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Abstract: An identification of unfilled primary user spectrum using a novel meth-
od is presented in this paper. Cooperation among users with the utilization of
machine learning methods is analyzed. Learning methods are applied to construct
the classifier, which selects the suitable fusion algorithm for the considered envir-
onment so that the out of band sensing is performed efficiently. Sensing perfor-
mance is looked into with the existence of fading and it is observed that
sensing performance degrades with fading which coincides with earlier findings.
From the simulation, it can be inferred that Weibull fading outperforms all the
other fading models considered. To accomplish missed detection probability of
1% in the Rayleigh channel, the false alarm probability obtained is almost
0.8 however to obtain the same missed detection probability in the Weibull chan-
nel, false alarm probability is less than 0.1 which is very favorable for both indoor
and outdoor scenarios. Numerical analyses are carried out here to predict Primary
User (PU) channel condition using Hidden Markov Model with the help of Time
series forecasting learning method. It is evident that the prediction performance
has reached 100% as the result of using the Weibull Fading Model for a period
of 200 ms when compared to the Rayleigh model which is achieving only
84.5% accuracy in prediction.

Keywords: Co-operative spectrum sensing; machine learning; decision fusion;
weibull fading; time series; HMM

1 Introduction

When the spectrum is underutilized, Cognitive Radio (CR) is applied to exploit spectrum holes. This
permits the secondary users (SU) along with Primary Users (PU) to approach an unoccupied space in an
adaptable style [1]. To observe radio frequencies incessantly Spectrum Sensing (SS) [2] is used. The
detection method is used to recognize the availability of PU by computing the received signal energy by
applying an Energy Detector (ED) [3]. To mitigate the hidden terminal problem and shadowing effects,
the Cooperative Spectrum Sensing (CSS) [4] technique is introduced where numerous CRs in the system
feel the presence of PU as shown in Fig. 1. In CSS, for creating decisions CR users interchange sensing
outcomes to the Fusion Center (FC). The CR users interchange information to check whether the
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acquired energy is more than the threshold. Estimated energy is transferred to the fusion center to create an
improved decision by using several hard [5–8] and soft-decision algorithms. The FC gives a global result by
merging the individual decisions from each CRs.

Using extended generalized-K distribution fading channels are modeled for spectrum sensing using ED
in [9]. The CSS model with an Improved ED (IED) scheme is reviewed in [10] uses several antennas at each
CR. The CSS model with an antenna at every CR over the Rician channel is explored in [11]. System
parameter performance with an IED scheme is examined over channel models is done in [12]. The
analogous study in [13–16] using Nakagami-m and Weibull fading channel with ED method is done
since it does not require prior information about the channel. A classifier [16] with energy statistics of PU
along with decisions about the existence of PU is used for training. Based on learning methods classifiers
can be classified as supervised and unsupervised methods. The unsupervised machine learning technique
we used is the K-means algorithm to study and find out the primary user’s data and patterns. The
supervised machine learning techniques we used here is SVM to train the model with the data labeled in
the previous step. To forecast the decisions on undetected PU channel conditions, the trained classifier is
used. Evaluating the PU channel state [17–21] in CR is a tedious job since it is time varying. A lot of
works approach on earlier discussed problem [22–24] using Fast Fourier transform (FFT). It is having
high complexity because of large computations. Here we introduce the time series forecasting method for
identifying the occupancy of the PU channel state. A time series [25] is used to study the PU channel
state (i.e., “idle” or “occupied”). Then Hidden Markov Model (HMM) model is used to capture PU
channel status [26,27].

Here, we suggest a novel model based on Machine Learning (ML) techniques to detect the unused
spectrum of primary users effectively. We consider “energy vector”, as a feature vector in which the
energy level is calculated at each CR. Then, the classifier classifies the vector into either the “channel
available class” or the “channel unavailable class”. We investigated impact of small-scale fading such as
multi-path fading, delay spread and Doppler spread are considered over different fading channels. We
examined the performance of an unsupervised machine learning algorithm as well as a supervised
machine learning algorithm to construct the classifier for decision making. A qualitative performance
evaluation of various fusion methods with learning is presented. To acquire the advantage of multi-path
propagation, energy detection with receiver diversity is considered and analysis in terms of missed
detection and false alarm probabilities over various fading channels is done. Using HMM, primary user
channel state prediction is carried out. To our knowledge, no literature considers both sensing and
reporting channels as fading models and includes ML methods for classification and further to foresee
next state of PU channel using the time series forecasting method.

Primary User (PU) Fusion Centre (FC)

CR 1

CR 2

CR N

Fading channelsFading channels

Figure 1: Proposed schematic for cooperative sensing
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The rest of the paper is organized as below. In Section 2 we introduce the signal model and the proposed
cooperative spectrum sensing scheme. Different classification and fusion methods are presented. Simulation
results and discussions are given in Section 3 discusses the experimental outcomes. Finally, conclusion is
given at Section 4.

2 System Model

CR network with a single PU and seven SUs is considered. Here the PU alternates between the idle and
busy states. The SU knows the presence of the PU by sensing signals using an ED technique. The signal
energy is used to predict the presence of PU. We consider a cooperative CR network with K nodes
considering N test points for the ED and M frames for training the ML classifier, as illustrated in Fig. 2.

The ith frame of the received signal at the jth cooperative node, Yij(n) is given by

YijðnÞ¼ wij ðnÞ H0ffiffiffiffiffiffi
gij

p Sij ðnÞ þ wij ðnÞ H1

�
(1)

where Sij (n) is the primary user’s signal, which is a Gaussian i.i.d random process with zero mean, wij (n) is
the noise. The nodes are sensing frame and obtain the statistics. For ith frame at the fusion center, the energy

samples Yij, is expressed as ci ¼ 1
N

PN
n¼1

jYijðnÞj2, i lies between 1 and M, where γi is a random variable that

has a pdf with chi-square distribution. γij is the signal-to-noise ratio of the ith frame observed at the jth

cooperative node. r2j is standard deviation of noise samples wij (n). For all frames, noise variance and

SNR remains unchanged during the training process is our assumption. For each frame in the training set
a threshold, �j is selected then the probability of the false alarm, Pfa is obtained as

PfaðkjÞ¼ Qðð kj
r2j

� 1ÞÞ (2)

and probability of detection Pd is

pdðkjÞ¼ Q
kj

r2j ð1þ cjÞ
� 1

 ! ffiffiffiffi
N

2

r !
(3)

where Q (.) is the complementary distribution function.

Energy vectors from SU’s

Energy 
statistics 

at FC Decision

Energy 
vectors from 
new frames ML classifier Prediction

Training data

Figure 2: Proposed ML classifier model
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2.1 Fusion Center Threshold Calculation for Various Data Fusion Rules

In order to achieve optimal threshold, λ fusion rules are considered here. K nodes work together for
computing the threshold to build the overall sensing decision. The following hard fusion rules are used in
the decision center of the secondary users.

2.1.1 AND Fusion Rule
All nodes detect the signal and inform it to FC then, this rule decides that the signal is present so the

threshold [2] is

kAND ¼
ffiffiffiffi
2

N

r
Q�1 p

1
k
f

� �
þ 1

 !
r2u (4)

the detection probability Pd AND [7] can be expressed as

PdAND ¼ Q
kAND

r2u þ ð1þ cuÞ
� 1

� � ffiffiffiffi
N

2

r ! !K

(5)

2.1.2 OR Fusion Rule
If one among many users detect the signal, then this rule determines that signal is present so the threshold

[2] is

kOR ¼ 2

N
Q�1 1� ð1� pf Þ

1
k

� �
þ 1

� �
r2u (6)

the detection probability PdOR [7] can be

PdOR ¼ 1� 1� Q
kOR

r2u þ ð1þ cuÞ
� 1

� � ffiffiffiffi
N

2

r ! !K

(7)

The soft fusion rules we considered here include maximum ratio combining (MRC) and square law
selection (SLS).

2.1.3 Maximum Ratio Combining (MRC)
All CRs transmit their corresponding vectors to the FC. It gathers the data, combines them, creates a

global decision by comparing the value with the detection threshold. The fusion center adds them after

receiving these energy statistics csi ¼
PK
j¼1

wjcij for i varies from 1 to M where γij is i
th frame energy test

statistics. To maximize the detection probability, the optimum weight vector, wj has to be obtained.
The weighting coefficient vector wj can be achieved as wj = sign(gT w0) w0 where gT ¼
½ r21c1;r22c2; . . . ; r2KcK � with instantaneous SNRs and noise variances. Then fusion threshold is

kMRC ¼
XK
j¼1

wjr
2
j

 !
Q�1½Pf � þ

XK
j¼1

wjr
2
j (8)

the detection probability PdMRC is given by

PdMRC ¼ Q
kMRCPK

j¼1ð1þ cjÞwjr2j
� 1

 ! ffiffiffiffi
N

2

r !
(9)
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2.1.4 Square Law Selection Rule (SLS)
FC chooses the user with maximum SNR, γSLS [7] with noise variance, r2u. Then the threshold is given by

kSLS ¼ 2

N
Q�1 1� ð1� pf Þ

1
k

� �
þ 1

� �
r2u (10)

the detection probability PdSLS is given by

PdSLS ¼ 1� 1� Q
kSLS

r2u þ ð1þ cSLSÞ
� 1

� � ffiffiffiffi
N

2

r ! !K

(11)

2.2 ML Based Classification Methods

From the energy vectors obtained is compared with the threshold to obtain the decision, di which is
linked with ith frame is mentioned as

di¼ 1 cc � k
�1 cc � k

�
(12)

where cc 2 fci; csig and λε{λAND, λOR,λMRC, λSLS}. Here “−1 “ expresses the PU at rest, and “1” expresses
busy PU communication on channel as mentioned in Eq. (12). For classification problem ML based
classifier can be used to perceive the decision linked with a new frame. Initially, K-means is applied to
find primary users’ transmission patterns and statistics. Then, to differentiate between two states i.e.,
active or inactive state of the primary user signal, the Support Vector Machine (SVM) method is adopted.
In the first step, unsupervised machine learning techniques are used to analyze the primary user’s data
and patterns. Further, supervised machine learning techniques are used to train the model with the data
labeled in the previous step.

2.2.1 K-Means Clustering
This method divides a group of the training energy vectors into clusters. The set of those vectors that fit

in to cluster k is denoted by Ck. It’s centroid is αk. It aims to select K clusters, C1, . . . , CK, which minimize

argmin
C1; : : : ; Ck

XK
k¼1

X
y2Ck

k yl � ak k2 (13)

The steps involved in finding clusters that satisfy Eq. (13) are

1) The centroids for clusters are initialized first and its value in cluster 1 is fixed as α1 = μY|S . From the
cluster set, one cluster is selected that PU is idle (i.e., S = 0) so it belongs to channel available, whereas
further clusters belong to unavailable class.

2) From the energy vectors assigned earlier, centroids are calculated and are updated by obtaining the
average of all vectors except for cluster 1.

3) The iterations are recalculated till it converges. By K-means algorithm centroid for cluster k is

obtained as a�k = jCk j�1 P
yl2Ck

yl; ∀k = 2,…,K. After the training it receives the test energy vector,

y� for further classification. Then classifier decides whether it is a part of cluster 1 or not, by
computing distance from the test vector to the centroids.

k y� � a�1 k
min

k¼1;...;K
k y� � a�k k

� b (14)
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where parameter β is the threshold to limit the compromise between the misdetection and the false
alarm probabilities.

2.2.2 Support Vector Machine
These are supervised learning models and is used to produce the best decision boundary which can

separate space into classes. This boundary is called hyperplane. The way of choosing vectors that aid in
creating the boundary. These extreme vectors are called support vectors. The dataset of n points is given
in the form of (x1, y1),…,(xn, yn) and the final choice is either 1 or −1 that denotes the class to which xi
belongs [16] based on the hyperplane equation as

w:x � b ¼ 0 (15)

where w is the normal vector to the hyperplane and b is constant. For the training set (γi, di) where i varies
from 1 to M, the optimization is done to maximize the border between both classes (i.e., w γi + b = ±1 )
corresponding hyper-plane equation w γi + b = 0 can be found out using this classifier.

min
w;b

k w k2
2

� �
where k w k2 ¼ wTw (16)

Using Lagrangian function the solution for quadratic optimization is mentioned as

Lðw; b; aÞ ¼ k w k2
2

�
XM
i¼1

aiðdiðwci þ bÞ � 1Þ; ai � 0 (17)

where α = (α1,α2,α3,…αM) is the Lagrangian multipliers. If LHS of Eq. (17) is equal to zero then we get

w =
PM
i¼1

aidici and
PM
i¼1

aidi ¼ 0 and by putting it into Eq. (17) it can be reduced as

min
a

1

2

XM
i¼1

XM
j¼1

didjðcicjÞaiaj �
XM
i¼1

aj

 !
; aj � 0 (18)

We can find α from Eq. (18) and we can be computed using w =
PM
i¼1

aidici. By selecting αi is greater than

0 further, find b from the expression b = dj �
PM
i¼1

aidiðcicjÞ then the new decision γx using the given

classification function is

classðcxÞ ¼ sign
XM
i¼1

ajdjðcicxÞ þ b

 !
(19)

2.2.3 Channel Classification
Based on the energy vectors received, the fusion rules are applied and the energy vectors are given as

inputs to the above-mentioned algorithms. The ML algorithms classify the channel as available and
unavailable class. The former defines that the PU is idle in the channel so SU can get an admission. The
latter defines that the PU is present in the channel so the SU cannot access the channel and are redirected
to other available channels by cognitive radio. Based on priority and observations at the decision center,
it assigns the channel to the SU.
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2.3 Fading Models

2.3.1 Log Normal Shadowing
This model tells the path loss a signal experiences inside a building or tightly inhabited areas over

distance. The Probability Density Function (PDF) expression is specified as

f cc ¼ 10

lnð10Þcr ffiffiffiffiffiffi
2p

p exp
�10log10c� l2

2r2

� �
(20)

where μ is the mean and σ indicates standard deviation. Then approximated detection probability [14] is
given by

Pd;ln ¼ 2

ffiffiffiffiffiffi
a
2p

r
exp

a
b

� �X1
n¼0

�ðuþ n; k=2Þ
�ðuþ nÞn!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab2

aþ 2b2

s !n�1=2

Kn�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 2b2Þ

b2

s !
(21)

where α is the shape parameter and β denotes the expectation of γ. Kv(.) signifies a modified Bessel function
of second kind, � (.) is gamma function and its complementary incomplete function be � (.,.).

2.3.2 Rayleigh Fading
This model assumes signal to noise ratio, γ follows an exponential PDF given as

f xy ¼ 1
�c
exp

�c
�c

� �
; c � 0 (22)

The approximated detection probability [14] is given by

Pd;Ray ¼ 1

1þ �c

Xu�1

n¼1

l

2

� �n

exp
�k=2
n!

� �
1F1 1; nþ 1;

k�c
2ð1þ �cÞ

� 	
þ exp

k
2ð1þ �cÞ
� �

(23)

where λ denotes the threshold of the energy detector, �c denotes average Signal to Noise Ration (SNR) and
1F1(.;.;.) denotes confluent hypergeometric function.

2.3.3 Rician Fading/Nakagami-n Fading Model
In Rician fading, a strong line-of-sight wave is prevailing. The corresponding PDF is given by

f xy ¼ 1þ K
�c

exp
�Kð1þ KÞc

�c

� �
� I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1þ KÞc

�c

s" #
(24)

where K denotes Rician factor, nth order modified Bessel function of the first kind be In(⋅). The approximated
probability for detection of this model is

Pd;Ric ¼ 1þ K
�c

expð�KÞ
X1
n¼0

�ðuþ n; k=2Þ
�ðuþ nÞ

�c
1þ K þ �c

� �nþ1

:1F1 nþ 1; 1;
Kð1þ KÞ
1þ K þ �c

� 	
(25)

where u is the time-bandwidth product.

2.3.4 Weibull Fading
Weibull fading model has been introduced to analyze rapid signal fluctuations in non-line-of-sight

scenario. The PDF expression of the instantaneous SNR γ is specified as
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f cc ¼ c
�ðpÞ
�c

� 	c
gc�1 exp � g�ðpÞ

�c

� 
c� 	
; c � 0 (26)

where c = v/2 and p = 1 + 1/c. The factor v, always greater than zero, is the Weibull fading parameter shows
fading severity and if v = 2 Eq. (26) reduces to Rayleigh PDF. The approximated detection probability for
Weibull fading channel [14] is

Pd;Wei ¼ ð2pÞ1�c
2

�ðpÞ
�c

� 	cX1
n¼0

�ðuþ n; k=2Þ
�ðuþ nÞn! cnþcþ1=2:Gc;1

1;c

1

�ðpÞ
�c

� 	c j nþ c

c
; . . . :;

nþ 2c� 1

c

2664
3775 (27)

where Gm;n
p;q xj a1 . . . ap

b1 . . . : bp

� �
denotes Meijer’s G function

2.3.5 Nakagami-m Fading Model
Here the random variable γ obeys a Gamma PDF is mentioned as

f cc ¼ m
�c

� �m cm�1

�ðmÞ exp
�mc
�c

� �
; c � 0 (28)

where m is the fading severity parameter which lies between 0.5 and ∞. The approximated detection
probability [14] is given by

Pd;Nakm ¼ m

mþ �c

� �m Xu�1

n¼1

l

2

� �n

exp
�k=2
n!

� �
1F1 m; nþ 1;

k�c
2ðmþ �cÞ

� 	
þ �c
ðmþ �cÞ exp

km
2ðmþ �cÞ
� �

:
Xm�2

k¼0

m

mþ �c

� �k

Lk
�k�c

2ðmþ �cÞ
� 	

þ mþ �c
�c

� �
m

mþ �c

� �m�1

Lm�1
�k�c

2ðmþ �cÞ
� 	( ) (29)

If we put m = 1 this distribution becomes Rayleigh distribution and reduces to Eq. (23).

2.3.6 Hoyt Fading / Nakagami-q Fading Model
This model portrays fading severely than Rayleigh fading where q (0≤ q ≤1) is the severity parameter.

The PDF is mentioned as

f cc ¼ 1
�c
ffiffiffi
p

p exp
�c
p�c

� �
I0

c
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
p�c

� 	
; c � 0 (30)

where p = 4q2/ (1 + q2) 2, p lies between 0 and 1. When p and q are equal to one, then the distribution becomes
Rayleigh PDF. The approximated detection probability [14] is given by

Pd;Hoyt ¼ 1
�c
ffiffiffi
p

p
X1
n¼0

�ðuþ n; k=2Þ
�ðuþ nÞ

p�c
1þ p�c

� �nþ1

: 2F1
nþ 2

2
;
nþ 1

2
; 1;

1� p

ð1þ p�cÞ2
" #

(31)

2.4 Spectrum Prediction Model

2.4.1 Time Series Generation
Over time the state of PU is to be predicted whether it is in “Idle state” or “Occupied state” and to obtain

the transition from one state to another. For that time series is created to assign every state of the detection
series into a different sample space with random variables using Autoregressive Integrated Moving Average
(ARIMA) model as shown in Fig. 3. The time series gt is expressed in (32)
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gt 2 u1;u2;...ul gt, k
ulþ1...um gt � k

�
(32)

where gt 2 u1;u2;...ul represents PU absent and gt∈ ul+1…um represents PU present. We want to estimate the
next state Xt+1of a PU channel state currently at Xt.

2.4.2 Hidden Markov Model for Primary User Channel Condition Forecasting
In the Hidden Markov Model the system outcome is known and state change probabilities are unknown.

Let X = {X1,Xt,….XT} represents the hidden state series where Xt∈ si, i = 1, 2,…K, si represents states of PU
can take a value of 0 and 1. The number of hidden states is denoted by K. Assume O = {O1,Ot,….OT} exhibits
the observation sequence where Ot∈ u1,u2,…uM and a number of the observations is mentioned as M. The
transition and the emission probabilities matrix respectively are A and B also the initial state probability
vector is represented by π. HMM is represented as θ = (π, A, B) and considered two unknown states
i = 2, p ¼ ðp1; p2Þ is used for calculating above matrices.

A ¼ ðaijÞK�K (33)

aij ¼ PðXtþ1 ¼ sjjXt ¼ siÞ (34)

where aij is the probability that for the present state si, the next state is sj. The emission probabilities matrix is
given as

B ¼ ðbjmÞK�M (35)

bjm ¼ PðOt ¼ uM jXt ¼ sjÞ j ¼ 1 to K; m ¼ 1 to M (36)

here bjm denotes probability for current observation uM, the current state is sj. Let the probability of state
series t which ends at state i be

dtðiÞ ¼ max
X1;...;Xt�1

PðX1; . . . ; Xt�1 ¼ si; O1;OtjuÞ (37)

To maximize Eq. (37) we use a vector φt(i) which stores the argument values. Following are the steps
used in the Viterbi Algorithm to estimate the channel state.

Step 1: Initializes δt (i) and φt (i)

dtðiÞ ¼ pibiðO1Þ (38)

’tðiÞ ¼ 0 i ¼ 1; . . .; K (39)

Step 2: Repeats to upgrade δt(i) and φt(i)

dtðjÞ ¼ max
1�i�K

½dt�1ðiÞaij�bjðOtÞ j ¼ 1; . . . K; t ¼ 2; . . .; T (40)

Energy statics 
at fusion 

centre 

Time series 
generation 

HMM model 
to predict 

Figure 3: Block diagram for prediction of channel condition
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’tðjÞ ¼ argmax
1�i�K

½dt�1ðiÞaij� j ¼ 1; . . . K; t ¼ 2; . . .; T (41)

Step 3: Computes the likelihood probability P*, then estimated state q�T by

P�¼ max
1�i�K

½dT ðiÞ� (42)

q�T ¼ argmax
1�i�K

½dT ðiÞ� (43)

to obtain HMM parameters u ¼ ðp; A; BÞ statistically Baum-Welch Algorithm and maximum likelihood
estimation is used. This estimation is done these ways.

Step 1: Obtain the training observation vectors O1,O2Ot,….OL with length L

Step 2: Obtain θ(1) when k = 1 and update k = k + 1

Step 3: Calculate θ(k) based on O1,O2Ot,….OL. Let the probability of current state si be γt(i) and its
transition to next state sj be ζt(i, j)

ctðiÞ ¼ PðXt ¼ sijO1;::; OL; uÞ t ¼ 1; 2 . . .L (44)

ftði; jÞ¼ PðXt ¼ si; Xtþ1 ¼ sjjOO1;::; OL; uÞ (45)

Step 4: Obtain expected values of state si and its transitions to sj as E(γt (i)) and E(ζt (i, j))

EðctðiÞÞ ¼
XL�1

t¼1

ctðiÞ (46)

Eðftði; jÞÞ ¼
XL�1

t¼1

ftði; jÞ (47)

the parameters calculation from the training sequence in [21] is used.

pi ¼ c1ðiÞ for i ¼ 1; 2; 3 . . .K ; at t ¼ 1 (48)

Calculate baij by varying i and j from 1 to K

baij ¼ Expected number of transitions from state si to state sj
Expected number of transitions from state si

¼ ¼
PL�1

t¼1 ftði; jÞPL�1
t¼1 ctðiÞ

(49)

Calculate bbiðmÞ by varying i from 1 to K

bbiðmÞ ¼ Expected number of times in state sj and observing um
Expected number of times in state sj

¼

PL
t ¼ 1
Ot ¼ um

ctðiÞ

PL
t¼1 ctðiÞ

(50)

Step 5: Get the new approximation of baij, bi(k) and pi then label it as θ(k + 1)

Step 6: If not converging then go to step 3.
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3 Results and Discussions

We assume that PU and SUs are stationary. In our scenario, we considered two PUs and seven co-
operative SUs. The simulation is carried out with the assumption of the following parameters as shown
in Tab. 1.

3.1 Training Duration of Classifiers

500 energy vectors were chosen for training each classifier. For unsupervised learning details about
channel availability are not required while for supervised learning the channel availability states are
required for training. It involves dividing the vectors into clusters and its centroid calculation is done in
K-means clustering. But in SVM, locating the hyper-plane which splits the training energy vectors
distinctly is the primary task. After successful training of the classifier is completed, the test energy
vector is provided for classification. The training duration of classifiers for the size of the energy vector is
used for training is shown in Tab. 2. As we increase the number of samples up to 1000 for training the
supervised learning technique K-Means technique shows a high training duration (0.117 s) for
1000 samples. Also, the time taken to decide the channel availability is calculated for 1000 samples and
obtained as 1.8 × 10−5 for K-Means and 5.5 × 10−5 for SVM.

3.2 Machine Learning Classification

We represent the scatter plot of energy vectors here. In Fig. 4a the K-means method defines a threshold
margin between the energy vector points by calculating centroids and classify them as the channel available
and unavailable class. Fig. 4b shows SVM algorithm using Linear kernel separates the energy points based
on channel availability and draws a decision boundary to determine the threshold for classification.

Table 1: Simulation parameters

Parameters Values

Bandwidth 5 MHz

Sensing duration 100 μs

Noise spectral density −170 dBm

Path loss exponent 4

Transmit power of PU 100 mW

Table 2: Training duration required (second)

Classification schemes Samples used for training classifier

200 400 1000

K-Means 0.093 0.094 0.117

SVM-Linear 0.014 0.021 0.062
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We consider SUs located at different places that are 1 km apart. Fig. 5 presents various CSS methods
accuracy in terms of Receiver Operating Characteristic (ROC) curves. It portrays that SVM method is
better than the other methods. So this method is suited for multiple primary user cases with high
accuracy. The SVM with Linear kernel classifier achieves high detection probability even in the presence
of seven secondary users. Also, the unsupervised learning K-Means method is having a comparable
performance with the SVM method. By bringing intelligence to the system upgrades the classification
process. Even though complexity is associated with SVM, the CR scenario is more prone to lose
connectivity the supervised learning is more suitable. AND and OR methods will not produce exact
outcomes since outcome depends on all and one decision by CRs.

3.3 Numerical Analysis of Spectrum Sensing Using Multiple CR

Numerical outcomes for decision fusion methods are illustrated here. The average snr �c is assumed to be
15 dB. Fig. 6 manifests the probability of missed detection (Pmd) vs. the probability of false alarm (Pfa) under
several fading scenarios. Fading channels like Rician, Nakagami-m, Hoyt, Weibull and log-normal
shadowing are considered with parameters chosen to be K = 3, m = 3, q = 0.25, v = 6, and σ = 5 dB after

Figure 5: ROC curve of different cooperative spectrum sensing methods

Figure 4: Scatter plot of energy vectors using various classification methods (a) K-Means classification
(b) SVM classification
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running simulations. These parameters are found to be optimal values and it is also coinciding with previous
literature. Fading introduces missed detection. We also observe v = 2, Weibull fading channel performance is
identical to Rayleigh channel. Apparently, Weibull fading shows the best result among all fading models as
the slope of the curve drops quickly. To achieve a Pmd of 1% in a Rayleigh channel, Pfa is found to be
0.8 while in the Weibull channel to obtain the same Pmd, Pfa of even lesser value is obtained, which is
highly desirable. It is observed that Pmd value reduces as Pfa increases, hence increase detection
probability Pd. This reduction in false alarm probability is required in cognitive radar applications to
increase detection probability in cluttered environment. So spectrum utilization can be enhanced. From
Fig. 7 it is understood that the probability of detection Pd of 75% is achieved even for very less Pfa in the
Weibull fading model when compared with the Rayleigh model which can produce upto 55% only.

As the Weibull Fading has shown better performance, we utilize this to improve the channel sensing and
the fusion decision approach of the cognitive radio network. The Weibull fading has followed a chi-square
distribution function. Fig. 8 represents ROC of various decision fusion methods. We consider seven
cooperative nodes and for soft fusion rules the assumed SNR values vary from −25 to −15 dB.

We keep the probability of false alarm also low. It is evident that MRC outperforms the other schemes. It
is due to the right selection of fading channels and learning methods. Detection is done with greater accuracy
because the weight vector is chosen optimally. It is achieving a Pd of 70% for a Pfa of 0.5. Even in less SNR, it
works well.

Figure 6: Impact of CR sensing in different fading channels

Figure 7: ROC curve for Rayleigh and Weibull fading models (Pd vs. Pfa)
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Once the energy vectors are obtained they are classified as the channel available and unavailable classes
and the SVM-Linear algorithm is used for the classification. The ROC plot shows that the performance of the
decision Rules is highly improved and almost reached an accuracy of ∼100% in Fig. 9. MRC reaches the best
accuracy of 99.9% where the AND rule has the least accuracy of 97.8%. Over thousand frames this SVM
method predicted efficiently when various thresholds are fed into the classifier. The true positive rate
obtained for various methods is shown here. Hence it is evident that the Weibull fading along with Chi-
Square Distribution has increased spectrum sensing and SVM classifier with MRC can classify the
channels with great accuracy. We use 1000 testing frames for classification. Fig. 10 shows thresholds of
the above rules is fed into SVM classifier and it achieves detection rate of 99.9%. It depicts the
identification of holes in the spectrum which can be effectively utilized. Among various methods, MRC
is showing the best performance.

Figure 8: ROC curves for various fusion rules

Figure 9: SVM classifier model predicts the output for various fusion thresholds
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3.4 Prediction of Primary User Channel State Using HMM Model

To estimate the next state of PU we examine a method and is divided into three steps. First, we find the
PU channel state then obtain a model based on the detection that creates a time series to learn about its present
condition and finally propose a model for predicting its next state using HMM. For a time period, T = 200 ms
Fig. 10a represents the random distribution of PU channel conditions. It presents the state of the PU in a
particular channel. It has both idle state (channel available state) and occupied state (channel unavailable
state). These idle states are termed as the spectrum holes and can be effectively used for the SU
communication in CRN. In Fig. 10b to differentiate the state of activity of the PU channel a margin is
drawn. The points below the margin show the amount of the spectrum holes in a channel. While the
points above the margin show the instances at which the channel is occupied by the PU. This sequenced
time series is used as the input parameter for the HMM prediction model. Once the sequenced time series
is generated, it is used along with emission and transmission probability for the prediction of the channel.
The Hidden Markov Model along with Viterbi and Baum Welsh algorithm is used for the Spectrum

Figure 10: HMM algorithm to capture PU channel conditions (a) Generation of channel states of PU (b)
Time series generated for prediction (c) Channel vacancy prediction for various channel models
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Prediction. It is evident that the prediction performance has reached 100% as the result of using the Weibull
FadingModel for a period of 200 ms from Fig. 10c when compared to the Rayleigh model which is achieving
only 84.5% accuracy in prediction. Hence the spectrum prediction of the PU channel activity is done with
maximum accuracy.

4 Conclusion

Thus an efficient machine learning algorithm for spectrum sensing and prediction is developed and
simulated in the wireless cognitive environment. The spectrum sensing was initially done with the
Rayleigh fading model and the channel was classified with the help of machine learning but it has shown
a poor act in terms of detection. Hence an improvisation by considering the other channel fading models
and tested them in the wireless environment is found. As a result, the Weibull fading model is the best
fading model to use in both indoor and outdoor wireless environments. Further to find the best fusion
rule algorithm to suit this scenario, we conducted the performance comparison of soft and hard fusion
rules and found maximal ratio combining algorithm is performing well by making use of receiver
diversity in multiple CRs. Thus we combined the Weibull fading model with the MRC fusion rule and
tested it in the cognitive environment under the chi-square distribution for multiple secondary users and
this resulted in better detection characteristics. Then HMM with Baum Welsh and Viterbi Algorithm is
used for the spectrum prediction by generating a time series to capture the states of PU. This has given a
high accuracy in forecasting the next state of the channel.

The chosen energy vectors correctly train the classifier to find the occupancy of the primary user. The
duration of training is found to be very less. So SVM method can be a good choice to get a decision on the
channel conditions ambiguity. Among various fading models, the Rayleigh model is due to multipath
reception and all the other models are its variants. By doing simulations we obtain the best possible
values of severity factor of all the methods and found out that detection is good in the Weibull method. It
is observed that the Pmd value reduces as Pfa increases, hence increase detection probability. This
reduction in missed detection is required in cognitive radar applications to identify targets in a cluttered
environment. Thus spectrum utilization can be enhanced. The simulation results revealed that the
classifier trained with the ML algorithm helps the fusion center to attain well in terms of sensing
accuracy. From the received statistics MRC method gives its best because of the accurate choice of
weight parameter based on energy data obtained from all CR users. The fusion center can conclude
channel status accurately. Then Hidden Markov model is used to study the occupancy of the primary user
channel and predicts its near future to make use of spectrum is efficiently and found out that high
accuracy in predicting the occupancy of the channel. Using this model the prediction in various fading
models is done and found out that using time series-forecasting model completely fits on past data and
using them to predict future interpretation. This work finds application in the field of 5G technology
where the wireless spectrum is very important to be shared with lots of IoT machines and smart devices
for communication.
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