
Achieving State Space Reduction in Generated Ajax Web Application State
Machine

Nadeem Fakhar Malik1,*, Aamer Nadeem1 and Muddassar Azam Sindhu2

1Department of Computer Science, Capital University of Science and Technology, Islamabad, 45750, Pakistan
2Department of Computer Sciences, Quaid-i-Azam University, 45320, Pakistan

*Corresponding Author: Nadeem Fakhar Malik. Email: nadeem.fakhar@gmail.com
Received: 07 September 2021; Accepted: 10 November 2021

Abstract: The testing of Ajax (Asynchronous JavaScript and XML) web applica-
tions poses novel challenges for testers because Ajax constructs dynamic web
applications by using Asynchronous communication and run time Document
Object Model (DOM) manipulation. Ajax involves extreme dynamism, which
induces novel kind of issues like state explosion, triggering state changes and
unreachable states etc. that require more demanding web-testing methods. Model
based testing is amongst the effective approaches to detect faults in web applica-
tions. However, the state model generated for an Ajax application can be enor-
mous and may be hit by state explosion problem for large number of user
action based changes and for immense dynamism. Recent research has not
addressed this issue comprehensively because existing techniques either apply
partial reduction or compromise the effectiveness of testing. This research uses
soft computing based Fuzzy C Means (FCM) clustering algorithm to generate
state machine model of an Ajax web application. The focus is on devising a fra-
mework to avoid the state explosion problem. The framework prioritizes the
requirements and use cases based on requirements weightage, stakeholder weigh-
tage and user session based use case frequency. FCM uses this data to reduce the
state space by identifying the most pivotal usage areas. The resultant DOM muta-
tions for only these usage areas are considered to induce the finite state machine
thus avoiding the state explosion. Experimental results show that the frame-
work controls the size of generated state machine without compromising the
effectiveness of testing.

Keywords: State space; soft computing; Ajax web; Fuzzy C Mean; document
object model; state machine

1 Introduction

Lately advanced web technologies under the umbrella of web 2.0 have appeared and this advancement
has transformed web applications into rich single page applications from existing static multi page
applications [1,2]. Modern society heavily relies on interactive and smart web applications, which must
be reliable, enhance-able, and secure. The increasing complexity of current web applications implies

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.023423

Article

echT PressScience

mailto:nadeem.fakhar@gmail.com
http://dx.doi.org/10.32604/iasc.2022.023423
http://dx.doi.org/10.32604/iasc.2022.023423

extensive questions to their reliability. The static analysis of web applications’ code provides significant
perception to their reliability, however highly dynamic character of current web applications has made
dynamic analysis more crucial [3,4].

Ajax based applications are growing day by day. Ajax uses asynchronous mechanisms to interact with
users via responsive, graphic rich, and interactive web-browsers [5]. Ajax applications use (DOM) to
manipulate information, and XML to accomplish interoperability [6]. It presents information using
HTML and CSS and achieves data access from server by XMLHttpRequest object. It executes JavaScript
code upon callback activation [3]. Ajax works on distributed application framework principles.

Ajax technology induces better user interaction [7], but not without a cost. The asynchronous, event
driven, stateful nature, use of loosely typed scripting language, client-side extensive working, and
exchange of page portions instead of full-page exchange makes Ajax more error prone [8–10]. It is
server-agnostic client-side approach and can work with various scripting languages which makes it fit for
autonomous and heterogeneous environments [9,11]. These technology blends require more effort to test
and maintain Ajax applications [9].

Finite state machines (FSM) provide an effective way to model the behavior of software without going
into its implementation details. Numerous earlier works have proposed methods to test applications using
FSMs [8,12,13]. Just like all other desktop and web applications, Ajax applications can also be modeled
by FSMs. Ajax web applications are single-page applications and theoretically, FSMs can model them
completely but practically issues like state explosion, triggering state changes and unreachable states etc.
are there to handle. Ajax applications process diverse user inputs as well as frequent client-server
interactions resulting in abundant content change on the page. This causes number of DOM mutations
leading to a large number of concrete states thus resulting in state explosion problem [3,12]. Therefore,
FSM-based method to test the system is only feasible if the FSM has limited states. Several state space
reduction techniques have been proposed to avoid state explosion problem in different applications
[14–16] but issues like partial reduction, processing overhead and effectiveness are still there to be addressed.

Soft computing, as opposed to traditional computing, deals with approximate models and gives solutions
to complex real-life problems. Unlike hard computing, soft computing is tolerant to imprecision, uncertainty,
partial truth, and approximations [17]. In effect, the role model for soft computing is the human mind. One of
the most important techniques of soft computing is fuzzy logic based clustering. Clustering or cluster
analysis is a form of exploratory data analysis in which data are separated into groups or subsets such
that the objects in each group share some similarity. Clustering has been used as a preprocessing step to
separate data into manageable parts. Fuzzy C Mean [18] is a widely used clustering algorithm that works
best in overlapping data domains. In FCM, every point has a degree of belonging to clusters thus the
points on the edge of a cluster may be in the cluster to a lesser degree than points in the center of the cluster.

Web application testing proves to be a difficult task and the advent of Ajax applications has increased the
complexity even further. Conventional web testing techniques [19–23] do not test Ajax application features
like asynchronous communication, client-server parallelism, and dynamic page segment updates. These
features have added the issues like forward-back page navigation, enormous state changing elements,
state explosion, and unreachable states.

This research proposes an approach to support the testing area in terms of Ajax applications. The
technique uses soft computing based FCM to identify the most pivotal use cases and extracts a finite state
machine for each use case. The approximation and learning nature of FCM makes it a good candidate to
handle dynamic nature of Ajax application testing. These generated state machines can later be combined
to construct an aggregated state machine of the given Ajax application.

The rest of this paper is organized as follows: Section II discusses the related work in the area of web
application testing with focus on Ajax applications. Section III describes the proposed framework,

430 IASC, 2022, vol.33, no.1

methodology, and state machine construction. Section IV gives the experimental setup and results of
proposed methodology. Section V evaluates the effectiveness of the result and Section VI concludes the
paper.

2 Related Work

Testing web applications through finite state machine is an effective way as compared to any other
technique. Numerous notations and diagrammatic methods are used to represent web applications but
finite state machines can depict their dynamic behavior very conveniently. A State machine offers an
expedient method to model software behavior in a way that evades issues related with the implementation
[19]. In Ajax web applications the object states change in response to user or server triggered events at
run time, hence a finite state machine model can be very effectively used to show this changing behavior
[9,24].

Donley et al. [25] discussed that the complexity of web-based applications has dramatically increased
over the period of time. The software engineers even face issues to clearly identify the differences
between web-based applications and traditional applications. They emphasized the point that in order to
test web-based applications it is very important to first get a better understanding of these applications.
They discussed the most important differences between traditional and web-based applications.

Arora et al. [26] discussed couple of prominent testing techniques: invariant based and state-based
testing. Although these techniques remain successful regarding different domains, many issues and
problems still exist, e.g., scalability issues. Issues like capturing session data, reduction of state space,
advancement in FSM retrieval to automatically deduce user session-based test cases, still need answers.
The authors discussed that DOM to FSM progression need a more meaningful technique. The
experiments steered in this technique were able to generate test cases regarding semantically interacting
sequences and evidences showed that long sequences produce more test cases with greater fault exposing
potential. Finally, the authors accentuated that testing is fore mostly reliant on technology through which
it is implemented and imminent techniques of testing have to adapt with assorted and vibrant nature of
applications running on the web.

Marchetto et al. [24] gathered the execution trace data of the web application and then used that data to
build a finite state machine. The basis of this technique is a dynamically extracted state machine for a given
Ajax application, however the technique is partially dynamic and manual validation is also used for model
extraction. This research states that finite state machine retrieval is mainly an unexplored area and needs
improvement [24]. Dynamic identification of states, in Ajax testing, is a difficult task and requires
persistent attention. Therefore, it was required to have a dynamic analysis method to construct state based
model of the application. Mainly, the authors focused on detecting sets of event sequences that interact
semantically, and are used to produce test cases [27]. Their perception was that the length of these
sequences affect their fault revealing capability, i.e., more length more faults, and this was also validated
by the conducted experiments [27–30]. The technique produces test cases that are very large in number
thus resulting in state explosion and also involves events that are not related. Marchetto contributed
towards minimization of test case number but only those test cases that are having asynchronous
communication. Only few facets of asynchronous communication are addressed by this approach and
other testing challenges like runtime changes in DOM, how to fetch these changes, and transition
between different DOM states still need to be explored. Moreover, finite state machine extraction using
dynamic analysis is also required.

Mesbah et al. [13,31] proposed automatic testing of Ajax user interfaces based on invariants. Main task
in this work was crawling of Ajax applications using CRAWLJAX, which is a tool that simulates the real user
actions on different clickable elements of application interface and infers the model from state flow graph.

IASC, 2022, vol.33, no.1 431

Moreover, he also suggested the use of automatic invariant detection based on CRAWLJAX. Crawljax uses
Levenshtein method [32] to identify the difference between two DOM instances by calculating their edit
distance. The authors acknowledged in their research that for automated testing of web applications best
path seeding practice is, capture and replay, which did not apply in his work. Mesbah’s point of view in
his work [13] suggested that invariant based testing proves to be a weak form of oracle. The authors
added that dynamic state extraction can be handled best by using capture and reply tools, otherwise Ajax
dynamism is big challenge for thorough testing.

Arie et al. [3] thoroughly discussed the issues and challenges faced during the analysis of modern
asynchronous applications in terms of crawling. Modern applications on the web have significantly
moved towards single-page model, in which DOM based user interface and interaction is maintained by
JavaScript engine. This results in many analyses and understanding challenges, which modern day static
analysis tools are unable to handle. These challenges include State Explosion, State Navigation,
Triggering State Changes, and Unreachable States. In this paper, the authors have discovered how
automated crawling can be used to address these challenges. Moreover, they identified a number of
promising areas for future research which include: dynamic analysis of modern applications on the web
including Benchmarking, Guided Crawling, Example-Based Crawling, Model-Based Web Application
Analysis, and Cyber-Security.

Sabharwal et al. [33] came up with a methodology to model the navigation mechanism of online
applications. This mechanism is based on user requirements and design that too at lower level. Their
algorithm collects the information from the requirements and the low level design to construct a
navigation graph of the page and this graph is further used for the synthesis of test sequences. This
method has the advantage of using workflows that can be positive or negative. The tester can thus use the
path navigation graph for any of the above mentioned test sequences. The problems of page and link
explosion are also focused in this research.

Arora et al. [6] focused on testing the runtime behavior concerns of asynchronous web applications.
They devised various experiments for it. They offered a process that generates a state machine to
discover all on the fly spawned states and their referenced events along with DOM altering elements. To
achieve scalability in state machine generation, they used a technique which is based on Model Checking
and that technique lessened the state space paths to evade the problem of state explosion. However the
approach contains processing overheads. Moreover the effects of state reduction on testing effectiveness
are not discussed and remain unclear.

Ajax Web applications are DOM based applications which are functioned by user event connected
message handlers or by server messages. It is evident from above mentioned studies that Ajax is
vulnerable because of features like stateful client, asynchronous communication, delta updates, un-typed
JavaScript, client-side DOM manipulation, event handling, timing, back/forward button and browser
dependence. As Ajax application work as a single page applications, they have to handle large traffic on
one page. Inputs to text fields, client side event handling server side activities, and other dynamic
changes on single page might result in unbounded concrete states, i.e., state explosion. As discussed
earlier in this section, several state space reduction techniques have been proposed but not without issues.
Issues like processing overheads, effects of state reduction on testing effectiveness remain unaddressed.
Moreover, techniques adopt exhaustive methods of state machine creation which results in scalability
issues. This research proposes a framework to address these issues by limiting the state space by
identifying the most frequently used areas of the application under test. The framework addresses the
issues of state explosion without compromising the effectiveness of testing.

432 IASC, 2022, vol.33, no.1

3 Proposed Approach

This section proposes a framework StateReduceAjax to achieve state space reduction in state machine of
an Ajax web application. As already discussed, one of the significant issues in model based testing of Ajax
applications is the state explosion problem. More state space under test, more this issue becomes
unmanageable. The main objective behind the construction of StateReduceAjax is to reduce the state space.

The framework uses FCM to achieve state space reduction by segregating system use cases as high
priority and low priority. The functionality of only these high priority use cases are considered for state
machine construction. This reduced use case set helps to control state explosion in state machine of an
Ajax application.

StateReduceAjax passes through a multistage progression to incrementally process the given
information and generate results that help in the state machine construction. Initial process starts by
gathering and storing the stakeholder information along with the use cases and system requirements.

Requirements pass through prioritization process and the result is stored back in the form of prioritized
value for each requirement. This prioritized requirement value is used in use case requirement mapping to
calculate use case requirement weightage UiW for each use case. The use case based session recording
calculates how frequently a use case is executed. Fuzzy C Mean takes set of UiW values along with the
use case frequency to identify the most pivotal use cases. These pivotal use cases comprise of the most
frequently performed user actions. These pivotal use cases are required because during the execution of
Ajax web applications, the possible number of events and their associated elements can be very large in
number. It is almost impossible to record all possibilities and then to extract and test these event and
element mappings. One way to limit the possibilities is considering only the most frequently used events
and then mapping them to the corresponding elements. StateReduceAjax runs only these pivotal use cases
and maps user actions to (DOM) mutations using (DOM) tools [34,35]. These (DOM) mutations are the
(DOM) states and StateReduceAjax finally connects these (DOM) states to construct the state machine.
Fig. 1 shows the complete working of the proposed solution.

In this research the proposed framework accomplishes its objectives by using Algorithm 1 shown in
Tab. 1.

This algorithm initiates by taking Requirement set as input and then sends it to requirement prioritization
module. Requirement prioritization module takes stakeholder set as input if required, applies requirement
prioritization method and returns prioritized requirement set. The algorithm passes this data to the use
case prioritization module. This module takes use case set data as input and performs user session
recordings, use case requirement mapping, and use case frequency calculation to generate use case
frequency data and use case requirement weightage. This data is then sent to FCM that generates the
prioritized use case set which is returned to the main algorithm. The algorithm then iterates through all
the use cases in the prioritized use case set and invokes generateFSM module for each use case. The
generateFSM module takes Source (DOM) of the Ajax application and use case set as input and
implements event element mapping to generate state Log file. It then uses this log file to append the
states and transition information to FSM data file for each use case. Finally it sends FSM data file to
drawGraph function to generate the state machine for the use case.

3.1 Stage I

The first stage reads system requirements from the file for further processing.

IASC, 2022, vol.33, no.1 433

Figure 1: Proposed solution

Table 1: Algorithm I

Procedure StateReduceAjax ()

Declare Prioritized_Requirements_Set, Prioritized_Usecase_Set, FSM_Data

Input Requirements_Set, Stakeholder_Set

Output Prioritized_Requirements_Set, Prioritized_Usecase_Set, FSM_Data

1 PrioritizeRequirements()

2 PrioritizeUsecases()

3 for each Prioritized_Usecase_id in Prioritized_Usecase_Set.Usecase_id

4 gererateFSM()

end_procedure

434 IASC, 2022, vol.33, no.1

3.1.1 Requirements Prioritization
The first step of Stage-I prioritizes the requirements. The requirement set having small set of

requirements fall in small project group and this research applies AHP [36] to prioritize the requirements.
The requirement set having large number of requirements is a candidate for PHandler [37].

In the first step, AHP reads the requirements file and formulates an n x n matrix where n is the number of
candidate requirements. It then performs pair wise comparisons on these requirements and assigns ranking
values ranging between 1 and 9. The value of ‘1’ shows both requirements are equally important and ‘9’
shows a significant difference in importance. For two requirements R1 and R2, if R1 has value ‘5’ then it
is strongly more important than R2 and AHP places this value at the intersection of row R1 and column
R2. Row R2 and column R1 gets the reciprocal value, i.e., 1/5. A comparison of any requirement with
itself gives ‘1’ showing equality in importance thus the diagonal of matrix remains ‘1’.

Next step takes the sum of every column of the matrix and then normalizes the matrix by dividing each
element in every column by the sum of that column. AHP then takes the average of each row in the
normalized matrix. This process adds value of each element of a row and then divides this sum by total
element count of that row. The succeeding step checks the consistency by multiplying the average row
value with each row element of the original matrix, resulting in a consistency matrix. The last step takes
the dot product sum of each row of the consistency matrix by 1/W resulting in weight assignments to
each requirement.

This research applies the PHandler to prioritize large requirement set. The PHandler uses three stages to
prioritize the requirements. In the first task of stage I, experts evaluate just the requirements without any other
details. In the next task, the experts assess the stakeholder data, which comprise of their brief profiles, their
expectations about the system and system functionality of their choice. These profiles form the basis to
quantify and identify the weightage of the stakeholders in reference to the system. Experts perform the
quantification of the stakeholders using STAR triangle ranking method [38]. This method assigns a
1–10 range value to each stakeholder based on some key attributes. These attributes are significance,
domain knowledge, participation level, dependency, control and level of decision-making. PHandler uses
the quantified stakeholder profiles in later stages to resolve the conflicts among contending requirements.
The third task takes requirement classification factors (RCFs) and then uses these factors to calculate
requirement value (RV) for each requirement. These RCFs are project related (projRCFs) or requirement
related (reqRCFs). The projRCFs are feasibility, modifiability, urgency, traceability, and testability while
the reqRCFs considered are completeness, consistency, understandability, within the scope and non-
redundancy. Eq. (1) uses these RCFs to determine value of each requirement (RV) in the range of 0 to 5.

RV ¼ 0:35þ 0:02

�X5
i¼1

pRCFiþ
X5
i¼1

rRCFi

�
(1)

RCFi in Eq. (1) indicates the specific classification factor whose existence or nonexistence affects the
RV of a requirement [36].

The second stage of the PHandler applies exceptions on the requirements with similar RV. These
exceptions, along with RV, take profile values of the stakeholders as input and assign the requirement/s to
different priority clusters. The stakeholder profile value depends on the influence, role, interest, and
urgency of the stakeholder in reference to the project. The third stage of the PHandler applies AHP to
remove the contest among the competing requirements. AHP produces prioritized lists for the given
clusters and finally, the PHandler combines all the priority lists to generate final priority list.

Tab. 2 shows the algorithm for stage I. Algorithm II takes requirement set as input and the output of this
module is Prioritized Requirement Set.

IASC, 2022, vol.33, no.1 435

3.2 Stage II

Stage II initiates by reading use cases from Use Case Set for later use in different levels of this stage. It
then performs user session recording, using Selenium [39], to gather the user interaction information with
reference to the system functionality. Selenium is a functional testing tool that records the user events and
subsequent behavior as the user interacts with system under test.

StateReduceAjax uses these recordings to calculate the use case frequency which along with Use Case
Requirement Weightage UiW is input to Fuzzy C mean classification algorithm (FCM) [18]. (FCM) then
generates the most pivotal use cases which are later used for DOM event element mapping in the next
stage for State Machine generation. UiW is calculated by mapping each use case with its relevant
prioritized requirements to generate Use Case Requirements Weightage Set. The output of this stage as
mentioned before is prioritized Use Case Set. Tab. 3 depicts the algorithm for stage II.

Table 2: Algorithm II

Procedure PrioritizeRequirements()

Declare LARGE = 30

Input Requirements_Set, Stakeholder_Set

Output Prioritized_Requirements_Set

1 if (Requirements_Set.count() >= LARGE) then

2 Prioritized_Requirements_Set = PHandler(Requirements_Set,Stakeholder_Set)

3 else

4 Prioritized_Requirements_Set = AHP(Requirements_Set)

end_procedure

Table 3: Algorithm III

Procedure PrioritizeUsecases ()

Declare : Usecase_Requirement_Weight = 0, Usecase_Count = 0, Usecase_Frequency = 0,
Intermediate_Usecase_Frequency = 0, Intermediate_Usecase_Count = 0, Fuzzy_Data_File,
Number_of_Clusters = 2, Usecase_Requirement_Weightage_Set, Selenium_Log_File,
Usecase_Frequency_Data

Input : Prioritized_Requirements_Set, Usecase_Set, Ajax_URL, Session_Id

Output : Prioritized_Usecase_Set

1 for each Usecase in Usecase_Set

2 for each Step in Usecase

3 for each Prioritized_Requirement in Prioritized_Requirements_Set

4 if (Map(Prioritized_Requirement, Step) == True)

5 Usecase_Requirement_Weight += Prioritized_Requirements_Set.
Prioritized_Requirement.Weight

6 Usecase_Requirement_Weightage_Set.append([Usecase.Usecase_id,
Usecase_Requirement_Weight])

(Continued)

436 IASC, 2022, vol.33, no.1

3.2.1 User Session Recording and Log File Generation
In this level the framework records the user sessions to identify the usage patterns of the application.

Selenium records the sessions as user performs different actions on the system [40]. The user interaction
with the system triggers different events and Selenium records the user action data, resulting events, and
the corresponding application traces in a log file. In order to record multiple sessions, multiple users use
the application and Selenium records the usage data in log files, which later merge into a central log file
referred as Selenium Log File in this research. Line 8 in the Algorithm III in Tab. 8 shows the working of
user session recording functionality.

3.2.2 Calculation of Use Case Frequency
The next level of Stage II calculates the use case frequency of the system which depicts the system usage

in a quantifiable manner [41]. It models the way users operate the system, the actions they perform, the
corresponding function calls, and the parameter value distributions. This identifies the most frequently
used functions thus helping in focusing on most pivotal system areas for testing. In this research, the
identification of the most used functions becomes the base to discover and work on only those DOM

Table 3 (continued)

Procedure PrioritizeUsecases ()

7 Usecase_Requirement_Weight = 0

8 Selenium_Log_File = Selenium.Execute(Session_Id, Ajax_URL)

9 while !EOF (Selenium_Log_File)

10 for each Session_id in Selenium_Log_File.Session_id

11 for Usecase_id in Usecase_Set.Usecase_id

12 Intermediate_Usecase_Count = Calculate_Usecase_Count(Session_id,Usecase_id,
Usecase_Set, Selenium_Log_File)

13 Intermediate_Usecase_Frequency = Usecase_Count/Selenium_Log_File.SessionTime

14 Intermediate_Usecase_Frequency_Data.append(Usecase_id,
Intermediate_Usecase_Frequency)

15 for each Usecase_id in Usecase_Set

16 while !EOF() Intermediate_Usecase_Frequency_Data

17 if (Usecase_id == Intermediate_Usecase_Frequency_Data.Usecase_id)

18 Usecase_Frequency = Usecase_Frequency +
Intermediate_Usecase_Frequency_Data.Intermediate_Usecase_Frequency

19 Usecase_Frequency_Data.appned(Usecase_id, Usecase_Frequency)

20 Usecase_Frequency = 0

21 for each Usecase in Usecase_Frequency_Data

22 Fuzzy_Data_File.append() =
[Usecase_Frequency_Data.Usecase.Usecase_id, Usecase_Frequency_Data.
Usecase_Frequency, Usecase_Requirement_Weightage_Set.Usecase_Requirement_Weight]

23 Prioritized_Usecase_Set = FCM.Execute(Fuzzy_Data_File, Number_of_Clusters)

end_procedure

IASC, 2022, vol.33, no.1 437

changes, which emerge because of this usage pattern. This helps in identifying those DOM mutations that
result from the most frequently used operations of the system.

This level starts by taking Selenium Log File and Use case set. Use case set is used to identify and map
steps read from Selenium Log File with corresponding use cases. Initially the use case count is calculated for
each user session from Selenium Log File and then is divided by the total user session time to calculate the
use case frequency for that session. The final use case frequency is calculated by adding frequencies from all
user sessions for each use case. Line 9 to 20 of the Algorithm III in Tab. 8 shows the working of use case
frequency calculation. The output of use case frequency calculation is the use case frequency data.

3.2.3 Use Case Requirement Mapping
The next level of this stage calculates the use case requirement mapping. Every use case comprises of

multiple requirements and here the solution identifies the requirements related to each use case. It then sums
up the prioritized weights of the requirements related to the use case and calculates the overall weight of the
use case. This use case weight alongside the use case frequency is another important factor to consider for use
case prioritization. Use case frequency addresses a use case in terms of its usage while the weightage of a use
case addresses it in terms of the requirements it is fulfilling and their importance to the system. The more the
weight of a use case, the more important it is to the system. Both these factors are then input to FCM for
overall priority calculation of each use case. Line 1 to 7 of the Algorithm III in Tab. 8 shows the working
of use case requirement mapping. The output of this step is Use Case Requirement Weightage Set.

3.2.4 Application of Fuzzy C Mean Clustering
The last level of Stage II implements Fuzzy C mean classification algorithm (FCM) [18] that generates

the most pivotal use cases. Fuzzy is a dominant unsupervised clustering technique for data analysis and
model construction. FCM is a soft clustering algorithm which processes different data elements, gives
them membership labels, and refers them to one or more clusters. In comparison to other clustering
algorithms, FCM demonstrates better efficiency, reliability, and robustness in most situations or
applications [42–46]. Previously studies have used FCM and its variations in the area of software
requirements prioritization [36] and pattern recognition [47]. FCM identifies key features of dataset
objects and based on this information group them into clusters. It computes the correct location of an
object in the dataset and assigns it to its designated cluster in a set of multiple clusters. Fuzzification
parameter m determines the degree of fuzzification, in the range [1-n], of an object into a cluster. FCM
starts by identifying the central points or centroids, and these centroids are referred as the mean of each
cluster. The algorithm then creates the distance matrix using the Euclidean distance formula given in Eq. (2).

dðx yÞ ¼
ffiXd
i¼1

jxi � yij2
vuut (2)

d is the Euclidean distance between two objects x, and y and xi and yi are the attributes of the objects. FCM
assigns a membership level to every object in each cluster. It iteratively updates the centroid and membership
levels and then readjusts the centroid location in each cluster of dataset. FCM uses an objective function to
adjust the centroid position. This objective function takes the membership level of every object in the cluster
and then calculates the distance of the object from centroid. Eq. (3) is used in FCM to compute membership
level during iterative optimization process of the FCM.

Uij ¼ 1
Pc

k¼1 ½
jjxi � cjjj
jjxi � ck jj�

2
m�1

(3)

438 IASC, 2022, vol.33, no.1

Eq. (4) denotes the objective function used in the FCM.

J ¼
XN
i¼1

:
XN
j¼1

Um
ij jjxj � vijj2 (4)

In Eqs. (3) and (4)Uij is the membership of xj in ith cluster, vi is the center of the ith cluster, the bars ||…||
represent the norm metric and m constant is associated with the degree of fuzzification. FCM assigns higher
values of membership to the data values closer to the centroid and minimizes the cost function while it
assigns lower membership values to the data objects far away from the centroid. The probability of
association of a given data object with a cluster is shown with the membership function. This probability
depicts the distance of an object from its cluster centroid.

This level starts by taking Use case requirement weightage and Use case frequency as input and then
generates the most pivotal use cases as output. Both use case requirement weightage and use case
frequency have got their own importance. We can have use cases having more weightage but are use less
frequently used by the users and vice versa. For this very reason we cannot decide the importance of a
use case merely on one factor. We need to identify the importance of a use case on the basis of
relationship between both these factors.

The above mentioned situation is candidate for the use of soft computing, i.e., a learning algorithm to
generate trusted results as traditional methods might not be able to handle such scenarios. We cannot
anticipate the usage pattern of any user beforehand and every new user might change the patterns of the
input data. We need a robust solution here, which changes itself with the change of input data and that is
why FCM is used here to generate the results. FCM in this research places data into two clusters labeled
as pivotal and non-pivotal. Pivotal cluster contains the pivotal use cases which in this research are input
to next stage for the generation of state machine. Line 21 to 23 of the Algorithm III in Tab. 8 shows the
functionality of FCM. The output of FCM is Prioritized use case set.

3.3 Stage III

Stage III of the solution takes the pivotal use case list generated from the previous stage as input along
with the source DOM and Use Case Set. In this state the use cases listed in the FCM generated pivotal list are
rerun using Selenium to identify the pivotal user actions, resulting triggered events and the corresponding
changing elements of DOM. Here it is important to consider that the actions performed by user on the
Ajax web application only identify the front-end changes and the Selenium records the same. It implies
that the action resulting DOM changes do not link automatically with the browser history. This means
that the orthodox forward back mechanisms on the browser do not work in the Ajax application, as the
DOM changes occur on the same page. In order to link the functional changes recorded by user actions
with the DOM tree changes, generated as a result by those functional changes, the solution requires
recording DOM tree mutations as well. For this purpose, the solution collects all application execution
traces by executing pivotal use cases and subsequently matches the user actions to DOM events by
employing DOM Listener and HTML DOM Navigation tools. It then maps the extracted events to
corresponding DOM elements. The solution finally uses this event-element data to construct the state
machine where the event denotes the transitions between states while the element list denotes the states
itself. The output of this stage is the sate machine. Algorithm for stage III can be seen here in Tab. 4.

IASC, 2022, vol.33, no.1 439

3.3.1 DOM Event Element Mapping
State changes in an Ajax application are the changes in its DOM tree. The user action based changes

recorded in Selenium are only functional in nature and a DOM change identification requires a link from
the user action to the changed DOM element. In order to get these DOM changes, the solution first
identifies the link between selenium-recorded actions with the triggered events and then maps those
events to the modified DOM elements.

The aggregate number of DOM elements and probable concrete DOM states are commonly huge and
exponential. However, this research only takes a prioritized subset of total use cases resulting in
considering only the prioritized user actions, triggered events and corresponding changing elements.

Table 4: Algorithm IV

Procedure gererateFSM()

Declare Current_DOM, New_DOM, Element_List, State_List, transition, targetState, startState,
State_Log_File

Input Prioritized_Usecase_id, SourceDOM, Usecase_Set

Output FSM_Data_File

1 Current_DOM = SourceDOM

2 while !EOF(Usecase_Set)

3 if (Usecase_Set.Usecase_id == UseCase_id)

4 for each Step in Usecase_Set

5 Event = Selenium.execute(Step)

6 newDOM = browser.fetchDom(Ajax_URL)

7 If (isDifferent(currDOM, newDOM))

8 Element_List = ChangedElements(NewDOM)

9 Curr_DOM = New_DOM

10 State_List = [Event , Element_List]

11 State_Log_File.append(State_List)

12 State_List = 0

13 Element_List = 0

14 if (State_Log_File not empty)

15 StartState = SourceDOM

16 while (! EOF (State_Log_File)

17 transition = State_Log_File.Event

18 targetState = State_Log_File.Element_List

19 FSM_Data_File.append(startState, transition, targetState)

20 StartState = targetState

21 drawGraph(FSM_Data_File)

22 State_Log_File = NULL

end_procedure

440 IASC, 2022, vol.33, no.1

This results in processing only pivotal and discarding less pivotal triggered events and linked elements thus
avoiding state explosion problem [48–51].

The process starts by rerunning the FCM identified prioritized use cases in browser alongside DOM
listener and HTML navigation tools. A Use case comprises of user actions that trigger Ajax events [24]
which are detected using DOM Listener tool. The xpath of the corresponding changing elements are
identified by HTML Navigation Tool, which works along with the browser as its extension and performs
internal DOM processing to identify and log dynamically changing elements as a result of trigged events.

Line 1 to 13 of Algorithm IV in Tab. 9 shows the working of event element mappings functionality that
outputs State Log File. This file is then used in subsequent phases to construct the Sate Machine.

3.3.2 State Machine Construction
In the final phase of stage III state machine is constructed from the State Log File generated in previous

phase. In this method of state machine construction, every use case has its own state machine. A use case
depicts a partial behavior of the system and a state machine generated from the use case portrays the same.

There can be many use cases of an Ajax application, thus many state machines. However, in this
research we have used FCM that filters out the most pivotal use cases of the application resulting in a
prioritized use case set. The aggregate of these prioritized use cases depicts the aggregated system
behavior and the same is true for state machines, their aggregate will show the overall prioritized
behavior of the system. However we have left the aggregation of these state machines for the future work
and this research is limited to separate state machine per use case.

A major challenge in modeling Ajax application is the number of DOM states, which can be unlimited
thus making it difficult to construct a state machine. Our solution handles this state explosion problem by
considering only the prioritized use case set. This prioritized set possesses a lot lesser number of user
actions as compared to overall action possibilities. This limited user action set triggers a lot lesser number
of events as compared to all the event possibilities resulting in only the most essential element changes.
In this way, the most crucial DOM changes become the basis of state machine construction.

Line 14 to 22 in Tab. 9 shows the working of state machine construction which outputs FCM Data File.
At the end, this file is sent to Draw Graph function for drawing the state machine.

Next section of the paper discusses the experimental results and analysis on those results.

4 Experimental Results and Analysis

This section presents the experiments conducted to prove the hypothesis stated earlier. The experiments
implement StateReduceAjax discussed in the previous section. The first case study taken in this regard is a
small Ajax based application called Ajax powered Coffee Maker [52].

The process initiates by reading the requirements from Requirement Set. This is a small system having
20 requirements thus a candidate for the AHP to prioritize the requirements. AHP initiates by constructing an
‘n � n’ matrix where ‘n’ denotes the total number of requirements. AHP then carries out all the steps as
mentioned in Section 3.1.1 to generate Weighted Requirements Matrix. Tab. 5 shows the Weighted
Requirements Matrix for Ajax powered coffee maker.

The output of AHP is the Prioritized Requirement Set for Ajax powered Coffee Maker.

StateReduceAjax then reads the use cases from the Use Case Set. It uses Prioritized Requirement Set and
Use Case Set to apply use case-requirements mapping. The output of this function is the Use case
Requirement Weightage Data having Use cases along with their weights. The next stage of
StateReduceAjax uses Selenium and record user sessions to identify usage patterns. Selenium archives the

IASC, 2022, vol.33, no.1 441

user action statistics in a log file. This leads StateReduceAjax to calculate use case frequency of the system.
This identifies the most frequently used functions thus helping in focusing on most pivotal system areas for
testing. In this research, the identification of the most used functions becomes the base to discover and work
on only those DOM changes, which emerge because of this usage pattern. The output of this step is the Use
Case Frequency Data. The last level of Stage II implements Fuzzy C mean classification algorithm (FCM)
[18]. FCM takes features of the objects and classifies them into clusters. It iteratively calculates the
appropriate position the objects, identify their suitable cluster among multiple clusters and place them in
it. Tab. 6 shows the Ajax Powered Coffee Maker Fuzzy Input Set taken from Use Case Requirement
Weightage Data and Use Case Frequency Data respectively.

Table 5: Weighted requirements matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM Priority

1 0.08 0.11 0.15 0.10 0.06 0.04 0.16 0.07 0.12 0.11 0.08 0.09 0.10 0.04 0.10 0.04 0.12 0.05 0.11 0.10 1.82 22.78

2 0.04 0.05 0.15 0.06 0.03 0.09 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.03 0.05 0.10 1.20 22.88

3 0.04 0.03 0.07 0.10 0.06 0.09 0.16 0.07 0.12 0.11 0.08 0.09 0.10 0.04 0.10 0.04 0.12 0.10 0.11 0.05 1.67 23.03

4 0.03 0.03 0.02 0.03 0.02 0.13 0.05 0.11 0.03 0.04 0.02 0.02 0.02 0.01 0.03 0.01 0.03 0.02 0.03 0.02 0.69 21.28

5 0.04 0.05 0.04 0.06 0.03 0.02 0.10 0.02 0.06 0.02 0.08 0.09 0.05 0.02 0.05 0.08 0.06 0.03 0.05 0.02 0.98 30.21

6 0.08 0.03 0.04 0.01 0.06 0.04 0.02 0.04 0.12 0.11 0.08 0.02 0.10 0.04 0.10 0.04 0.03 0.05 0.11 0.05 1.17 26.76

7 0.03 0.03 0.02 0.03 0.02 0.13 0.05 0.01 0.03 0.04 0.02 0.09 0.02 0.13 0.03 0.01 0.03 0.02 0.03 0.02 0.78 14.87

8 0.04 0.11 0.04 0.01 0.06 0.04 0.16 0.04 0.12 0.11 0.08 0.02 0.10 0.04 0.10 0.04 0.03 0.05 0.11 0.05 1.35 38.41

9 0.04 0.05 0.04 0.06 0.03 0.02 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.02 0.06 0.03 0.05 0.02 0.89 15.50

10 0.03 0.03 0.02 0.03 0.06 0.01 0.05 0.01 0.03 0.04 0.02 0.09 0.02 0.01 0.03 0.12 0.03 0.02 0.03 0.14 0.83 22.04

11 0.04 0.05 0.04 0.06 0.02 0.02 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.10 0.05 0.02 1.02 25.81

12 0.04 0.05 0.04 0.06 0.02 0.09 0.03 0.07 0.06 0.02 0.04 0.04 0.05 0.09 0.05 0.08 0.06 0.03 0.05 0.10 1.06 24.41

13 0.04 0.05 0.04 0.06 0.03 0.02 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.10 0.05 0.02 1.03 20.83

14 0.08 0.03 0.07 0.10 0.06 0.04 0.02 0.04 0.12 0.11 0.02 0.02 0.02 0.04 0.10 0.04 0.03 0.05 0.11 0.05 1.16 26.05

15 0.04 0.05 0.04 0.06 0.03 0.02 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.02 0.06 0.10 0.05 0.02 0.97 18.87

16 0.08 0.11 0.07 0.10 0.02 0.04 0.16 0.04 0.12 0.01 0.08 0.02 0.10 0.04 0.10 0.04 0.12 0.05 0.03 0.05 1.37 33.16

17 0.04 0.05 0.04 0.06 0.03 0.09 0.10 0.07 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.10 0.05 0.02 1.15 19.74

18 0.08 0.11 0.04 0.10 0.06 0.04 0.16 0.04 0.12 0.11 0.02 0.09 0.02 0.04 0.03 0.04 0.03 0.05 0.03 0.05 1.25 24.43

19 0.04 0.05 0.04 0.06 0.03 0.02 0.10 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.08 0.06 0.10 0.05 0.10 1.10 20.57

20 0.04 0.03 0.07 0.10 0.06 0.04 0.16 0.04 0.12 0.01 0.08 0.02 0.10 0.04 0.10 0.04 0.12 0.05 0.03 0.05 1.30 26.83

Table 6: Ajax powered coffee maker fuzzy input

Use case Weightage Frequency

UC1 134.6293125 7

UC2 180.5354437 23

UC3 186.1137437 15

UC4 176.2581018 14

UC5 134.6293125 8

UC6 116.7772695 12

442 IASC, 2022, vol.33, no.1

The output of FCM is the Prioritized Use Case Set having two clusters, i.e., pivotal and non-pivotal.
Pivotal cluster represents the prioritized use cases. These use cases give the most essential user actions
and the solution identifies event element mapping only for these user actions. The event element mapping
of this reduced action set gives limited events, thus reduced DOM mutation set, and state machine.
However, as the identified action set comprise the most vital user actions so the state machine models the
most essential system behavior. Fig. 2 shows the Fuzzy C Mean results of the Coffer Maker.

DOM event element relationship links a triggered event, because of user action, with resulting elements
that change their behavior. Here the model will create a list of elements which alter behavior in reference to
associated event. Tab. 7 shows the “Place Order by Entering Name, Size and Beverage Type” use case steps
along with DOM states.

The output of DOM event element mapping is the state log file having event element mapping records
for each use case. This state log file for each use case is input to Construct FSM function which outputs FSM
data file and constructs state machine for the use case. Fig. 3 shows the state machine for use case.

Second case study is an Ajax based ToDo list [53]. The ToDo List helps the users to manage daily task
list in Ajax style. It includes the features like multiple lists, task notes, tags, due dates, task priority, and task
sorting searching. The system falls in large requirement set so PHandler is used to prioritize the requirements.
PHandler takes stakeholder and requirements data to carry out the prioritization process. Requirement

Figure 2: FCM results for Ajax powered coffee maker

Table 7: Use case steps with DOM states

S. no. Use case steps DOM state XPath

1 Enter name //*[@id = "name”]

2 Select size //*[@id = "controls1”]/form/p [2]

3 Select beverage //*[@id = "controls1”]/form/p [3]

4 Order coffee //*[@id = "btnUpdate”]

5 Coffee maker Status //*[@id = "coffeemaker1-status”]

IASC, 2022, vol.33, no.1 443

classification factors projRCFs and reqRCFs are used to calculate the value of requirements RV. Tab. 8 shows
the RV values of some ToDo list requirements.

The output of PHandler is the Prioritized Requirement Set. The solution then reads ToDo list use cases
from Use Case Set and uses both these sets to apply use case-requirements mapping. The output of this
function is the Use Case Requirement Weightage Data. StateReduceAjax records user sessions to identify
usage patterns in Selenium Log File. StateReduceAjax then calculates the use case frequency of the
system and logs into Use Case Frequency Data. The next stage of StateReduceAjax implements (FCM).
Tab. 9 shows the ToDo List Fuzzy input Set taken from Use Case Requirement Weightage Data and Use
Case Frequency Data respectively.

The output of FCM is the prioritized use case set having two clusters, i.e., pivotal and non-pivotal. Fig. 4
shows the Fuzzy C Mean results of the ToDo list.

These FCM identified use cases give the most frequently used user actions and the solution identifies
event element mapping only for these user actions. The event element mapping of this reduced action set
gives limited events, thus reduced DOM mutation set, and state machine. However, as the identified
action set comprise the most vital user actions so the state machine models the most frequent system
behavior.

Figure 3: State machine of “place order by entering name, size and beverage type” use case

444 IASC, 2022, vol.33, no.1

Table 8: RV value of Todo list requirements

Feasibility Modifiability Urgency Traceability Testability Completeness Consistency Understandability Within
Scope

Non
Redundant

Total

5 4 5 5 5 5 5 5 5 5 1.33

2 1 1 3 2 1 2 2 1 1 0.67

2 1 2 3 2 1 2 2 1 1 0.69

3 2 2 1 2 2 2 2 2 1 0.73

4 3 4 3 3 3 4 3 3 3 1.01

2 1 2 1 2 1 2 2 1 1 0.65

2 1 1 1 2 1 2 2 1 1 0.63

Table 9: Todo List FCM input data

Use
case

Weightage Frequency Use
case

Weightage Frequency Use
case

Weightage Frequency Use
case

Weightage Frequency

UC1 3.41 7 UC12 4.24 103 UC23 1.05 61 UC34 4.32 3

UC2 2.95 141 UC13 5.11 44 UC24 1.01 11 UC35 2.76 1

UC3 6.79 63 UC14 1.11 5 UC25 0.95 31 UC36 2.21 1

UC4 3.49 33 UC15 1.31 3 UC26 0.99 26 UC37 1.58 1

UC5 4.19 8 UC16 1.09 13 UC27 0.89 15 UC38 3.09 2

UC6 3.44 13 UC17 2.02 21 UC28 0.98 71 UC39 2.16 2

UC7 2.58 19 UC18 0.99 2 UC29 0.97 57 UC40 4.7 7

UC8 1.24 127 UC19 1.19 17 UC30 0.89 16 UC41 1.48 1

UC9 1.24 35 UC20 1.04 9 UC31 1.04 6 UC42 2.14 17

UC10 2.02 17 UC21 1.04 30 UC32 1.74 2

UC11 0.98 7 UC22 1.01 54 UC33 2.51 0

Figure 4: FCM results of Todo list

IASC, 2022, vol.33, no.1 445

StateReduceAjax uses DOMListener and HTMLDOMNavigation tool to identify the links among front
end user actions to the corresponding triggered events and further to the changed elements. These changing
elements represent the DOM mutations which in fact are the Ajax application state changes.

The output of DOM event element mapping is the state log file having event element mapping records
for each use case. This state log file for each use case is input to Construct FSM function.

Tab. 10 shows the use case steps with the DOM states of “Add Task to a list” use case and Fig. 5 shows
its state machine.

Table 10: “Add task to a list” use case steps with DOM states

Use case steps DOM state XPath

1 Select list //*[@id = "mtt_body”]/h2
//*[@id = "settings”]
//*[@id = "list_id”]/a/span
//*[@id = "htab_newtask”]/table
//*[@id = "taskview”]/span [1]
//*[@id = "tabs_buttons”]/div
//*[@id = "htab_search”]/table

2 Enter task Label //*[@id = "task”]

3 Click submit Button //*[@id = "newtask_submit”]

4 Task added //*[@id = "taskrow_id”]/div [3]/div [2]
//*[@id = "taskrow_id”]/div [3]/div [2]/span [1]
//*[@id = "taskrow_id”]/div [3]/div [2]/span [2]
//*[@id = "taskrow_id”]/div [3]/div [2]/span [3]

Figure 5: State machine for the “Add Task to List” use case

446 IASC, 2022, vol.33, no.1

5 Evaluation of the Proposed Solution

In order to evaluate the proposed approach we have considered the impact of reduction of FSM on
testing effectiveness. For this purpose, we calculated testing cost and testing effectiveness. Our
experiments show that the reduction in cost is significant as compared to the loss of effectiveness. The
parameters we used in order to gauge the effectiveness of testing, are faults detected and frequency of
execution of different elements of the system under test.

In order to evaluate effectiveness of our approach, we used fault seeding. This technique is a
combination of artificially induced faults and the measure whether testing technique is capable enough to
uncover them. The comparison of detected and undetected seeded faults gives a confidence measure of
testing [54]. One of the issues to cater in this approach is identification of potential fault seeding areas in
the application. Randomly placed faults may prove to be an overhead as the seeded areas may be less or
not executed. Two factors that are pivotal in identifying the fault seeding areas are usage patterns and the
testers’ perspective of the application usage. One perspective is from user and the other is from tester
point of view and both could be quite different from one another. There should be a systematic way to
incorporate both in fault seeding process.

Use cases are the main source to record user interaction with the application and in turn to identify usage
patterns. These usage patterns help in identifying the application areas that are more used than the others. The
faults in these more used areas have greater impact on the system behavior. This argument supports the idea
that all the faults do not have same significance. The faults in areas encountered more by the users have
different effect on reliability than the same type of faults in less encountered areas [55]. Almost all
studies consider the faults alone as the measure of testing effectiveness without considering their
frequency of execution [56–60]. This frequency of execution or the frequency profile provides the
quantitative characterization of system usage [61]. Software testing based on this frequency of execution
confirms that most frequently used operations are focused thus achieving maximum reliability in available
testing time [61]. One important thing to consider here is the fault types to be seeded. This research uses
classification of faults given in [62] and their distribution given in [63]. Grigorjev et al. [63] give a
classification of faults and their distribution in the program, as shown in Tab. 11.

There are a number of ways to seed faults in a system, i.e., seeding in random manner [64], in isolated
manner [65], or by a human expert [66]. In this research, we have seeded one fault in every use case of our
case studies from different classes of faults, and used fault severity definitions as given in [63]. Only those
severity types are used that do not lead to system crashes, i.e., 3 to 5. Tab. 12 shows the severity levels as
given by [63].

Table 11: Fault distribution

Class of faults Percentage

Logic control faults 32

Data faults 24

Interface faults 18

Computational faults 13

Initialization faults 13

IASC, 2022, vol.33, no.1 447

Several reliability metrics are available to measure the reliability of a system. One such metric is
Probability of Failure on Demand (POFOD). The argument to prove the effectiveness of proposed
solution initiates by seeding a fault in each use case. The idea is that the seeded fault is encountered once
the user executes the use case. Since all use cases do not have same execution frequency, the faults in use
cases do not trigger the same number of times, which makes some faults more critical than others. In
order to assess the reliability of the system, testing is performed using test cases. For simplicity, we
assume that all use cases have equal number of test cases, i.e., one test case per use case. In order to
calculate effectiveness of testing we first need to calculate effectiveness of a test case. Effectiveness of a
test case is the ratio of its corresponding use case’s frequency to the sum of frequencies of all use cases.
Effectiveness of testing would then be calculated by taking the sum of Effectiveness of only the high
category test cases. High category test cases are the test cases corresponding to the high category use
cases identified by FCM. Cost of testing is the ratio of number of test cases executed to the total number
of test cases. Executing all test cases incurs higher cost, our approach reduces the number of test cases by
reducing the state machine, and thus testing cost is reduced. Eqs. (5)–(7) show the definitions of
Effectiveness of a test case, Effectiveness of testing and Cost respectively.

Effectivenesstc ¼ Frequency of corresponding use casePn
i¼1

Frequency of uci

(5)

EffectivenessHigh ¼
Xh
i¼1

Effectivenesstci (6)

CostTesting ¼

Ph
j¼1

ftcjg
Pn
i¼1

ftcig
(7)

Here ‘n’ and ‘h’ show the total number of use cases and total number of high category use cases
respectively. More test cases means more testing cost and vice versa. However the decrease in test cases
may affect the effectiveness of testing. Here, we evaluate the impact of reduction in testing cost, on
effectiveness of testing. As we mentioned earlier, we are writing one test case per use case, so reduced
use case set would mean reduced test case set. As we are using POFOD, we argue that the use cases
executed more often have the functionality that is requested frequently by the user and the faults in these
use cases are encountered more by the user. The state machine generated by our solution comprise of the
states corresponding to the most frequently executed use cases. The discarded group of use cases

Table 12: Fault severity levels

Severity Description

1 Catastrophic–Bug causes system crash

2 Major–Bug makes the product unusable

3 Moderate–Bug affecting product usage

4 Minor–Bug is not affecting product usage

5 Nuisance–Easily reparable faults

448 IASC, 2022, vol.33, no.1

decreases the testing cost. We compare the relationship between this decreased cost and effectiveness of
testing to prove the usefulness of our solution. Tab. 13 shows the frequency and effectiveness of a use
case for an example scenario.

FCM results show that UC3 and UC5 fall in high category and their corresponding test cases would be
considered for calculating the testing effectiveness. By using Eq. (8) the testing effectiveness of system is
68.7% and by using Eq. (9) the cost of testing is 40%. This shows that the cost is reduced by 60% but
the effectiveness is not reduced that much and is reduced only by 31.3%.

We have used Coffee Maker and ToDo List case studies to further strengthen the argument regarding
effectiveness of our solution. We have seeded a fault in each use case and these seeded faults ensure that
whenever the user runs that use case, it triggers the seeded fault. Our solution implements the FCM
algorithm to prioritize the use cases. This information depicts the most frequently used application areas
and the faults in these areas tend to be encountered the most. The discarded use cases are not considered
for testing which reduces the testing cost.

FCM categorizes use cases into two groups, i.e., high priority and low priority. FCM processes the given
data and calculates a threshold value. The use cases falling above the threshold value belong to high priority
group and rest belong to low priority group. Our solution discards the low priority use cases. Eq. (8) shows
the relationship between high and low priority use cases.

UCAll ¼ UCHigh [UCLow (8)

The cost of testing is determined as the ratio of test cases executed to the total number of test cases. Thus
cost of solution calculates the percentage of high category use cases in reference to all the use cases. Eq. (9)
shows this relationship.

CostðUCHighÞ ¼ jUCHighj
jUCAllj (9)

In our solution we claim that although we have reduced the testing cost but the effectiveness of testing is
not compromised. This implies that effectiveness of testing is reduced less as compared to number of use
cases reduced. Eq. (10) shows the effectiveness calculation.

EffectivenessðUCHighÞ ¼

Ph
j¼1

ffreqðucjÞgHigh
Pn
i¼1

ffreqðuciÞgAll
(10)

Table 13: Effectiveness of a use case

Use case/test case Frequency Effectiveness

UC1/TC1 2 0.0625

UC2/TC2 3 0.09375

UC3/TC3 10 0.3125

UC4/TC4 5 0.15625

UC5/TC5 12 0.375

IASC, 2022, vol.33, no.1 449

Here n and h represent the total number and the number of high category use cases respectively. In order
to find the reduction in overhead of use cases and in efficiency of testing, Eqs. (11) and (12) are used
respectively.

ReductionCostðUCAllÞ ¼ 1� CostðUCHighÞ (11)

and

ReductioneffectivenessðUCAllÞ ¼ 1� EfectivenessðUCHighÞ (12)

Tab. 14 shows the results of these calculations on the Coffee Maker and ToDo List case studies.

Coffee Maker case study has got a total of six use cases. Out of these six use cases three use cases (UC2,
UC3, and UC4) fall in high category group and in turn are used by our solution to generate state machine.
FCM has placed remaining 3 use cases in low category. Our solution has discarded these low category use
cases. The percentage of these high category use cases is 0.5(50%). The Coffee Maker case study use cases
are executed 79 times by the users during frequency calculation. Each use case is seeded by one fault so the
system comes across these faults 79 times during this use case set execution. Our solution considers only the
use cases falling in high category group. The statistics show that these high category use cases are executed
52 times out of 79. This implies that although the use cases are reduced by 50 percent, the efficiency of these
reduced use cases remains 0.658(66%). Here the calculations show that the reduction in overhead is 50%
while the reduction in efficiency is 0.342(34%). These numbers support our claim that the reduction in
use case number into half by our solution does not reduce the reliability into half.

Todo List case study has got a total of 42 use cases which are categorized into two groups by FCM, i.e.,
high and low. In the ToDo List case study eight use cases (UC2, UC3, UC8, UC12, UC22, UC23, UC28 and
UC29) fall in high category group and in turn are used by our solution to generate the state machine. The
percentage of these high category use cases is 0.19(19%). 34 use cases are discarded by our solution. The
percentage of this low category use cases is 0.809(81%). The ToDo List case study use cases are
executed 1102 times by the users during frequency calculation. Each use case is seeded by one fault so
the system comes across these faults 1102 times during this use case execution. Our solution considers
only the use cases falling in high category group. The statistics show that these use cases are executed
677 times out 1102. This shows that although the use cases are reduced by 81 percent the efficiency of
the use cases remain 0.614(61%). Thus, the reduction in overhead is 0.809(81%) while reduction in

Table 14: Calculation on case studies

Case study/calculations Coffee maker Todo list

No of use cases 06 42

Frequency of use cases 79 1102

High category use cases 03 08

Frequency of high Category use cases 52 677

Overhead of high Category use cases 50% 19%

Efficiency of high Category use cases 66% 61%

Reduction in cost 50% 81%

Reduction in Effectiveness 34% 39%

450 IASC, 2022, vol.33, no.1

efficiency is 0.385(39%). This number supports our claim that the reduction in use case number by 81 does
not reduce the reliability by 81 percent.

5.1 Comparison with Existing Techniques

In this section we have performed comparative analysis of our technique with other techniques. We have
discussed various approaches in related work section and here we have selected [6,29] for comparison. The
basis of this selection is that both these approaches are working to solve the state explosion problem in Ajax
based applications. In [6] the authors have discussed the use of Binary Decision Diagrams (BDD) to avoid
state explosion problem. In their approach the state machine is generated for the whole application and then is
reduced. The mechanism starts by recording user sessions in xml log files and then by reading those files to
generate the state machine for the Ajax application. The authors have claimed that the state machine is
generated and reduced at the same time. This mechanism imposes a constant overhead on the system by
comparing and reducing the states all the time as the algorithm runs. Further the authors have not
discussed the effects of this reduction on application testing, i.e., whether the reduced state machine has
covered all the areas of the application under test. In [29] the authors have claimed that state explosion
problem is handled as every session has got its own state machine. However this mechanism cannot
guarantee in absolute about the handling of state explosion problem due to following reasons. Firstly the
session of a large application can have large interacting events and corresponding changing elements
resulting in state explosion. Secondly the framework constructs state machine for every session which is
an overhead on the application.

Our solution handles these issues in a more efficient way. Firstly the pivotal use cases are identified using
FCM and state machine is generated only for those use cases. These limited use cases are the most frequently
used actions of the user regarding the application thus depicting the most pivotal areas of the application. Our
framework records the triggered events, corresponding elements, and DOM changes only for these use cases
thus avoiding state explosion. These use cases in fact cover all the important functions of the application thus
effectiveness of the state machine regarding application coverage remain intact. Tab. 15 shows the
comparison amongst the approaches.

Table 15: Comparison of approaches

Factors/
approach

Arora et al. [6] Arora et al. [29] StateReduceAjax using FCM

Scalability Low High High

Cost (Difficult to implement)
High

(No additional functionality
or extensive modification
required)
High

(No additional functionality or
extensive modification
required)
Low

Effectiveness (Machine is first built and
then reduced)
Low
(Effects of reduction not
addressed)

(Machine is built for every
session)
Low
(Do not guarantee state
explosion avoidance)

Machine is built only for most
pivotal use cases)
High
(All the pivot areas are tested)

IASC, 2022, vol.33, no.1 451

6 Conclusion

The results of the implemented solution show that the proposed approach is feasible to generate a state
machine of an Ajax application. The proposed solution offers a soft computing based process that detects all
dynamically generated states and the relevant events and DOM changing elements. The state explosion
problem addressed here is also handled comprehensively without compromising the dynamic behavior of
these applications using FCM. The approach not only generates a reduced state machine but also does it
without compromising the efficiency of testing. Experimental results prove that StateReduceAjax controls
the size of generated state machine without compromising the quality of testing. In case of Coffee Maker,
statistical results show that 50% of reduction in number of use cases reduces the efficiency by 34%. In
the other case study of ToDo List the use cases are reduced by 81% while the efficiency is reduced
merely by 39%.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. Suryansh, R. Krishna and A. Nayak, “Distributed component-based crawler for AJAX applications,” in IEEE

Second Int. Conf. on Advances in Electronics, Computers and Communications ICAECC, Bengaluru, India, pp.
1–6, 2018.

[2] K. Shah, S. Khusro and I. Ullah, “Crawling ajax-based web applications: Evolution and state-of-the-art,”
Malaysian Journal of Computer Science, vol. 31, no. 1, pp. 35–47, 2018.

[3] V. D. Arie, A. Mesbah and A. Nederlof, “Crawl-based analysis of web applications: Prospects and challenges,”
Science of Computer Programming, vol. 97, no. Part 1, pp. 173–180, 2015.

[4] M. V. Bharathi and S. Rodda, “Survey on testing technique for modern web application-rookies vantage point,”
International Journal of Networking and Virtual Organisations, vol. 21, no. 2, pp. 277–288, 2019.

[5] A. Mesbah, B. Engin and V. D. Arie. “Crawling ajax by inferring user interface state changes,” in Eighth Int. Conf.
on Web Engineering ICWE’08 IEEE, New York, USA, pp. 122–134, 2008.

[6] A. Arora and M. Sinha, “Avoiding state explosion problem of generated AJAX web application state machine
using BDD,” in Sixth Int. Conf. on Contemporary Computing IC3, Noida, India, pp. 381–386, 2013.

[7] H. Z. Jahromi, D. T. Delaney and A. Hines, “Beyond first impressions: Estimating quality of experience for
interactive web applications,” IEEE Access, vol. 8, pp. 47741–47755, 2020.

[8] A. Mesbah and V. D. Arie, “A component-and push-based architectural style for ajax applications,” Journal of
Systems and Software,” vol. 81, no. 12, pp. 2194–2209, 2008.

[9] A. Marchetto, F. Ricca and P. Tonella, “A case study-based comparison of web testing techniques applied to
AJAX web applications,” International Journal on Software Tools for Technology Transfer, vol. 10, no. 6, pp.
477–492, 2008.

[10] S. Pradhan, M. Ray and S. Patnaik, “Clustering of Web application and testing of asynchronous communication,”
International Journal of Ambient Computing and Intelligence (IJACI), vol. 10, no. 3, pp. 33–59, 2019.

[11] A. Arora and M. Anuja, “Test case generation using progressively refined genetic algorithm for ajax Web
application testing,” Recent Patents on Computer Science, vol. 11, no. 4, pp. 276–288, 2018.

[12] V. D. Arie and A. Mesbah. “Research issues in the automated testing of ajax applications,” in Int. Conf. on Current
Trends in Theory and Practice of Computer Science, Berlin, Germany, pp. 16–28, 2010.

[13] A. Mesbah and V. D. Arie, “Invariant-based automatic testing of AJAX user interfaces,” in IEEE 31st Int. Conf. on
Software Engineering, Vancouver, Canda, pp. 210–220, 2009.

[14] E. M. Clarke and O. Grumberg, “Avoiding the state explosion problem in temporal logic model checking,” in
Proc. of the Sixth Annual ACM Symp. on Principles of Distributed Computing, Vancouver, Canda, pp. 294–
303, 1987.

452 IASC, 2022, vol.33, no.1

[15] S. Kimura and E. M. Clarke, “A parallel algorithm for constructing binary decision diagrams,” in Proc. IEEE Int.
Conf. on Computer Design: VLSI in Computers and Processors, Cambridg, USA, pp. 220–223, 1990.

[16] K. Böhmer and S. Rinderle-Ma, “A systematic literature review on process model testing: Approaches,
challenges, and research directions,” arXiv preprint arXiv:1509.04076, 2015.

[17] D. Ibrahim, “An overview of soft computing,” Procedia Computer Science, vol. 102, pp. 34–38, 2016.

[18] A. Ahmad and S. S. Khan, “Survey of state-of-the-art mixed data clustering algorithms,” IEEE Access, vol. 7, pp.
31883–31902, 2019.

[19] A. A. Andrews, J. Offutt and R. T. Alexander, “Testing web applications by modeling with FSMs,” Software &
Systems Modeling, vol. 4, no. 3, pp. 326–345, 2005.

[20] G. A. Di Lucca and A. R. Fasolino, “Testing Web-based applications: The state of the art and future trends,”
Information and Software Technology, vol. 48, no. 12, pp. 1172–1186, 2006.

[21] S. Elbaum, G. Rothermel, S. Karre and M. Fisher, “Leveraging user-session data to support web application
testing,” IEEE Transactions on Software Engineering, vol. 31, no. 3, pp. 187–202, 2005.

[22] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in Proc. of the 23rd Int. Conf. on Software
Engineering ICSE, Toronto, Canada, pp. 25–34, 2001.

[23] S. Sampath and S. Sprenkle, “Advances in Web application testing, 2010–2014,” Advances in Computers
Elsevier, vol. 101, pp. 155–191, 2016.

[24] A. Marchetto, P. Tonella and F. Ricca, “State-based testing of ajax web applications,” in 1st Int. Conf. on Software
Testing, Verification, and Validation, Lillehammer, Norway, pp. 121–130, 2008.

[25] B. Donley and J. Offut, “Web application testing challenges,” Software Engineering, George Mason University,
Virginia, USA, 2009.

[26] A. Arora and M. Sinha, “Web application testing: A review on techniques, tools and state of art,” International
Journal of Scientific & Engineering Research, vol. 3, no. 2, pp. 1–6, 2012.

[27] A. Marchetto and P. Tonella, “Search-based testing of ajax web applications,” in 1st Int. Symp. on Search Based
Software Engineering IEEE, Windsor, Canada, pp. 3–12, 2009.

[28] S. Sampath, V. Mihaylov, A. Souter and L. Pollock, “A scalable approach to user-session based testing of web
applications through concept analysis,” in 19th Int. Conf. on Automated Software Engineering, Linz, Austria,
pp. 132–141, 2004.

[29] A. Arora and M. Sinha, “A sustianable approach to automate user session based state machine generation
for AJAX web applications,” Journal of Theoretical and Applied Information Technology, vol. 53, no. 3,
pp. 401–419, 2013.

[30] A. Marchetto and P. Tonella, “Using search-based algorithms for ajax event sequence generation during testing,”
Empirical Software Engineering, vol. 16, no. 1, pp. 103–140, 2011.

[31] A. Mesbah, V. D. Arie and S. Lenselink, “Crawling ajax-based web applications through dynamic analysis of user
interface state changes,” ACM Transactions on the Web TWEB, vol. 6, no. 1, pp. 1–30, 2012.

[32] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet Physics
Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[33] S. Sabharwal, P. Bansal and M. Aggarwal, “Modeling the navigation behavior of dynamic Web applications,”
International Journal of Computer Applications, vol. 65, no. 13, pp. 20–27, 2013.

[34] K. Dzwinel, DOM Listener Extension, 2018. [Online]. Available: https://github.com/kdzwinel/
DOMListenerExtension.

[35] H. Kokila, HTML DOM Navigation. 2016. [Online]. Available: https://chrome.google.com/webstore/detail/html-
dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en.

[36] M. Ramzan, M. A. Jaffar and A. A. Shahid, “Value based intelligent requirement prioritization (VIRP): Expert
driven fuzzy logic based prioritization technique,” International Journal of Innovative Computing, Information
and Control, vol. 7, no. 3, pp. 1017–1038, 2011.

[37] M. I. Babar, M. Ghazali, D. N. A. Jawawi and S. M. Shamsuddin, “PHandler: An expert system for a scalable
software requirements prioritization process,” Knowledge-Based Systems, vol. 84, pp. 179–202, 2015.

IASC, 2022, vol.33, no.1 453

https://github.com/kdzwinel/DOMListenerExtension
https://github.com/kdzwinel/DOMListenerExtension
https://chrome.google.com/webstore/detail/html-dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en
https://chrome.google.com/webstore/detail/html-dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en

[38] M. I. Babar, M. Ghazali and D. N. Jawawi, “Software quality enhancement for value based systems through
stakeholders quantification,” Journal of Theoretical & Applied Information Technology, vol. 55, no. 3, pp.
359–371, 2013.

[39] T. Tanaka, S. Nomura, H. Niibori, T. Nakao, L. Shiyingxue et al., “Selenium based testing systems for analytical
data generation of website user behavior,” in IEEE Int. Conf. on Software Testing, Verification and Validation
Workshops ICSTW, Porto, Portugal, pp. 216–221, 2020.

[40] A. Holmes andM. Kellogg, “Automating functional tests using selenium,” in AGILE 2006, Washington, USA, pp.
270–275, 2006.

[41] J. D. Musa, “The operational profile,” in Reliability and Maintenance of Complex Systems, 1st ed., vol. 154.
Berlin, Germany: Springer, pp. 333–344, 1996.

[42] R. Suganya and R. Shanthi, “Fuzzy c-means algorithm-A review,” International Journal of Scientific and
Research Publications, vol. 2, no. 11, pp. 1–3, 2012.

[43] O. M. Jafar and R. Sivakumar, “A comparative study of hard and fuzzy data clustering algorithms with cluster
validity indices,” in Proc. of Int. Conf. on Emerging Research in Computing, Information, Communication
and Applications, Bangalore, India, pp. 775–782, 2013.

[44] N. Grover, “A study of various fuzzy clustering algorithms,” International Journal of Engineering Research, vol.
3, no. 3, pp. 177–181, 2014.

[45] T. Singh and M. Mahajan, “Performance comparison of fuzzy C means with respect to other clustering algorithm,”
International Journal of Advanced Research in Computer Science and Software Engineering, vol. 4, no. 5, pp.
89–93, 2014.

[46] J. Nayak, B. Naik and H. Behera, “Fuzzy C-means (FCM) clustering algorithm: A decade review from 2000 to
2014,” Computational Intelligence in Data Mining, vol. 2, pp. 133–149, 2015.

[47] R. L. Cannon, J. V. Dave and J. C. Bezdek, “Efficient implementation of the fuzzy c-means clustering algorithms,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 2, pp. 248–255, 1986.

[48] S. Park and G. Kwon, “Avoidance of state explosion using dependency analysis in model checking control flow
model,” in Int. Conf. on Computational Science and its Applications, Berlin, Germany, pp. 905–911, 2006.

[49] A. Valmari, The State Explosion Problem, Lectures on Petri Nets I: Basic Models, LNCS, Vol. 1491, Berlin,
Germany: Springer, 1998. [Online]. Available: https://link.springer.com/chapter/10.1007/3-540-65306-6_21.

[50] E. M. Clarke, O. Grumberg and A. Peleg, Model Checking, Cambridge, MA, USA: The MIT Press, 1999.
[Online]. Available: https://mitpress.mit.edu/books/model-checking.

[51] R. Zhao, C. Chen, W.Wang and J. Guo, “Automatic model completion for Web applications,” in Int. Conf. on Web
Engineering, Cham, Switzerland, pp. 207–227, 2020.

[52] B. McLaughlin, Head Rush Ajax, Sebastopol, CA, USA: O’Reilly Media Inc., 2006. [Online]. Available: https://
www.oreilly.com/library/view/head-rush-ajax/0596102259/.

[53] M. Pozdeev, myTinyTodo. 2019. [Online]. Available: https://www.mytinytodo.net/.

[54] S. L. Pfleeger and J. M. Atlee, Software engineering: theory and practice, Chennai, India: Pearson Education,
1998.

[55] M. R. Lyu, Handbook of Software Reliability Engineering, New York, NY, USA: Computing McGrah Hill, 1996.
[Online]. Available: http://www.cse.cuhk.edu.hk/∼lyu/book/reliability/.

[56] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite effectiveness,” in Proc. of the
36th Int. Conf. on Software Engineering, Hyderabad, India, pp. 435–445, 2014.

[57] P. S. Kochhar, F. Thung and L. O. David. “Code coverage and test suite effectiveness: Empirical study with real
bugs in large systems,” in IEEE 22nd Int. Conf. on Software Analysis, Evolution, and Reengineering SANER,
Montreal, Canada, pp. 560–564, 2015.

[58] M. Staats, G. Gay, M. W. Whalen and M. P. E. Heimdahl, “On the danger of coverage directed test case
generation,” in Int. Conf. on Fundamental Approaches to Software Engineering, Berlin, Germany, pp. 409–
424, 2012.

454 IASC, 2022, vol.33, no.1

https://link.springer.com/chapter/10.1007/3-540-65306-6_21
https://mitpress.mit.edu/books/model-checking
https://www.oreilly.com/library/view/head-rush-ajax/0596102259/
https://www.oreilly.com/library/view/head-rush-ajax/0596102259/
https://www.mytinytodo.net/
http://www.cse.cuhk.edu.hk/&hx223C;lyu/book/reliability/

[59] Y. Wei, B. Meyer and M. Oriol, “Is branch coverage a good measure of testing effectiveness?,” in Empirical
Software Engineering and Verification, Berlin, Germany, pp. 194–212, 2010.

[60] W. E. Wong, J. R. Horgan, S. London and A. Mathur, “Effect of test set size and block coverage on the fault
detection effectiveness,” in Proc. of 1994 IEEE Int. Symp. on Software Reliability Engineering, Monterey, CA,
USA, pp. 230–238, 1994.

[61] J. D. Musa, “Operational profiles in software-reliability engineering,” IEEE Software, vol. 10, no. 2, pp. 14–32,
1993.

[62] W. E. Howden, “Reliability of the path analysis testing strategy,” IEEE Transactions on Software Engineering,
vol. 3, pp. 208–215, 1976.

[63] F. Grigorjev, N. Lascano and J. L. Staude, “A fault seeding experience,” in Simposio Argentino de Ingenieria de
Software ASSE, Beunasiris, Argentina, pp. 1–14, 2003.

[64] A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” ACM SIGSOFT Software Engineering Notes,
vol. 21, no. 3, pp. 195–200, 1996.

[65] K. H. T. Wah, “Fault coupling in finite bijective functions,” Software Testing, Verification and Reliability, vol. 5,
no. 1, pp. 3–47, 1995.

[66] M. C. Hsueh, T. K. Tsai and R. K. Iyer, “Fault injection techniques and tools,” Computer, vol. 30, no. 4, pp. 75–82,
1997.

IASC, 2022, vol.33, no.1 455

	Achieving State Space Reduction in Generated Ajax Web Application State Machine
	Introduction
	Related Work
	Proposed Approach
	Experimental Results and Analysis
	Evaluation of the Proposed Solution
	Conclusion
	References

