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Abstract: Cases of kidney cancer have shown a rapid increase in recent years.
Advanced technology has allowed bettering the existing treatment methods.
Research on the subject is still continuing. Medical segmentation is also of
increasing importance. In particular, deep learning-based studies are of great
importance for accurate segmentation. Tumor detection is a relatively difficult
procedure for soft tissue organs such as kidneys and the prostate. Kidney tumors,
specifically, are a type of cancer with a higher incidence in older people. As age
progresses, the importance of having diagnostic tests increases. In some cases,
patients with kidney tumors may not show any serious symptoms until the last
stage. Therefore, early diagnosis of the tumor is important. This study aimed to
develop support systems that could help physicians in the segmentation of kidney
tumors. In the study, improvements were made on the encoder and decoder phases
of the V-Net model. With the double-stage bottleneck block structure, the archi-
tecture was transformed into a unique one, which achieved an 86.9% kidney
tumor Dice similarity coefficient. The results show that the model gives applicable
and accurate results for kidney tumor segmentation.
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1 Introduction

Kidney tumors are among the most common type of urinary tract cancer along with prostate and bladder
cancers. It constitutes approximately 2%–3% of adult tumors [1]. Thanks to the technological advances in
recent years, an early diagnosis in young patients is possible, especially with the use of ultrasound and
computed tomography [2]. According to the report published by cancer statistics in 2018, more than
400,000 kidney cancer cases have been detected worldwide [3]. In addition, most of the diagnosed
patients are elderly and the number of asymptomatic kidney tumors is increasing [4]. Weight-related
factors such as body mass index (BMI), waist-to-hip ratio (WHR), and waist circumference, as well as
external factors such as hypertension and smoking are among the factors directly affecting kidney cancer
[5,6].
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Benign kidney tumors are generally harmless, but the growth of the mass may represent symptoms such
as muscle pain or haematuria (blood in the urine) [7,8]. Malignant kidney tumors are risky and most of them
are known as renal cell carcinoma (RCC) [9]. Previously, removal of the entire kidney or tumor tissue seemed
to be an effective treatment option. Today, with the increasing importance of imaging techniques, preventive
treatment becomes a more preferred option [10]. In recent years, with the increasing use of image recognition
and deep learning methods in the field of medicine, medical segmentation has become much more important.
However, not much sufficient research kidney tumor segmentation exists in the literature [11–13]. In
particular, it is important to conduct more research on the application of artificial intelligence methods in
the field of medicine.

U-Net and V-Net models are generally used in segmentation processes in the field of deep learning.
Existing multi-scale feature aggregation methods have many problems. One is that it only includes maps
with a single encoder and decoder and combines features of the same scale. Another problem is that it
performs multiple feature fusions in different encoding and decoding layers. Also, tumor feature
information from the same level layer cannot be fully utilized. Fixed-size feature fusion has difficulty
learning sufficiently detailed features. Too many nested links and layer structures can also cause
some features to be lost. As a consequence, deep network models do not get enough information (as in
UNet++). Also, too much heavy hop connection and nesting require using too many parameters. This
increases the amount of computation required but does not greatly change the segmentation accuracy. The
third problem is that the input is compressed linearly in order to equalize the input and output size, and a
bottleneck occurs where all the features cannot be transmitted. Although U-Net and V-Net models try to
preserve attributes through incoming connections from the encoder, there are still losses. This study
proposes a two-stage bottleneck block structure to overcome such problems.

The aim is to achieve the most accurate results for segmentation by considering the tissue-derived
structural features of the kidneys. To this end, a new two-stage V-Net model was developed. Unlike other
new approaches, the proposed model was supported by new block structures in the encoder, decoder, and
bottleneck stages. The main contributions of the model are:

� Increasing the ability of the encoding phase to capture tumor information through the Squeeze and
Excitation (SE) block

� Increasing output accuracy and minimizing feature loss with ResNet++ in decoder phase

� Overcoming the bottleneck problem by the use of a two-stage block structure

� Minimizing loss of feature information through connections between encoder and decoder layers at
different levels

� Capturing even the smallest details by being designed with a unique model structure.

The results indicate that the performance of the algorithm is better than its competitors and that the
segmentation images are comparable to the data of specialist physicians. Related studies in the literature
are explained in Section 2, materials and methods in Section 3, discussion and results are explained in
Section 4. Conclusions and future directions form the last part of the study.

2 Related Works

Zheng et al. developed a deep learning model called “MDCC-Net”. They stated that multi-scale feature
fusion is a suitable method for accurately segmenting the tumor region. According to their study, feature
fusion exists only between encoders and decoders of the same scale in some networks. However, in other
networks, due to too many layers of nesting and link hopping, some features that might be important may
be lost. Therefore, sufficient information may not be learned. To overcome these two problems, they
proposed a multi-scale dual-channel evolutionary U-Net model [14].
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Cruz et al. emphasized that precise segmentation of kidney tumors would contribute to the diagnosis of
diseases and to the improvement of the treatment planning. They also stated that deep learning techniques
became popular for the diagnosis of kidney tumors. In their study, they proposed an automated method
for delimiting kidneys in computed tomography (CT) images, using image processing techniques and
deep convolutional neural networks (CNNs) to minimize the margin of error. The proposed method was
tested on 210 CT images from the KiTS19 database and the mean Dice similarity coefficient was found
to be 96.33%. Ultimately, they determined the extent of the kidney segmentation problem using deep
neural networks and showed that segmenting the kidneys with high precision and using image processing
techniques to reduce false positives could solve the problem [15].

Corbat et al., using Artificial Intelligence methods, designed a platform to optimize the segmentation of
the deformed kidney and tumor with a small dataset. They combined the segmentation of previously
performed structures by using a simple and efficient network. They evaluated the architecture, designed
with a fully connected layer structure, on pathological kidney and tumor structures of 14 patients. They
emphasized that successful segmentation could be achieved if the results were evaluated on more
patients [16].

Qayyum et al. designed a model to perform automatic segmentation of kidney and liver tumors on
computed tomography images. They stated that CNN have become important in medical image
segmentation tasks in recent years. They proposed a hybrid network model with excitation blocks for
segmentation of kidney, liver and associated tumors. In this network structure, SE blocks are preferred to
capture spatial information based on the reweighting function. The network model has been tested on the
KiTS19 and MICCAI 2017 datasets. The results show that SE blocks can achieve high achievement in
volumetric biomedical segmentation [17].

Yin et al. conducted a study for automatic kidney segmentation on ultrasound images. They said that
automatic segmentation in ultrasound images is a difficult process due to the shape and image density
distributions of the kidney. Researchers proposed a neural network with boundary distance regression and
pixel classification operations to automatically segment kidneys. In the classification, kidney border
distance maps were taken as input using a border distance regression network. The predicted boundary
distance maps split kidney or non-kidney tissue into pixels using a pixel classification network in an end-
to-end learning style. The results showed that this method can automatically segment the kidney more
successfully than deep learning-based classification networks [18].

Zhao et al. By analyzing CT images, they developed a model called MSS U-Net for 3D segmentation of
kidneys and tumors. They stated that accurate segmentation of kidneys and kidney tumors is an important
step to develop radiomic analysis and advanced surgical planning techniques. They also reported that
nowadays segmentation is performed by visual inspection of images collected by specialist physicians
through CT scanning. In the developed architecture, 3D U-Net combines deep control with exponential
logarithmic loss value to increase training efficiency. Component-based post-processing method was used
to improve the performance of the process. This architecture performed well with kidney and tumor Dice
coefficients of up to 0.969 and 0.805, respectively [19].

Turk et al. developed a hybrid V-Net model to segment kidneys and tumors. In the developed model,
they aimed to obtain more features from the entrance scene by using the fusion V-Net model in the
encoder phase. In addition, they aimed to create clearer output images with ResNet++ architecture in the
decoder phase. The developed model was tested on the KiTS19 dataset for kidney and kidney tumor
segmentation. The Dice coefficient was found to be 86.5% for tumor segmentation [20].

Turk et al. proposed some improvements on the previously proposed architecture to increase the
performance of the U-Net model. In the decoder stage of the U-Net model, the output layer is intensified
with nested convolution steps, as in U-Net++. In addition, the output layer is supported by the ResNet++
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architecture. The developed model was tested on the KiTS19 dataset for kidney segmentation. The Dice
coefficient was 94.9% confirmatory for kidney segmentation and 97.8% for testing [21].

Song et al. proposed a study using the Compressed sensing (CS) algorithm, which provides a general
signal acquisition framework that enables the reconstruction of sparse signals from a small number of
linear measurements. The current reconstruction block is first predicted by the surrounding reconstructed
pixels, and then its prediction residual is reconstructed. Since the sparseness level of the prediction
residue is higher than the original image block, the performance of the proposed CS image reconstruction
algorithm is significantly superior to the traditional CS reconstruction algorithm. Experimental results
show competitive performance of the CS algorithm in terms of highest signal-to-noise ratio and
subjective visual quality [22].

Wang et al. have done a study on image classification with the Dense-MobileNet network. In this study,
they aimed to achieve less parameters and higher classification accuracy with MobileNet as a lightweight
deep neural network. In order to further reduce the number of network parameters and improve
classification accuracy, DenseNets recommended dense blocks are included in MobileNet. Thanks to
Dense-MobileNet, convolutional layers with same size input feature maps in MobileNet models are taken
as dense blocks and dense connections are made in dense blocks. Dense-MobileNet model, Dense1-
MobileNet and Dense2-MobileNet were designed. Experiments show that Dense2-MobileNet can provide
higher recognition with an accuracy rate of 92.1% [23].

3 Material and Method

The model proposed in this study is shown in Fig. 1. The model consists of three stages. In the first stage,
the encoder phase was transformed into a special design structure with SE blocks so that the architecture
could learn the image properties in more detail. In the second stage, the decoder was supported with the
ResNet++ architecture to capture even the smallest details in the block output stage. In the last stage, the
Non-Local Block + Grid Attention Block (NLB + GAB) structure was integrated into the model in order
to overcome the bottleneck problem in convolutional neural networks. The developed architecture is a
special design that is not in the literature and contains its own unique features (for codes: https://github.
com/turkfuat/Two-Stage-Bottleneck-Block-Architecture).

3.1 Encoder Phase

The classic U-Net architecture consists of two phases. The first one is the encoder stage, which is a stack
of convolution and max pool layers aiming to capture the content in the image. The four layers existing in the
encoder block are a coding layer, two convolution layer and a RELU layer. Convolution layers are used to get
image feature information. Following RELU, max-pooling is used to dilute the feature parameters and reduce
the workload (the situation is slightly different for V-Net models). The features in the encoder and decoder
stages are combined by Link hops. The biggest challenge here is the processing of the same-scale feature
maps in the encoder layer and decoder layer [24,25].

Multiscale feature aggregation steps can facilitate deep learning model to learn detailed features. For
example, the U-Net++ architecture can provide multi-scale feature aggregation functionality between the
encoder and decode layer via dense hop links. However, too many dense jump connections and nested
block layer structure may cause some features to disappear and the characteristic information of the tumor
to be learned sufficiently. The workload it brings is another disadvantage. In order to overcome these
problems, the developed model was supported with SE blocks in the encoder phase. Encoder phase block
structure is seen in Fig. 2. In the first step, the image is entered into the network and after two
convolution layers, two-channel separation is applied. A symmetric upsampling process is preferred so
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that the model can learn the detailed image properties and increase the image size. Thanks to downsampling
steps, the image is arranged to be the same size as the input image [26].

The SE block was designed to express the relationship between channels [27]. The SE block is used to
improve the convolutional features of the architecture by modeling the interdependencies between the
channels. The learning level is rearranged to emphasize the informative features of the network and
suppress the less qualified ones. A classic SE block structure is shown in Fig. 3.

Figure 1: Model architectural structure developed with a two-stage block structure

Figure 2: Encoder phase block structure
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After the initialization phase, the height (H), width (W), and channel number (C) values are multiplied
convolutionally and transferred to the pooling layer and then to the fully connected layer (FC). For
dimensional reduction, the C value is divided by a reduction ratio (r). This process is continued with
“RELU-FC-Sigmoid” steps and the obtained parameter is rescaled and transferred to the next layer.

SE is a unit of computation with block input X 2 RH 0�W 0�C0
and feature map U 2 RH�W�C . V = [v1,

v2, …, vc] denotes the set of filter cores and U = [u1, u2, …, uc] denotes the output unit, and is given in
Eq. (1).

uc ¼ vc � X ¼
XC0

S¼1

vsc � xs (1)

where * denotes the convolution operation, vc the corresponding channel vector, X the input unit. It is
aimed to increase the learning of convolutional features by explicitly modeling their interdependencies so
that the network can increase its sensitivity to informative features that can be used by subsequent
transformations [28,29].

3.2 Decoder Phase

In the decoder stage, the feature map is adjusted to be the same size as the input image using four
upsampling block structures. The purpose of maintaining the link between the encoding and decoding
layer is to contribute to the discovery of attribute information lost due to convolution layers. Each
upsampling block contains an upsampling layer, two convolution layers, a ReLU layer, and a bulk
normalization layer. The ResNet++ architecture has been added to the last codec block [20].

This architecture is a system with two nested ResNet blocks integrated. ResNet++ contains differences
from the classic ResNet model. The most important difference is that the output layer is linked to the previous
two layers. Thus, it is intended to be captured in small details before the output layer. The decoder phase
block structure is shown in Fig. 4.

Figure 3: SE block architecture
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3.3 Double Stage Bottleneck Block Structure

In deep learning architectures, the size of the input information is regularly reduced in the encoder phase,
starting from the first step. The encoder phase is followed by the decoder phase. Linear feature representation
is learned in the decoder phase and the size gradually increases. When the decoder phase is finished, the
output size is equal to the input size. However, since the input of the system is compressed linearly, a
bottleneck occurs where not all attributes can be transmitted. Although the U-Net and V-Net model
structures are designed to overcome the bottleneck problems that occur in convolutional neural networks,
it is not possible to transmit the input information completely. A two-stage block structure is proposed in
order to minimize the loss of input information while transferring it to the output. The designed network
architecture is shown in Fig. 5.

Figure 4: Decoder phase block structure

Figure 5: Double-stage bottleneck block structure
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In the NLB structure, feature maps are represented as a form of tensors, for example it is expressed as
T × H ×W × 1024 for 1024 channels. “⊗” stands for matrix multiplication and “⊕” stands for element-wise
addition. SoftMax operation is performed on each row. Red boxes show 1 × 1 × 1 convolutions [28]. NLB
structure is given in Eq. (2).

zi ¼ WZyi þ xi (2)

where, WZ represents the initial value of the weights, xi represents the residual connection information, yi
represents the same size information as xi, and zi represents the block value in the architecture. The
bottleneck problem in U-Net architectures can be overcome with single-stage NLB. However,
deterioration in image quality at this point will prevent feature losses from being minimized. In order to
overcome this problem, the GAB structure was also integrated into the system. In this way, an end-to-end
trainable gateway signal is generated and the network is allowed to receive local information useful for
prediction from the correct location [29]. In GAB architecture, red boxes show 1*1*1 folds, while “⊕”

shows element-wise addition. The folds are resampled with the RELU activation function, first through
the single layer structure and then through the sigmoid function.

3.4 Evaluation Metrics

The Dice Similarity Coefficient (DSC) detects the spatial similarity between two segmentation units or
how much they overlap [30]. It is a common metric used to compare segmentation performance with baseline
truth in medical images [31]. The Jaccard Index, also known as the Jaccard similarity coefficient, is a
statistical value used to determine the proportion of similarities between sample sets. The measurement
highlights the similarity between finite sets of samples and is defined as the intersection size divided by
the size of the union of sample sets [32]. These two evaluation criteria are shown in Fig. 6. DSC equation
is indicated in Eq. (3) and Jaccard index is indicated in Eq. (4).

DSC ¼ 2jA \ Bj
jAj þ jBj (3)

Jaccard ¼ jA \ Bj
jAj þ jBj � jA \ Bj (4)

A, represents the result of the segmentation, whereas B represents the corresponding absolute reference
image. In general, a comparison is made between the segmentation accuracy and the results of segmentation
methods [33].

Figure 6: Display of DSC and Jaccard index domain calculation

356 IASC, 2022, vol.33, no.1



3.5 Image Processing

In this study, 210 datasets available for public access and downloadable from the cancer imaging archive
(https://www.cancerimagingarchive.net/) were used [34]. The clinical features, imaging data, kidney and
tumor boundaries of the existing patients were prepared by using the manual segmentation method.
In Fig. 7, an example segmentation prepared with this method is shown.

In the first step, the CT images in the dataset were resized to 16 × 256 × 256 and divided by 255 to
normalize the pixel values between 0 and 1. For training, patches sized 64 × 128 × 128 were randomly
selected from the resampled data. Out of a total of 210 datasets, 190 were used for training and 20 for
testing. The Adam Optimizer algorithm was preferred for model training and the learning coefficient was
taken as 0.001. The batch size was set to 3 and the total steps were set to 100,000. The training of the
model took approximately 96 h on the NVIDIA Tesla V100 Graphics Processing Unit (GPU).
TensorFlow library features were used during the training.

4 Experimental Results

U-Net, U-Net++, V-Net and the developed two-stage block model were run with the same
hyperparameters and the results are discussed in detail below. The data shown here are the average of the
five-fold cross-validation results run on the dataset. Fig. 8 shows the algorithm for our five-fold
cross-validation structure.

Figure 7: A kidney image prepared by manual segmentation

Figure 8: 5-fold cross validation algorithm for the model
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Fig. 9 shows the DSC and loss graphs of the developed model. The validation loss continues to decrease
as the training loss decreases, indicating that the proposed method learns without memorization. The sudden
changes in the initial steps of the training decrease to an acceptable level in the following steps, indicating
consistent training.

Dice coefficients and Jaccard index values obtained from validation and test results are shown in Tab. 1
The results show that the developed model outperforms other advanced networks on most evaluation
indicators. The validation and test results are also close and consistent.

Tab. 2 shows a comparison of the results of this study with the results from the KiTS19 Challenge and
the results from the literature. In the literature research, the current studies that are closest in terms of content
and subject to this study were discussed. 90 datasets in the KiTS19 Challenge were not evaluated because
they were publicly inaccessible. As with other studies, those excluded from the dataset due to mislabeling
were also used. No changes were made to the dataset in order to compare the results obtained with other
future studies. Other studies compared to this study are given below.

Figure 9: DSC and loss graph during the training period

Table 1: DSC and Jaccard index values of the developed model

Architecture DSC val. DSC test Jaccard index

U-Net 90.2% 81.1% 68.2%

U-Net++ 89.4% 80.7% 67.6%

V-Net 91.9% 82.3% 69.9%

Ours 91.5% 86.9% 76.8%

Table 2: Comparison of kidney tumor results

Referans Data format Method Number of cases Tumor DSC

Junma [35] CT U-Net Train: 210, Test: 90 85.55%

Isensee et al. [36] CT U-Net Train: 210, Test: 90 85.42%
(Continued)
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Junma developed a U-Net-model using the dataset from Kits19 Challenge and achieved the best result
with the kidney tumor Dice coefficient value in the Challenge. He obtained a Dice coefficient value of
85.55% for kidney tumour segmentation [35].

Isensee et al. [36] developed a U-Net model and achieved a Dice Coefficient of 85.42% for kidney
tumour segmentation.

Dmytrofishman developed a U-Net model and achieved a Dice Coefficient of 85.41% for kidney tumour
segmentation [37].

Zheng et al. developed a U-Net-based model, which they named MDCC-Net. They tested the model on
the dataset consisting of 200 CT images in the KiTS19 Challenge, and they succeeded in reaching a Dice
Coefficient of 83.5% for kidney tumour segmentation [14].

Qayyum et al. [17] developed a V-Net-based model achieving 86.8%Dice Coefficient for kidney tumour
segmentation on the KiTS19 dataset.

Ruana et al. used a U-Net-based model, which they named MB-FSGAN. They tested the model on a
dataset of 113 CT images and achieved a Dice Coefficient of 85.9% for kidney tumour segmentation [38].

Zhang et al. used U-Net based model, which based model nnU-Net. They tested model on a
KiTS21 Challenge dataset of 299 CT images and achieved a Dice Coefficient of 86.0% for kidney
tumour segmentation [39].

Fig. 10 shows the original images and masks used for kidney tumor segmentation as well as the
segmentation results of the model developed in this study and the other models compared. The results of
the comparison made with the U-Net and V-Net models, which show high education and test success, are
very close to each other. However, when we look carefully, we can see that our model yields better
results than existing V-Net models in detecting small details and tumor outer borders. The model we
developed with the changes made to capture the image features and details and to solve the bottleneck
problems yielded positive and successful results.

Table 2 (continued)

Referans Data format Method Number of cases Tumor DSC

Dima Fishman [37] CT U-Net Train: 210, Test: 90 85.41%

Zheng et al. [14] CT MDCC-Net Train + Test: 200 83.5%

Qayyum et al. [17] CT V-Net Train + Test: 210 86.8%

Ruana et al. [38] CT U-Net Train + Test: 299 85.9%

Zhang [39] CT U-Net Train + Test: 300 86.0%

Ours CT V-Net Train: 190, Test: 20 86.9%

IASC, 2022, vol.33, no.1 359



5 Conclusion

Segmentation with deep learning is of high importance for the early diagnosis of tumors difficult to
detect in soft tissues such as kidney tumors. This study presents a comparison of U-Net and V-Net
models used to segment kidney tumor regions. All architectures were trained on the dataset in the
KiTS19 Challenge. The developed model achieved a DSC score of 91.5% for validation and 86.9% for
testing, yielding the best results of the compared networks.

In this study, more tumor information could be captured at the coding stage thanks to SE blocks. With
the two-stage block structure, the bottleneck problem was partially overcome. With the layer structure at
different levels, feature information can be minimized. Furthermore, changes were made to 3 fundamental
parts of the U-Net architecture. The encoder phase, decoder phase, and bottleneck stages were designed
separately. All of the designed architectures were used together and for the first time, and had a high
success rate. The applicability of different modifications of the U-Net and V-Net models to the
KiTS19 Challenge dataset was also demonstrated. The model we developed, if taken as a reference, can
lead to the design of faster and more accurate architectures than existing networks in the coming years.
The design and development of deep learning architectures is a difficult engineering task that requires the
selection of many new hyperparameters and layer configurations. However, the structure of the SE block
is quite simple, computationally light, and the workload is quite low. With state-of-the-art architectures,
SE block performance can be effectively increased and be made directly usable.

This study can be a guide for future models, as it shows that the ResNet++ architecture can yield more
successful results when properly integrated into non-complex models in image segmentation studies. To sum
up, this paper proposes a new architecture to accurately determine tumor boundaries through the two-stage
block structure used to minimize the loss of bottleneck-induced features. The results also suggest that
increasing the complexity, the number of layers, or the depth of a network (like U-Net++) may not

Figure 10: CT images and images obtained as a result of kidney tumor segmentation
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always yield better results. Further research studies on hyperparameters may be a more rational approach to
increase network success.

The network architecture structure developed in this study will be tested for segmentation in other tumor
tissues, especially in multiple kidney tumors, if the appropriate dataset is found. The results to be obtained
will hopefully make an important contribution to the literature and the field of medicine for the detection of
tumors in tumor tissues at an early stage.
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