SnRþ
O2
2ð Þ InHþ

L2
2ð Þ

NH
� lR SnR þ O2

2

� �� �
.

P3 ¼ h
a1a3 SnRþ

O2
2ð Þ InHþ

L2
2ð Þ

NH
� lR InR þ P2

2

� �� �
.

Stage#4

K4 ¼ h �H � a1a2 SnHþK3ð Þ InRþP3ð Þ
NH

þ c Rn
H þM3

� �þ snc InH þ L3
� �� lH SnH þ K3

� �� �
.

L4 ¼ h

�
a1a2 SnHþK3ð Þ InRþP3ð Þ

NH
� sc InH þ L3

� �� rc InH þ L3
� �� snc InH þ L3

� �� d InH þ L3
� �� lH InH þ L3

� ��
.

M4 ¼ h sc InH þ L3
� �þ rc InH þ L3

� �� c Rn
H þM3

� �� lH Rn
H þM3

� �	 

.

O4 ¼ h �R � a1a3 SnRþO3ð Þ InHþL3ð Þ
NH

� lR SnR þ O3

� �� �
.

P4 ¼ h
a1a3 SnRþO3ð Þ InHþL3ð Þ

NH
� lR InR þ P3

� �� �
.

Final stage

SH
nþ1 ¼ SnH þ 1

6
K1 þ 2K2 þ 2K3 þ K4½ �: (16)

IH
nþ1 ¼ InH þ 1

6
L1 þ 2L2 þ 2L3 þ L4½ �: (17)

RH
nþ1 ¼ Rn

H þ 1

6
M1 þ 2M2 þ 2M3 þM4½ �: (18)

SR
nþ1 ¼ SnR þ

1

6
O1 þ 2O2 þ 2O3 þ O4½ �: (19)

IR
nþ1 ¼ InR þ 1

6
P1 þ 2P2 þ 2P3 þ P4½ �: (20)

where h is any discretization parameter and n � 0:

5.3 Non-standard Finite Difference Approximation

The discretization of the system (1)–(5) under the rules of the non-standard finite difference scheme is as
follows [27]:

Snþ1
H ¼ SnH þ h�H þ chRn

H þ hsncInH
1þ ha1a2InR

NH
þ lHh

: (21)

Inþ1
H ¼ InH þ ha1a2SnH I

n
R

NH

1þ hsc þ rchþ hsnc þ dhþ lHh
: (22)
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Rnþ1
H ¼ Rn

H þ hscInH þ rcInH
1þ chþ lHh

: (23)

Snþ1
R ¼ SnR þ h�R

1þ ha1a3InH
NH

þ lRh
: (24)

Inþ1
R ¼ InR þ ha1a3SnRI

n
H

NH

1þ lRh
: (25)

where h is any discretization parameter and n � 0:

5.4 Convergence Analysis

Considering the functions, A, B, C, D, and E at the system (21)–(25) as follows:

A ¼ SH þ h�H þ chRH þ hsncIH

1þ ha1a2IR
NH

þ lHh
; B ¼ IHþha1a2SHIRNH

1þ hsc þ rchþ hsnc þ dhþ lHh
,

C ¼ RH þ hscIH þ rcIH
1þ chþ lHh

; D ¼ SR þ h�R

1þ ha1a3IH
NH

þ lRh
; E ¼ IR þ ha1a3SRIH

NH

1þ lRh
.

The elements of Jacobian matrix as follows:

@A

@SH
¼ 1

1þlHh
;
@A

@IH
¼ hsnc
1þlHh

;
@A

@RH
¼ ch
1þlHh

;
@A

@SR
¼ 0;

@A

@IR
¼�

SH þh�H þchRH þhsncIHð Þ ha1a2
NH

� �

1þ ha1a2IR
NH

þlHh
� �2 :

@B

@SH
¼

ha1a2IR
NH

1þ hsc þ rchþ hsnc þ dhþ lHh
;
@B

@IH
¼ 1

1þ hsc þ rchþ hsnc þ dhþ lHh
;
@B

@RH
¼ 0;

@B

@SR
¼ 0;

@B

@IR
¼

ha1a2SH
NH

1þ hsc þ rchþ hsnc þ dhþ lHh
;
@C

@SH
¼ 0;

@C

@IH
¼ hsc þ rc

1þ chþ lHh
;
@C

@RH
¼ 1

1þ chþ lHh
;
@C

@SR
¼ 0;

@C

@IR
¼ 0;

@D

@SH
¼ 0;

@D

@IH
¼ �

SR þ h�Rð Þ ha1a3
NH

� �

1þ ha1a3IH
NH

þ lRh
� �2 ;

@D

@RH
¼ 0;

@D

@SR
¼ 1

1þ lRh
;
@D

@IR
¼ 0;

@E

@SH
¼ 0;

@E

@IH
¼

ha1a3SR
NH

1þ lRh
;
@E

@RH
¼ 0;

@E

@SR
¼

ha1a3IH
NH

1þ lRh
;
@E

@IR
¼ 1

1þ lRh
.

Theorem 3: For n � 0; the eigenvalues of the Jacobian matrix at disease-free equilibrium for the system
(21)–(25) lie in the unit circle if R0 , 1.

Proof: The Jacobian matrix at disease-free equilibrium (DFE-E0) = ð�H
lH

; 0; 0; �R
lR
; 0Þ is as follows:
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J E0ð Þ��j j ¼

1
1þlHh

�� hsnc
1þlHh

ch
1þlHh

0 �
�H
lH

þh�H

� �
ha1a2
NH

� �
1þlHhð Þ2

0 1
1þhscþrchþhsncþdhþlHh

�� 0 0
ha1a2

�H
lH

NH
1þhscþrchþhsncþdhþlHh

0 hscþrc
1þchþlHh

1
1þchþlHh

�� 0 0

0 �
�R
lR
þh�R

� �
ha1a3
NH

� �
1þlRhð Þ2 0 1

1þlRh
�� 0

0
ha1a3

�R
lR

NH
1þlRh

0 0 1
1þlRh

��

��������������������

��������������������

¼ 0.

�1 ¼ 1

1þlHh

����
����,1;�2 ¼ 1

1þ chþlHh

����
����,1;�3 ¼ 1

1þhlR

����
����,1:

J E0ð Þ � �j j ¼
1

1þhscþrchþhsncþdhþlHh

� �
� �

ha1a2
�H
lH

NH
1þhscþrchþhsncþdhþlHh

ha1a3
�R
lR

NH
1þlRh

1
1þlRh

� �

��������

��������
¼ 0.

P1 ¼ Trace of J ¼ 1

1þ hsc þ rchþ hsnc þ dhþ lHh

� �
þ 1

1þ lRh

P2 ¼ Determinant of J ¼ 1
1þhscþrchþhsncþdhþlHh

� �
1

1þlRh

� �� �
�

ha1a3
�R
lR

NH
1þlRh

0
@

1
A ha1a2

�H
lH

NH
1þhscþrchþhsncþdhþlHh

0
@

1
A.

Lemma 1: For the quadratic equation �2�P1�þP2¼¼ 0, j�ij, 1; i ¼ 1; 2; 3; if and only if the following
conditions are satisfied:

(i). 1þ P1 þ P2 . 0:

(ii). 1� P1 þ P2 . 0:

(iii). P2, 1:

Proof: The proof is straight forward.

Theorem 6: For n � 0; the eigenvalues of the Jacobian matrix at endemic equilibrium for the system
(21)–(25) lie in the unit circle if R0 . 1.

Proof: The Jacobian matrix at the endemic equilibria E1 ¼ ðS�H; I�H;R�
H;S

�
R; I

�
RÞ as follows:

JJ E�ð Þ ¼ J SH
�; IH �;RH

�; S�R; I
�
R

� � ¼
1

1þlHh
hsnc

1þþlHh
ch

1þlHh
0 �

SH
�þh�HþchRH

�þhsncIH �ð Þ ha1a2
NH

� �

1þha1a2I
�
R

NH
þlHh

� �2

ha1a2I
�
R

NH
1þhscþrchþhsncþdhþlHh

1
1þhscþrchþhsncþdhþlHh

0 0
ha1a2SH

�
NH

1þhscþrchþhsncþdhþlHh

0 hscþrc
1þchþlHh

1
1þchþlHh

0 0

0 �
S�Rþh�Rð Þ ha1a3

NH

� �

1þha1a3IH
�

NH
þlRh

� �2 0 1
1þlRh

0

0
ha1a3S

�
R

NH
1þlRh

0
ha1a3IH

�
NH

1þlRh
1

1þlRh

2
66666666666666666664

3
77777777777777777775

.
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Hence, the largest eigenvalue of the Jacobian is less than one, ultimately remaining will also lie in the
unit circle when R0. 1. Thus, endemic equilibrium is stable.

5.5 Computational Approximations

By using the values of the parameters as presented in Tab. 1. The diagrams for the system (1)–(5) for
disease-free equilibrium (DFE) and endemic equilibrium (EE) plotted with MATLAB software as follows:

Table 1: Value of parameters

Parameters Values

�H 0.8

�R 0.8

lH 0.8

lR 0.8

a1 1.00166 (DFE)
3.00166 (EE)

a2 1.0004 (DFE
3.0004 (EE)

a3 0.1

sc 0.7

snc 0.9

rc 0.2

d 0.133

c 0.220

(a) (b)

Figure 1: Combine graphical behaviors of the Lassa fever disease (a) Sub-populations at disease-free equilibrium
(DFE) (b) Subpoulations at endemic equilibrium (EE)

1934 IASC, 2022, vol.33, no.3



(a) (b)

Figure 2: Euler method for the behavior of infected rats at different time-step sizes (a) Infected rats at h ¼
0.01 (b) Infected rats at h ¼ 1

(a) (b)

Figure 3: Runge Kutta method for the behavior of infected rats at different time-step sizes (a) The behavior
of infected rats at time step size h ¼ 0.1 (b) The behavior of infected rats at time step size h ¼ 1
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5.6 Comparison Section

(a) (b)

Figure 5: (Continued)

(a) (b)

Figure 4: NSFD method for the behavior of infected rats at different time-step sizes (a) The behavior of
Infected rats for EE at h ¼ 0.1 (b) The behavior of infected rats for EE at h ¼ 1000
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6 Results and Discussion

We investigated the transmission dynamics of Lassa fever disease in humans and rats through the study.
The critical point is modeling, terminology related to epidemiology, and Lassa fever disease. Dynamical
analysis of the model is investigated. Computational analysis, including well-known methods, is
presented. Mostly, methods are valid for only tiny time step sizes. But inappropriately flop for huge time
step sizes like Euler and Runge Kutta. Our proposed scheme (NSFD) remains convergent for step sizes
like h = 100. Furthermore, Tab. 2 shows the efficiency of the numerical methods.

7 Conclusion

The non-standard finite difference scheme was designed for the communication dynamics of Lassa fever
disease. Unfortunately, the earlier methods, like Euler and Runge Kutta of order 4th, are unsuitable because
they depend on time step size. So, Euler and Runge Kutta are tentatively convergent. When we increase the
time step size, the graph of Euler and Runge Kutta gives variation in result from time to time they display
divergent. The new well-known numerical scheme, like the non-standard finite difference scheme

Table 2: Comparison analysis of methods at different values of h

h Euler RK-4 NSFD scheme

0.01 EE = Convergence
DFE = Convergence

EE = Convergence
DFE = Convergence

Convergence

0.1 EE = Convergence
DFE = Convergence

EE = Convergence
DFE = Convergence

Convergence

1 EE = Divergence
DFE = Divergence

EE = Divergence
DFE = Divergence

Convergence

100 Divergence
(method failed)

Divergence Convergence

(c) (d)

Figure 5: Combine graphical behaviors of NSFD with Euler and Runge Kutta methods at different time-step
sizes (a) Comparison of Euler and NSFD at h ¼ 0.1 (b) Comparison of Euler and NSFD at h ¼ 1
(c) Comparison of Runge Kutta and NSFD at h ¼ 0.1 (d) Comparison of Runge Kutta and NSFD at h ¼ 1
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independent of time step size. The NSFD scheme is a comfortable tool on behalf of dynamical properties like
stability, positivity, boundedness and shows the exact behavior of the continuous model. The graphical
behavior of ODE-45, Euler, Runge Kutta, NSFD schemes and comparison of schemes are given in
Figs. 1a, 1b, Figs. 2a, 2b, Figs. 3a, 3b, Figs. 4a, 4b and Figs. 5a–5d respectively. In the end, we could
extend this idea to all types of nonlinear and complex models. In the future, we could develop our
analysis into fuzzy epidemic models and many other types of modeling as given in [27–31].
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