
Moving Object Detection and Tracking Algorithm Using Hybrid Decomposition
Parallel Processing

M. Gomathy Nayagam1,*, K. Ramar2, K. Venkatesh3 and S. P. Raja4

1Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam, 626117, India
2Department of Computer Science and Engineering, R.M.K. College of Engineering and Technology, Chennai, 601206, India

3Department of Computer Science and Engineering, Veltech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, 600062, India

4School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
*Corresponding Author: M. Gomathy Nayagam. Email: m.g.nayagam@gmail.com

Received: 28 September 2021; Accepted: 17 December 2021

Abstract: Moving object detection, classification and tracking are more crucial
and challenging task in most of the computer vision and machine vision applica-
tions such as robot navigation, human behavior analysis, traffic flow analysis and
etc. However, most of object detection and tracking algorithms are not suitable for
real time processing and causes slower processing speed due to the processing and
analyzing of high resolution video from high-end multiple cameras. It requires
more computation and storage. To address the aforementioned problem, this paper
proposes a way of parallel processing of temporal frame differencing algorithm
for object detection and contour tracking using the mixture of functional and
domain decomposition parallel processing techniques. It has two main contribu-
tions. First, steps of frame differencing are parallelized using functional decompo-
sition technique. Second, the processing of frames in each steps of frame
differencing is again parallelized using domain decomposition technique. Finally,
the performance is evaluated in Aneka Private Cloud platform and which yields to
detect and track the object very swiftly and accurately.

Keywords: Temporal frame differencing based object detection; functional and
domain decomposition parallel processing techniques contour tracking and cloud
computing

1 Introduction

In automated video surveillance system [1], the task of detection and tracking of moving object is a
important part and it can be done be different approaches. But it does not have common approaches for
all applications. Background subtraction is one of the most popular and robust method for moving object
detection [2,3]. But there is a challenge in background subtraction due to dynamic background,
illumination changes and etc. [4]. The temporal difference method is used in [5] where they proposed
reliable foreground segmentation algorithm which combines temporal image analysis with reference
background image. It is suitable to adapt for background change in illumination. In [6], they extract

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.023953

Article

echT PressScience

mailto:m.g.nayagam@gmail.com
http://dx.doi.org/10.32604/iasc.2022.023953
http://dx.doi.org/10.32604/iasc.2022.023953

moving object based on temporal differencing mechanism and they used Normalized Cross Correlation
(NCC) technique to remove Ghost and shadow effect during temporal frame differencing mechanism.
Smart cameras that perform real time video analysis are recent trends in surveillance system [7].

Due to the amount of data that needs to be processed for providing high accuracy in real time video
surveillance systems, most of the algorithms are having difficult and time consuming characteristics in
nature. If we perform video analysis in serial processor, it requires more computation time and uses
significant amount of energy which bounds the application of such algorithm in live video analysis.

GPU are popular platform for parallel processing of objection and tracking [8] using software such as
openCL and CUDA. Due to the physical constraints and high energy consumption of GPU, there is a need to
modify the algorithm for the particular embedded GPU chipset. Otherwise, it results in suboptimal
performance in such GPU chipsets.

Another way is the implementation of parallel algorithm on embedded systems which is based on digital
signal processor (DSP) and field programmable gate arrays (FPGA) [9]. Since, this system have low number
of computing units, this solution is suitable only for low video resolution and low frame rate video
processing.

Cloud computing is one of the platform for implementing parallelization of moving object detection and
tracking algorithm without any modification for optimization and also does not require any specialized
hardware. So, implementing parallelization of moving object detection and tracking algorithm in cloud
platform is more efficient and cost effective [10–12].

In this paper, parallel version of temporal frame difference based moving object detection with contour
tracking is presented. In order to achieve functional decomposition, there are three master threads are created
in this proposed work. First one is responsible for motion detection using temporal frame differencing,
second one is responsible for noise removal in foreground image and third one is responsible for blob
detection and track the individual objects. The moving object detection thread is again divided into child
thread for inherent parallelization of pixel by pixel subtraction operation. The work will outperforms to
detect multiple objects at same time with high speed with good accuracy.

Remaining of the paper is organized as follows: Section 2 surveys the relevant work done using cloud
computing and other technologies. Section 3 describes the proposed work. Section 4 describes results and
performance evaluation. Section 5 discusses conclusion and future work.

2 Proposed Work

The proposed cloud computing based rapid object detection and tracking system is elucidated in this
section.

2.1 Overview of the Work

The main aim of this article is to present cloud computing based rapid object detection and tracking
system. Most of the object detection and tracking algorithm requires more computational and storage for
processing video. The cloud computing will provide environment which has more computational and
storage requirements to process the video for detecting and tracking object in it with very rapidly. The
following Fig. 1 shows the architecture of cloud based moving object detection and tracking system in
video. The proposed system assumes the camera is fixed in the particular surveillance area with fairly
wide angle of view.

1486 IASC, 2022, vol.33, no.3

The frequently captured video file is transferred to cloud environment through GUI and cloud manager
where video are sliced into frames and each frames are considered as a work unit of cloud environment. Each
of the work unit is distributed to executor by using cloud scheduler. The system components of proposed
system architecture includes: video capture, motion detection, Image Filtering, Blob detection, contour
detection, updatation and tracking.

In order to parallelize these components, the proposed system architecture uses functional
decomposition based parallelism. Hence, each functional component of temporal object detection and
tracking algorithms are executed parallelly by the worker node. Again, these functional decomposed
components are internally parallelized using inherent sequential parallelizing mechanism which is
executed by the individual workers nodes. The Fig. 2 shows the functional decomposition based
parallelizing mechanism to execute the functional components of object detection and tracking algorithm
parallely.

2.2 Video Capture

The input can be taken in two ways using camera or giving path for stored video file which are captured
from camera sensors. Live video streams need to be processed. Once the video captured which are converted
in to frames and processed. Frames in videos are sequence of images which is a representation of two
dimensional images as a finite set of digital values called pixel [13–15] in digital computer. Digital
images are represented as 2D matrices which contains finite set of elements px, y which is the color
information for the corresponding pixel in the image at the given location x, y.

Figure 1: Architecture of cloud based moving object detection and tracking system

IASC, 2022, vol.33, no.3 1487

Figure 2: Functional decomposition based parallel execution for temporal frame differencing

1488 IASC, 2022, vol.33, no.3

2.3 Motion Detection Using Temporal Frame Differencing

In this work, detection of moving object using temporal frames differencing [16] which is the simplest
background subtraction techniques. Also, it is a non-recursive method; hence there is no need to maintain the
history of frames in buffer. So, memory requirement for this algorithm is low compared to other existing
algorithms. In this method, current frame’s pixel values are subtracted with previous frames pixel value.
Based on the thresholding value, moving region of the image is extracted and identifies the both
foreground and background [17]. The resultant of absolute pixel value is zero indicates, there is no
moving object or non-zero value of this pixel value indicates there was a moving object in frames.

According to the method describe above, the difference between the frame at t and frame at t−1 is
determined as follows [18,19]:

Dk ¼ jIx;y;t � Ix;y;t�1j (1)

For adopting the changes in background illumination [19,20], the reference image is updated at each
iteration as follows:

Btþ1 ¼ ð1� aÞBt þ aIx;y;t (2)

The pixel value of frames/image is represented as a matrix and matrix subtraction operations carried out
for motion detection. The size of image is divided into smaller kernel like N × N matrix and each kernel of
adjacent frame pixels are created as a thread which are executed in different cloud executor using inherently
sequential decomposition mechanism. The Fig. 3 shows the inherently sequential based functional domain
decomposition for temporal frame differencing.

Figure 3: Inherently sequential based functional domain decomposition for temporal frame differencing

IASC, 2022, vol.33, no.3 1489

2.4 Noise Removal

Some of the background frames have spurious movement of object. It leads to mistaken in detect and
track the object. So, this noise causing elements have to be filtered. For this purpose, this work used two
basic morphological operations viz erosion and dilation. The basic effect of dilation mathematical
morphological operation is to gradually increase the image boundary of region of foreground pixels
whereas erosion mathematical morphological operation gradually shrinks the background [20]. Hence, it
removes the noises.

The erosion of binary image f by a structuring element s is denoted by f θs which produces g=f θs. It
reduces the size of regions of interest.

If gðx; yÞ ¼ 1; 0s0 fits 0f 0

0; otherwise

�

The dilation of an image f by a structuring element s is denoted by f� s which produces g = f� s. It adds
a layer of pixels to both inner and outer boundaries of region.

If gðx; yÞ ¼ 1; 0s0 hits 0f 0

0; otherwise

�

The number of iteration for each erode operation is depends on how much noise presents in the video
frame. So, here we applied dilation operation applied on the output of the erosion operation. These operations
remove noise, isolation of individual elements and distinct element in an image and finding intensity holes in
an image. Both operations take two pieces of data as input. One is the image which is to be dilated and
another one is set of coordinate points known as structuring elements/kernel with the size of N × N. Each
N × N size of frames is processed by different worker nodes of cloud environment using functional
domain decomposition approach.

2.5 Blob Detection

It is a mathematical step to detect specific region based on some property in digital image. Blob made up
of pixels having specific property in common and pixels which are combined together if they share common
neighborhood pixels that have values greater than the threshold are the property of interest. After absolute
differencing and noise removal applied in each video frames, the output of the pixel value is greater than
binary threshold which is eligible to form a blob. All the adjacent neighbor of each such pixels are tested
for eligibility and, if they satisfy, all those pixels are combined together to form blobs. In order to blob
created by spurious movement, which are considerably in small, the size of detecting blob is limited by
choosing blob threshold. By default, in this work the threshold value for blob detection is 15 and also
applied smooth Gaussian filter with small kernel size (i.e., 3 × 3). Functionally decomposed kernels are
processed by different worker node as individual thread. The output of this module is given as the
feedback to detection system for learning.

2.6 Contour Detection and Tracking

Contour is the boundary of object pixel above the threshold value. It is edge based features which are
insensitive to illumination change. Contour analysis output uses a linked list which consists of detected
blobs. All the promising contours are found and reconstructed a full hierarchy of nested contour by using
RETR_TREE Mode. The end points which are necessary for drawing the contour are extracted by using
CHAIN_APPROX_SIMPLE method. In this work, once contour is identified, each contour is tracked
separately with individual thread of different worker nodes in cloud environment. Fig. 4 shows the
sample video frames and corresponding detect contour in the frame.

1490 IASC, 2022, vol.33, no.3

The proposed algorithm is shown in the Fig. 5.

The following Fig. 6 shows the temporal difference between contiguous frames and extracted
foreground object using threshold, detected foreground objects.

Frame 25 Frame 149 Frame 183

Frame 25 Frame 183Frame 149

Figure 4: Sample capture video frame and its corresponding contour detected frames

Figure 5: Pseudo code of proposed algorithm

IASC, 2022, vol.33, no.3 1491

3 Performance Evaluation

We have run some tests in order to compare the performance of different execution. We set the different
tests by varying the following parameters:

� Number of Video Frames

� Frame rate

� Video file size
� Video Resolution

� Kernel Dimension for processing

The performance of the proposed approach is evaluated in local standalone machine with Intel® Core™
i5-3380M CPU@ 2.90 Ghz with 4 GB RAM, GPU Node(NIVIDIA GeForce210 with 4 GB Ram) and
Aneka Cloud composed of 3 nodes–1 manager and 2 executor where each arehaving the configuration of
Intel Core i5 processor systems with 8 GB RAM. The entiremachines in the test were running in
Windows 7 professional SP1 and .Net Framework 2.0 with EMGUCV. With the intention of checking the
proposed approach, it is tested over several videos which are chosen from the CAVIAR and VISIOR data
set. The accuracy of object detection is shown in Tab. 1 and also Tabs. 2–7 shows the total elapsed time
of object detection and tracking in various video with varying kernel dimension for processing without
multi-threading in standalone i5 processor, with multi-threading in standalone i5 processor, without multi-
threaded GPU node, with multi-threaded GPU node, Aneka Cloud with single executor and Aneka Cloud
with 2 Executor.

Temporal Difference Temporal Frame difference with
Threshold

Detected Foreground in Frame no.10 Detected Foreground in Frame

no.11

Figure 6: Temporal frame difference, with threshold output and detected foreground in contiguous frame

Table 1: Object detection accuracy of various video data sets with different resolution

Video data set Detection accuracy (%)

Data set 1 90.7

Data set 2 93.5
(Continued)

1492 IASC, 2022, vol.33, no.3

Table 1 (continued)

Video data set Detection accuracy (%)

Data set 3 94.8

Data set 4 97.6

Data set 5 98.5

Data set 6 98.2

Data set 7 96.8

Data set 8 98.2

Data set 9 98.5

Data set 10 96.3

Average 96.31

Table 2: Total elapsed time (in seconds) of object detection and tracking process without multi-threading in
standalone i5 processor

Data sets #Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 726 449 423 350 320

Data set 2 158 15 121 KB 192 × 144 602 492 480 367 350

Data set 3 227 18 533 KB 200 × 164 756 470 450 388 335

Data set 4 53 10 124 KB 320 × 240 1161 629 581 422 409

Data set 5 599 30 5.15 MB 320 × 240 1310 1225 1020 850 730

Data set 6 887 10 18.5 MB 320 × 240 1400 1100 900 711 609

Data set 7 1700 60 3.46 MB 320 × 240 1500 1225 1020 850 730

Data set 8 4556 30 21.2 MB 320 × 240 3230 3100 2999 2800 2730

Data set 9 606 25 9.09 MB 352 × 288 1350 900 810 611 509

Data set 10 1496 25 15.3 MB 360 × 288 1475 1205 1000 820 715

Table 3: Total elapsed time (in seconds) of object detection and tracking process with multi-threading in
standalone i5 processor

Video
data sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 378 350 320 315 295

Data set 2 158 15 121 KB 192 × 144 517 400 379 374 342

Data set 3 227 18 533 KB 200 × 164 400 370 350 330 320

Data set 4 53 10 124 KB 320 × 240 792 620 567 366 350

Data set 5 599 30 5.15 MB 320 × 240 970 987 900 660 600

Data set 6 887 10 18.5 MB 320 × 240 1050 887 799 545 499

(Continued)

IASC, 2022, vol.33, no.3 1493

Table 3 (continued)

Video
data sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 7 1700 60 3.46 MB 320 × 240 1125 987 900 660 600

Data set 8 4556 30 21.2 MB 320 × 240 2125 1987 1900 1660 1600

Data set 9 606 25 9.09 MB 352 × 288 950 795 701 450 501

Data set 10 1496 25 15.3 MB 360 × 288 1105 957 870 640 589

Table 4: Total elapsed time (in seconds) of object detection and tracking process without multi-threading in
GPU

Video data
sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 131 100 90 75 67

Data set 2 158 15 121 KB 192 × 144 209 136 97 82 78

Data set 3 227 18 533 KB 200 × 164 248 171 163 143 84

Data set 4 53 10 124 KB 320 × 240 261 228 103 88 81

Data set 5 599 30 5.15 MB 320 × 240 750 627 539 420 320

Data set 6 887 10 18.5 MB 320 × 240 650 500 400 320 215

Data set 7 1700 60 3.46 MB 320 × 240 750 627 539 420 320

Data set 8 4556 30 21.2 MB 320 × 240 1750 1627 1539 1420 1320

Data set 9 606 25 9.09 MB 352 × 288 550 450 325 220 115

Data set 10 1496 25 15.3 MB 360 × 288 725 597 501 400 295

Table 5: Total elapsed time (in seconds) of object detection and tracking process with multi-threading in
GPU

Video data
sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 110 87 85 82 81

Data set 2 158 15 121 KB 192 × 144 115 91 75 70 62

Data set 3 227 18 533 KB 200 × 164 120 99 90 87 85

Data set 4 53 10 124 KB 320 × 240 122 87 75 71 69

Data set 5 599 30 5.15 MB 320 × 240 401 398 370 320 240

Data set 6 887 10 18.5 MB 320 × 240 277 257 220 200 115

Data set 7 1700 60 3.46 MB 320 × 240 401 398 370 320 240

Data set 8 4556 30 21.2 MB 320 × 240 1401 1398 1370 1320 1240

Data set 9 606 25 9.09 MB 352 × 288 178 147 120 100 90

Data set 10 1496 25 15.3 MB 360 × 288 387 367 340 299 215

1494 IASC, 2022, vol.33, no.3

The data represented in the Tab. 1 show that object detection accuracy of various video data sets with
different resolution which is calculated by the following formula.

ar ¼ Tp þ Tn
Tp þ Tn þ Fp þ Fn

� 100 (3)

where Tp, Tn are the true positive and true negative rates. Fp; Fn are the false positive and false negative
rates. From the aforementioned table, it is observed that we get high accuracy of object detection from high
resolution video. But the processing time of high resolution video is high.

MSE is one of the measurements for identifying similarity between frames. If we are using MSE is only
the measurement of identifying similarity between frames, it runs into problem. Hence in this work, we used
Structural similarity index developed in [21].

Table 6: Total elapsed time (in seconds) of object detection and tracking process with Aneka Cloud-single
executor

Video data
sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 90 67 62 57 50

Data set 2 158 15 121 KB 192 × 144 97 77 57 52 42

Data set 3 227 18 533 KB 200 × 164 90 77 77 65 58

Data set 4 53 10 124 KB 320 × 240 92 67 55 43 38

Data set 5 599 30 5.15 MB 320 × 240 380 345 330 287 205

Data set 6 887 10 18.5 MB 320 × 240 252 235 205 182 125

Data set 7 1700 60 3.46 MB 320 × 240 378 355 332 289 219

Data set 8 4556 30 21.2 MB 320 × 240 1390 1377 1325 1275 1228

Data set 9 606 25 9.09 MB 352 × 288 152 135 112 83 75

Data set 10 1496 25 15.3 MB 360 × 288 620 584 542 498 447

Table 7: Total elapsed time (in seconds) of object detection and tracking process with Aneka Cloud-2 executor

Video data
sets

#Frames Frame
rate

File size Resolution 3 × 3
window size

5 × 5
window size

7 × 7
window size

9 × 9
window size

11 × 11
window size

Data set 1 200 15 352 KB 160 × 130 67 45 37 30 25

Data set 2 158 15 121 KB 192 × 144 75 55 35 30 25

Data set 3 227 18 533 KB 200 × 164 75 52 45 40 35

Data set 4 53 10 124 KB 320 × 240 85 55 38 35 30

Data set 5 599 30 5.15 MB 320 × 240 350 325 297 252 267

Data set 6 887 10 18.5 MB 320 × 240 232 209 192 155 109

Data set 7 1700 60 3.46 MB 320 × 240 328 299 275 242 212

Data set 8 4556 30 21.2 MB 320 × 240 1375 1347 1295 1243 1192

Data set 9 606 25 9.09 MB 352 × 288 132 109 87 64 47

Data set 10 1496 25 15.3 MB 360 × 288 550 530 491 450 401

IASC, 2022, vol.33, no.3 1495

SSIMðx; yÞ ¼ ð2mxmy þ c1Þ þ ð2sxy þ c2Þ
ðm2

x þ m2
y þ c1Þðs2

x þ s2
y þ c2Þ (4)

SSIM attempts to model the perceived change in the structural information of the image. It compares two
window rather than compare entire image in MSE. SSIM value can vary between −1 to 1 where 1 indicates
perfect similarity. The Fig. 7 shows the SSIM analysis between each frame. Here, SSIM is varied from
0.825 to 1. This results shown that, there is a change of luminance and/or contrast. But it will not the
affect detection accuracy of foreground using temporal frame differencing algorithm.

The efficiency of the proposed approach is tested in terms of total elapsed time of object detection and
tracking process and speedup ratio between Standalone system vs. GPU node vs. Aneka Cloud platform with
and without multi-threading by varying kernel size of video frames are given in Tab. 2.

Fig. 8 shows histogram of processing time for object detection and tracking. It shown that object
detection and tracking in private cloud environment (i.e., Aneka with 2 executor node) will outperform
other parallel processing technique with hybrid decomposition technique.

Figure 7: Frame wise SSIM analysis

0

200

400

600

800

1000

1200

1400

1600

160 x 130
Resolution

192 x 144
Resolution

200 x 164
Resolution

320 x 240
Resolution

360 x 288
Resolution

T
ot

al
 E

la
ps

ed
 T

Im
e

in
 S

ec
on

ds

Different Runs

Processing Timing Analyis in Seconds

Default-
Single
Node

Threaded-
Single
Node

GPU Node

Threaded-
GPU Node

Aneka-
Single
Executor

Aneka-2
Executor

3
x

3
5

x
5

7
x

7
9

x
9

11
 x

 1
1

3
x

3
5

x
5

7
x

7
9

x
9

11
 x

 1
1

3
x

3
5

x
5

7
x

7
9

x
9

11
 x

 1
1

3
x

3
5

x
5

7
x

7
9

x
9

11
 x

 1
1

3
x

3
5

x
5

7
x

7
9

x
9

11
 x

 1
1

Figure 8: Processing time histogram of object detection and tracking

1496 IASC, 2022, vol.33, no.3

Figs. 9 and 10 shows the results of speedup ratio between standalone node vs. GPU node vs. Aneka
Cloud single and 2 Executors with and without multi-threading. From the results, it is observed that
Aneka cloud platform always gives better performance even though which is having communication
overhead between nodes for detecting and tracking the objects in video without compromising detection
accuracy and also without investing any specialized hardware platform.

4 Conclusion and Future Work

This work proposed a cloud computing based rapid object detection and tracking algorithm for video
solution applied with temporal frame differencing and contour matching techniques using functional

Speed Ratio between Standalone Node vs GPU Node Vs
Aneka Cloud - Single Executor Node with Different Runs

0

1

2

3

4

5

6

16
0

x
13

0

20
0

x
16

4

36
0

x
28

8

19
2

x
14

4

32
0

x
24

0

16
0

x
13

0

20
0

x
16

4
36

0
x

28
8

19
2

x
14

4

32
0

x
24

0

16
0

x
13

0

20
0

x
16

4

36
0

x
28

8

3 x 3
Window

5 x 5
Window

7 x 7
Window

9 x 9
Window

11 x 11
Window

Sp
eo

ed
 U

p
R

at
io

Default-Single Node

GPU Node

Aneka-Single Executor

Figure 9: Speedup ratio between standalone node vs. GPU node vs. Aneka Cloud with single executor
without multi-threading

Speedup Ratio between Multi Threaded Standalone
Node Vs GPU Node Vs Aneka Cloud with 2 Executor Node

with different Runs

0

1

2

3

4

5

6

16
0

x
13

0

20
0

x
16

4

36
0

x
28

8

19
2

x
14

4

32
0

x
24

0

16
0

x
13

0

20
0

x
16

4
36

0
x

28
8

19
2

x
14

4

32
0

x
24

0

16
0

x
13

0

20
0

x
16

4

36
0

x
28

8

3 x 3
Window

5 x 5
Window

7 x 7
Window

9 x 9
Window

11 x 11
Window

Sp
ee

d
up

 R
at

io

Threaded- Single Node

Threaded- GPU Node

Aneka-2 Executor

Figure 10: Speedup ratio between standalone node vs. GPU node vs. Aneka Cloud with 2 executor with
multi-threading

IASC, 2022, vol.33, no.3 1497

decomposition technique. In this work, each functional component of temporal object detection and tracking
algorithms are executed parallelly by the worker node. Again, these functional decomposed components are
internally parallelized using inherent sequential parallelizing mechanism which is executed by the individual
workers nodes of Aneka cloud environment. The performance of proposed approach is compared and
evaluated with standalone machine, GPU node and Aneka Cloud environment. The performance of cloud
computing based object detection and tracking outperforms well compare to other platform without
investing any specialized hardware architecture. In future, this work is plan to extend by extracting the
various features (like LBP, HOG) of detected blobs and improve the accuracy of detection and tracking of
blobs and improve the computation as a service for very swift object detection and tracking algorithm
through the design of application level task scheduler for cloud environment. This work more suitable for
automation field. We plan to extend this work in real time both single and multiple camera whereas
currently we used to test on only stored videos. Also, design the storage cloud architecture for video
processing and surveillance application.

Acknowledgement: I am extremely thankful to Management, Principal, Head of the department of
Computer Science and Engineering, Ramco Institute of Technology, Rajaplayam for providing me
laboratory facility in RIT-AI Research Centre to carry out this work in successful way.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Czyzewski, G. Szwoch, P. Dalka, P. Szczuko, A. Ciarkowski et al., “Multi-stage video analysis framework.

Video surveillance,” in Intech Open Book Series, Intech Open Ltd., United Kindgdom, vol. 9, pp. 147–172, 2011.

[2] H. S. Parekh, D. G. Thakore and U. K. Jaliya, “A survey on object detection and tracking methods,” International
Journal of Innovative Research in Computer and Communication Engineering, vol. 2, no. 2, pp. 2970–2979, 2014.

[3] M. Gomathynayagam and K. Ramar, “A survey on real time object detection and tracking algorithms,”
International Journal of Applied Engineering Research, vol. 10, no. 5, pp. 8290–8297, 2015.

[4] M. Álvarez and M. Lopez, “Road detection based on illuminant invariance,” IEEE Transactions on Intelligent
Transportation Systems, vol. 12, no. 2, pp. 184–193, 2011.

[5] P. Spangnolo, T. D. Orazio, M. Leo and A. Distante, “Moving object segmentation by background subtraction and
temporal analysis,” Image and Vision Computing, vol. 24, no. 5, pp. 411–423, 2006.

[6] W. Zhang, P. Xu, L. Duan, W. Gong, X. Liu et al., “Towards a high speed video cloud based on batch processing
integrated with fast processing,” in Proc. Int. Conf. of Identification, Information and Knowledge in the Internet of
Things (IIKI), Beijing, China, pp. 28–33, 2014.

[7] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley et al., “Platform 2012, a many-core computing
accelerator for embedded socs: Performance evaluation of visual analytics applications,” in Proc. 49th Annual
Design Automation Conf., San Francisco, California, pp. 1137, 2012.

[8] S. Solehah, S. Nizamyaakob, Z. Kadim and H. HockWoon,“Extraction of moving object using frame differencing,
ghost and shadow removal,” in Proc. 5th IEEE Int. Conf. on Intelligent Systems, Modeling and Simulation,
Malaysia, pp. 229–234, 2014.

[9] J. Parsola, D. Gangodkar and A. Mittal, “Efficient storage and processing of video data for moving object
detection using hadoop/map reduce,” in Proc. Int. Conf. on Signal, Networks, Computing and Systems,
Springer Lecture Notes in Electrical Engineering, India, vol. 395, pp. 137–147, 2017.

[10] S. K. Maharana, P. Ganeshprabhakar and A. Bhati, “A study of computing for retinal image processing through
matlab,” International Journal of Cloud Applications and Computing, vol. 2, no. 2, pp. 59–69, 2012.

1498 IASC, 2022, vol.33, no.3

[11] M. Gomathynayagam and K. Ramar, “Reliable object recognition system for cloud video data based on ldp
feature,” Elsevier Journal of Computer Communications, vol. 149, pp. 343–349, 2020.

[12] K. A. Joshi and D. G. Thakore, “A survey on moving object detection and tracking in video surveillance system,”
International Journal of Soft Computing and Engineering (IJSCE), ISSN, vol. 2, no. 3, pp. 2231–2307, 2012.

[13] M. Zhu, S. Shuifa, S. Han and H. Shen, “Comparison of moving object detection algorithms,”World Automation
Congress (WAC), Mexico, vol. 1, pp. 35–38, 2012.

[14] R. Radke, S. Andra, O. Al-Kofahi and B. Roysam, “Image change detection algorithms: A systematic survey,”
IEEE Trans. Image Processing, vol. 14, pp. 294–307, 2005.

[15] S. Shih-Wei, F. Yu-Chiang, F. Huang and H. Mark Liao, “Moving foreground object detection via robust sift
trajectories,” Journal of Visual Communication Image, vol. 24, pp. 232–243, 2012.

[16] L. Dawei, X. Lihong and D. Goodman, “Illumination-robust foreground detection in a video surveillance system,”
IEEE Trans. on Circuits and System for Video Technology, vol. 23, no. 10, pp. 1637–1650, 2013.

[17] M. Gomathynayagam and K. Ramar, “A design of hybrid workflow model for real time object detection using
temporal frame differencing algorithm: A cloud computing approach,” Asian Journal of Research in Social
Science and Humanities, vol. 6, no. 10, pp. 2099–2113, 2016.

[18] C. Vecchiola, K. Nadiminti and R. Buyya, “Image filtering on. Net-based desktop grid,” in. Proc. 6th Int. Conf. on
Grid and Cooperative Computing (GCC 2007, IEEE CS Press, Los Alamitos, CA, USA), Urumchi, Xinjiang,
China, pp. 16–18, 2007.

[19] R. Cucchiara, C. Grana, A. Prati and R. Vezzani, “Probabilistic posture classification for human-behavior
analysis,” IEEE Transactions on Systems, vol. 35, no. 1, pp. 42–54, 2005.

[20] J. Heikkila and O. Silven, “A real-time system for monitoring of cyclists and pedestrians,” in Proc. Second IEEE
Workshop on Visual Surveillance, USA, pp. 74–81, 1999.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: From error visibility to
structural similarity,” IEEE Transaction on Image Processing, vol. 13, no. 4, pp. 1–14, 2004.

IASC, 2022, vol.33, no.3 1499

	Moving Object Detection and Tracking Algorithm Using Hybrid Decomposition Parallel Processing
	Introduction
	Proposed Work
	Performance Evaluation
	Conclusion and Future Work
	flink5
	References

