
A Machine-Learning Framework to Improve Wi-Fi Based Indoorpositioning

Venkateswari Pichaimani1 and K. R. Manjula2,*

1CSE, SRC, SASTRA Deemed to Be University, Thanjavur, 613401, India
2CSE, SOC, SASTRA Deemed to Be University, Thanjavur, 613401, India
*Corresponding Author: K. R. Manjula. Email: manjula@cse.sastra.edu

Received: 28 August 2021; Accepted: 10 November 2021

Abstract: The indoor positioning system comprises portable wireless devices that
aid in finding the location of people or objects within the buildings. Identification
of the items is through the capacity level of the signal received from various
access points (i.e., Wi-Fi routers). The positioning of the devices utilizing some
algorithms has drawn more attention from the researchers. Yet, the designed algo-
rithm still has problems for accurate floor planning. So, the accuracy of position
estimation with minimum error is made possible by introducing Gaussian Distri-
butive Feature Embedding based Deep Recurrent Perceptive Neural Learning
(GDFE-DRPNL), a novel framework. Novel features from the dataset are through
two processing stages dimensionality reduction and position estimation. Initially,
the essential elements selection using the Gaussian Distributive Feature Embed-
ding technique is the novel framework. The feature reduction process aims to
reduce the time consumption and overhead for estimating the location of various
devices. In the next stage, employ Deep Recurrent multilayer Perceptive Neural
Learning to evaluate the device position with dimensionality reduced features.
The proposed Deep-learning approach accurately learns the quality and the signal
strength data with multiple layers by applying Deming Regressive Trilateral Posi-
tioning Model. As a result, the GDFE-DRPNL framework increases the position-
ing accuracy and minimizes the error rate. The experimental assessments with
various factors such as positioning accuracy minimized by 70% and 60%, com-
putation time minimized by 45% and 55% as well as overhead by 11% and
23% compared with PFRL and two-dimensional localization algorithm. Through
the experiment and after analyzing the data, verify that the proposed GDFE-
DRPNL algorithm in this paper is better than the previous methods.

Keywords: Indoorfloor planning; positioning system; dimensionality reduction;
gaussian distributive feature embedding; deep recurrent multilayer perceptive
neural learning; deming regressive trilateral positioning model

1 Introduction

The industrial paradigm is widely utilized in indoor positioning research. The Indoor positioning
systems use various technologies that consist of distance measurement to neighbouring anchor nodes such
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as Wi-Fi access points, Bluetooth beacons or Ultra-Wideband beacons. The positioning system has many
applications ranging from commercial, military, retail to stock tracking industries. Many techniques and
devices aid in locating the indoor positioning system. In this regard, for an accurate wireless indoor
positioning system, a Particle Filter based Reinforcement Learning (PFRL) technique was designed [1]. The
PFRL technique provides exact localization with minimum error. But the computation overhead did not
minimize. To attain a more precise model parameter evaluation using particle swarm optimization two-
dimensional Localization Algorithm was developed [2]. The algorithm designed failed to consider a novel
path loss model and also, building the floors and walls that influence RSSI for accurate positioning of devices.

In order to decrease the location error and execution time, a new deep-learning-based indoor
fingerprinting system was designed in [3] and the organized deep-learning approach did not reduce the
performance of the above computation. In [4], an ensemble learning scheme was introduced to estimate
the room level in the indoor localization of smart buildings. Yet, the designed plan did not minimize the
time consumption of indoor localization through dimensionality reduction. The statistic and deep-learning
techniques were employed in [5] to estimate indoor position that relies on significant feature extraction
from data sources and to reduce the time complexity of position estimation. A clustering technique was
developed in [6] to increase the accuracy of indoor positioning system. An Extreme Learning Machine
(ELM) produced in [7] for the construction of the system that leads to high positioning accuracy. But the
designed work did not use any efficient method for position estimation when the device was turning
round or incline.

A deep-learning-based approach was presented in [8] for indoor localization considering the received
signal strength and channel state information. Though the system minimizes the localization error, time
complexity analyses did not perform. The least-square lateration method based on the signal strength was
designed [9] for reducing the accuracy error. But machine learning technique did not achieve high
accuracy of indoor localization.

A Back Propagation Neural Network optimized with Particle Swarm Optimization (BPNN-PSO) was
employed in [10] to train the signal strength distance measure to minimize the positioning error.
However, continuous positioning with high precision is complex to perform. A standard probabilistic
method was developed in [11] to improve the accuracy and consistency of localization through the
received signal strength of the device. In [12], a dimensionality reduction scheme with low computation
cost was introduced for an indoor positioning system. But then the designed method failed to consider the
path loss to achieve high precision indoor positioning system.

The issues reviewed from the above existing floor positioning works are computed overhead that did not
minimize during the localization process—the machine learning technique like PFRL technique introduced
for a robust wireless indoor positioning system. PFRL technique comprises a particle filter component and a
reinforcement learning-based re-sampling method. The zone prediction method combines dissimilar
individual predictors in a Hidden Markov Model (HMM) by an ensemble learning algorithm. A particle
filter approach was developed to provide accurate localization of failure problems with a reinforcement
on learning-based re-sampling method. Yet, it did not enhance the computation overhead. So, a Two-
dimensional Localization Algorithm was introduced to accomplish more accurate parameter estimation by
applying particle swarm optimization. The parametric model is used to strengthen the two-dimensional
(2D) positioning to position the users with the weighted K-Nearest Neighbour algorithm. Still, it did not
improve positioning accuracy. The existing method underwent many hitches to perform continuous
positioning with high precision. Accurate position estimation was not attained during the designed
scheme and it is not considered a path loss to achieve higher accuracy for the indoor positioning system.
Further, the existing localization techniques did not reduce accurate dimensionality. Hence, there is a need
to introduce the GDFE-DRPNL framework to address these problems
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The paper presents the development of a novel GDFE-DRPNL framework and summarizes their
significant contributions, introduces a novel deep-learning framework GDFE-DRPNL by combining feature
selection and position estimation process. To achieve the goal, GDFE-DRPNL framework is created
through Gaussian Distributive Embedding Feature and Deep Recurrent multilayer Perceptive Neural
Learning. By applying Gaussian distributive feature embedding technique [GDFE-DRPNL] framework, the
overall computation time and overhead is reduced. Then, it minimizes the dimensionality of the dataset by
selecting principle features. DRPNL is used to increase the positioning accuracy as well as to minimize the
error. In the proposed deep recurrent learning, the Deming Regressive Trilateral Positioning Model [13] is
utilized to analyze the signal strength and to identify the exact coordinate of the device.

To facilitate the process of cell planning that involves locating and configuring infrastructure for mobile
networks a system using cluster techniques was proposed in [14]. A new hybrid method was proposed in [15]
to increase the accuracy of an indoor positioning system using a hybrid of BLE fingerprinting and PDR. A
balanced approach for the multifactor dimensionality reduction (BMDR) method was proposed in [16] to
increase the estimates of the prediction accurately for the error rate in the small samples.

This article is divided into various sections. In the second section, the novel indoor positioning
framework and its description are presented with a neat diagram. The third section presents different tests
conducted using the dataset and the results are compared with related works—finally, the fourth section
offers conclusion.

2 Proposed Methodology

With the extensive growth of information technology, the indoor positioning system has rapidly
increased to identify mobile devices, people, and equipment. The Wi-Fi-based dynamic environment is
not perfect and robust as the device is not capable of adapting signal oscillations, noises, and radio signal
instabilities. Therefore, the proposed work has introduced deep learning as an innovative strategy to
handle traditional learning problems. The main aim of the indoor positioning and localization is based on
the strength of the wireless signals. The Gaussian distributive feature embedding technique increases
dimensionality reduction performance. Further, it combines the Gaussian distributive function and Kernel
Principal Component Analysis concept to select the principle features precisely with lower time
complexity. Besides, the Deep Recurrent Multilayer Neural Network and Deming Regressive Trilateral
Positioning Model are used in the proposed technique to improve the performance of indoor floor
planning with higher positioning accuracy. On the contrary, Deep Recurrent Multilayer Neural Network
handles a large number of Wi-Fi devices simultaneously. The overall system for Wi-Fi-based positioning
and localization of various devices consists of fixed wireless access points. They are displayed in Fig. 1.

Fig. 1 illustrates a block diagram of the indoor floor planning with various Wi-Fi devices such as laptops,
mobile, etc. The input signal is received from the central server and it finds the list of Access Points (s). The
indoor floor planning utilises the IPIN dataset. Also, it comprises a total of 816 access points (APs). The
dataset includes 26 log files, 17 log files are employed for training. Since everyone has a Wi-Fi-
connected mobile or laptop, the Wi-Fi routers are available and deployed in most buildings. The
positioning of these devices is essential to locate the objects within the building. The positioning of the
various Wi-Fi devices is used for efficient indoor floor planning. This process achieves by performing
two different functions, such as feature selection and position estimation. The proposed GDFE-DRPNL
framework illustrates the architecture in Fig. 2.

Fig. 2 illustrates the architecture of the proposed GDFE-DRPNL framework, which comprises two
stages. It performs two tasks with the collected dataset. At the initial step, a machine learning technique
called Gaussian distributive feature embedding applies dimension reduction in the dataset. Next, the
positioning process using Deep Recurrent multilayer Perceptive Neural Network, a deep-learning method,
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is performed with high accuracy and minimum error. An explanation of these two processes of the proposed
GDFE-DRPNL framework is presented in the following sections.

2.1 Gaussian Distributive Feature Embedding Technique (Dimensionality Reduction)

The proposed GDFE-DRPNL framework initially performs dimensionality reduction. It then removes
the random variables and selects a set of essential variables. Then, to improve learning performance,
appropriate principle features are selected for data modeling that reduces computational time or required
resources, and high-dimensional input to decrease the curse of dimensionality. The feature selection is to
choose a set of principle features that provide the best positioning estimation with a classifier. Based on
this motivation, the proposed GDFE-DRPNL framework uses the Gaussian distributive feature
embedding technique to perform a dimension reduction by selecting the fewest features from the dataset.

Figure 1: Indoor floor planning based on Wi-Fi devices

Figure 2: Architecture of the proposed GDFE-DRPNL framework
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Consider the feature vectors from the given dataset ‘F ¼ ½if 1if 2 . . . if n�’ that are distributed in the
specified dimensional space. The Gaussian distributive feature embedding is a machine learning
technique used for reducing dimension by feature in a high-dimensional area that maps into a feature
subset. In the GDFE-DRPNL framework, the Gaussian distribution is a continuous function that estimates
the accurate binomial distribution of events. Besides, a Gaussian distribution function performed less but
still adequately described the constant absorption. Therefore, the proposed GDFE-DRPNL framework
employs the Gaussian distributive feature embedding technique to reduce dimension during the indoor
floor-planning process. For effective feature extraction in the proposed work and to enhance the
performance of the Gaussian distribution function, the Kernel Principal Component Analysis concept [17]
is applied.

The proposed technique initially calculates the probabilities using the Gaussian distribution function
relative to the similarity of objects. The probability is expressed as follows:

PROBðifi; ifjÞ ¼ e � 1
2D2

� kifi�ifjk2
� �

Pe � 1
2D2 � k ifi � ifj k2

� � (1)

From (1), ‘PROB(ifi, ifj)’ stands for the probability of identifying the principal features from the given
feature vector, ‘D’ symbolizes Gaussian standard deviation and ||ifi − ifj|| designates Euclidean distance
similarity between the two features ifi and ifj in the feature vector. The estimated probability value lies
between zero and one. Then, the predefined threshold sets to map the feature vector. If the calculated
probability result is higher than the predefined threshold (φ = 0.5) then, it is mapped into the principle-
feature subset; otherwise, the redundant features map into the other subgroup. Based on the probability
value, at first maps input features vectors ‘ifi = {ifi∈ ifN|i = 1, …, N}’ into dimensional space ‘Z’ by way
of nonlinear mapping ‘φ’ associated with kernel function ‘ω’. The mapping process perform as,

’: if N ! x (2)

By using Eq. (2), then covariance matrix ‘δ’ is obtained with the help of below equation,

COVðdÞ ¼
if 21 if 12 if 1n
if 12 if 22 if 2n
if 1n if 23 if 2n

2
4

3
5 (3)

d ¼ 1

N

XN
i¼1

’ðifiÞ’ðifriÞT (4)

In Eq. (4), ‘φ’ is the non-linear map (i.e., feature space) whereas ‘T’ stands for a transformation matrix.
Here, ‘N’ refers to the total number of features vector ifi. Subsequently, non-linear PCA [18] in ‘F’
determines eigenvectors. Then, corresponding Eigenvalues evaluate through the equation,

�a ¼ da (5)

From Eq. (5), ‘α’ symbolizes the eigenvectors. Here, ‘λ’ point outs Eigenvalues of features vectors in
dimensional space ‘φ(ifi)’. After that, eigenvectors are determined utilizing a linear combination of ‘φ(ifi)’
with the support of the following expression,

a ¼
XN
i¼1

a’ðifiÞ (6)
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By applying Eqs. (4) and (5) to (6) and multiplying φ(ifi)
T on both sides, the following equation is

obtained:

N�a ¼ xa Where v ¼ hif i; if ji (7)

In Eq. (7), ‘ω∈ ifN×N’ refers to the Gram matrix where ‘a’ stands for normalized Eigenvectors of ‘ω’.
The gram matrix is determined as an inner product form to identify principle-feature subset using the
equation below:

xij ¼ xðifi; ifjÞ ¼ ’ðifiÞ:’ðifjÞ (8)

Next, the proposed technique identifies eigenvectors with greater Eigen values to find out principal
feature subset αp⊂ α with the support of kernel function using the following:

Z ¼ ðaxp � ’ðifiÞÞ ¼
XN
i¼1

axpxðifi; ifjÞ (9)

From Eq. (9), ‘Z∈ ifN’ and ‘ap⊂ a’, where ‘n’ designates the set of principle features that provide the
best positioning estimation. Eq. (9) projects the principle components into a low dimensional space. When
the parts with less importance are removed, the principle-feature subset chooses to minimize the computation
time and overhead.

2.2 Deep Recurrent Multilayer Perceptive Neural Learning (Increase Positioning Accuracy)

Once the principle features are identified from the dataset, the proposed GDFE-DRPNL framework
begins to perform the positioning of Wi-Fi devices in the indoor floors. A high positioning accuracy is
obtained with the proposed GDFE-DRPNL framework and employs DRPNL and considers the building
of floors and walls that have influence on RSSI for the corresponding MAC address of the devices. The
indoor environmental aspects such as multi-path, path loss and person movement affects the collected
RSSI samples. So, the received RSSI values are dissimilar even in the same device. Similarly, location
and different times, also considerably affect the accuracy of localization. Therefore, the proposed deep
recurrent multilayer perceptive neural learning also measures the path loss between the floor and the wall
for the accurate localization of devices.

The Deep recurrent multilayer Perceptive neural network is a machine learning technique. This
technique uses cascading of layers to acquire the principle features and their information directly from the
dataset. The structure of a deep recurrent multilayer perceptive neural network includes three layers,
namely input, two, or more hidden layers, and output layer. The function of the input layer is to collect
the series’ type of information with no predetermined size from the dataset and transfer it to the hidden
layer. The feature learning process is carried out repetitively in the hidden layers, and it provides accurate
results at the output layer. The proposed deep-learning model uses a unit delay for repetitively learning
the features that are fed back into its input layer. The input layer in deep-learning techniques is fully
linked with the output layer by adjustable weight connections.

The Deep recurrent multilayer Perceptive neural network is schematically presented in Fig. 3. The
network system consists of artificial neuron-like nodes connected with layers for finding out the input.
The input comprises the principle-feature value wi ðtÞ. Besides, in Fig. 3, the delay factor represents the
recurrent and it is used to hold the activations until the processing is said to be accomplished (i.e.,
accurate position estimation) at the next time step. The unit-delay feedback connections are from the
hidden to the input layers ‘δ1(t − 1), δ2(t − 1), δ3(t − 1)’. The weighted values between the input and
hidden layers are represented by vih. Then, the deal between the invisible and output is referred to as vho.
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In the network architecture, each layer has its own set of weights and biases which indicates that each of the
layers is independent of others. The input and their value are denoted as follows:

X ðtÞ ¼
Xn
i¼1

wivi þ b (10)

From (10), ‘X(t)’ indicates the input layer used for collecting the data at a time ‘t’, and ‘wi’ denotes
input, where ‘vi’ refers to weight and ‘ b’ represents the bias that is used to adjust the output with the
weighted sum of the information to the neuron. In the first hidden layer, the received signal strength of
various devices is collected from the access point APi. The signal strength [19] for the corresponding
MAC address of the device that predicts the path losses between a transmitting and a receiving antenna
with the assumption that they are in the line of sight and is calculated as given below:

ssR ¼ Gt � Gr � H2
t � H2

r

d4

� �
� Pr (11)

As given in the above equation, the two antennae possess different heights, the signal strength ssR posses
two components, ‘Gt’ and ‘Gr’ symbolize a transmitter and receiver gain. Besides, the distance ‘d’ between
the antennas is said to be relative to the height of the antenna. That is the size of the access point ‘H2

t ’ and the
height of the receiver (i.e., device) and the transmitted signal power Pr from ‘AP’. Besides, the path loss
focuses on the floors and walls influences of RSS and gives as follows:

PLfw ¼ PL0 þ logðdÞ þ PLfk þ PLwk (12)

From the above Eq. (12), the path loss between the floor ‘f’ and wall ‘w’ are represented as PLfw. The
path loss between the floor and wall is based on the penetration loss. It is at a distance of ‘1’ meter and

Figure 3: Representation of deep recurrent multilayer perceptive neural network
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denotes by PL0 and PLfk which stands for the attenuation. It is of the floor ‘f’ to the ‘kth’ traversed floor and
PLwk denotes the attenuation due to the wall ‘w’ to the ‘kth’ traversed wall. The dataset comprises the
measurement of several inbuilt sensors of smartphones. These smartphones are used to position the devices.
Therefore, the signal strength of smartphones [20] is significant for receiving and sending information. If
the space between sender and receiver is higher, the path loss [21] would occuron the floors and walls due
to the attenuation focuses. Hence, for accurate floor planning, devices with higher signal strength and lower
path loss between the floors and walls are considered in the proposed work. At the second hidden layer, the
Deming regression function is applied to analyse the input signal strength of the Wi-Fi devices. The
Deming regression is a statistical method that is used to find the best-fitted position of devices with the help
of the trilateral process. This trilateral process uses signal strength information with the geometry of
encircles and it finds the exact coordinate of theWi-Fi device. The trilateration process is as shown in the Fig. 4.

Figure 4: Deming regressive trilateral positioning model

Fig. 4 illustrates the process of the Deming regressive trilateral positing model where three APs locate,
and forms encircle to find the exact coordinate in the two-dimensional space. In Fig. 4, consider the three
different APs. Then, a circle is drawn arbitrarily around the point at which AP locates. Encircle around
AP is denoted as a signalling range. The point at which three encircles intersected takes as a fitted
coordinate (i.e., ð�x; yÞÞ of positioning the Wi-Fi device. The Deming regression is used to handle the
random measurement errors in position estimation. The error rate calculates on the squared difference
between the actual and predicted results using Eq. (13):

E ¼ ½AðtÞ � Y ðtÞ�2 (13)

where ‘E’ stands for error in the position estimation, ‘A(t)’ denotes precise estimation output, and ‘Y(t)’
indicates the predicted outcome. Based on the error value, the weight between the layers vih, vho; vhh is
updated. The Deming regression utilizes gradient descent function to minimize the error as given below:

F ¼ argmin ½E� (14)

where F indicates the gradient descent function to minimize the error ‘E’ and ‘arg min’ denotes argument of
the minimum position. The recurrent procedure of deep learning is expressed as follows:

RðtÞ ¼
Xn
i¼1

wiðtÞ � vih þ vhh � dðt � 1Þ (15)

where ‘R(t)’ symbolizes the output of the hidden layer at time t, ‘δ(t − 1)’ signifies the time delay unit of
hidden layer and vhh denotes the weight of the hidden layers, ‘vih’ indicates adjustable value between
input and hidden layer and wi(t) represents the input. The recurrent process of deep learning repeats until
the error gets minimized. The hidden layers with recurrent results are fed into the output layers. The exact
coordinate for the positioning device is correctly identified at the output layer ‘y(t)’.
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The goal of algorithmic process of deep recurrent multilayer perceptive neural network is to achieve
accuracy and minimum error. The deep-learning network system receives the principle features and gives
it to the next layer where the signal strength of various devices are analyzed utilizing the Deming
regressive positioning model. The regression function minimizes the error and finds the exact coordinate
for positioning multiple devices. For each result obtained, regression function determines the error and
consequently updates all the weights on the network and thereby finds out the minimal error using
gradient descends function. The process mentioned below iterates until the error gets minimized. Finally,
the exact output is displayed in the output layer.

The algorithmic steps of the proposed deep recurrent multilayer perceptive neural learning are described
as follows:

Algorithm: Deep recurrent multilayer perceptive neural learning

Input: principle-feature subset if1, if2, if3, …ifm

Output: Increase the position estimation accuracy

Begin

Collect the input features if1, if2, if3, …ifm

Given if1, if2, if3, …ifm into the first hidden layer

For each device

Measure signal strength SSR

Calculate path loss between floor and wall PLfw

End for

Analyze the signal strength SSR

Apply the trilateral process

Find exact coordinates (x, y) of positioning the device

Calculate squared error E

Update the weights between layers

Repeat the process until finding minimum error argmin ½E�
End

3 Experimental Settings

The experimental evaluation of the proposed GDFE-DRPNL framework without GDFE, PFRL, and a
two-dimensional localization algorithm are possible through Java. The indoor floor planning is through the
IPIN 2016 competition dataset [22]. The dataset features sensors data—feature selection is based on these
files. The components are some columns in the dataset, where the attributes identify the location. In the
dataset, ten principle components are selected for indoor floor planning.

Multiple data are gathered from four different buildings with different time stamps. In the dataset,
2971 Wi-Fi fingerprints are constructed by associating every Wi-Fi fingerprint with the nearest (in terms
of timestamps) ground truth. The dataset comprises the measurement of several inbuilt sensors of
smartphones (i.e., Wi-Fi, Magnetometer, Accelerometer, Barometer, Gyroscope, etc., with timestamps).
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The IPIN dataset includes the tuples containing many grounds truth for particular timestamps due to
those different sensors has different sampling rates. The samples were collected with their timestamps and
also obtained from various sensors and synchronized with each other. The IPIN dataset comprises a total
of 816 access points (APs). The dataset includes 26 log files. Among these, 17 log files and 9 log files
were used for training and evaluate the work. Here, the first column comprises the sequence number of
the log files. The second column denotes the building-id, where the data of log files are collected.
Similarly, the third and fourth columns indicate the number of floors and landmarks involved in
managing the data of these log files. Finally, the fifth column denotes the smartphone used to capture the
data of specific log files.

3.1 Results and Discussions

In this section, the performance of the GDFE-DRPNL framework and the other three related approaches,
namely without GDFE, PFRL and two-dimensional localization algorithm are analyzed with different
quantitative metrics such as positioning accuracy, positioning error, computational time and
computational overhead.

3.1.1 Impact of Positioning Accuracy

It is used to find how the proposed framework accurately estimates the position for different iterations. In
other words, the positioning accuracy is calculated as the ratio of successful trials to the total number of shots
taken as input. The formula is expressed as follows:

PosAcc ¼ FreqðSTÞ
FreqðTÞ

� �
� 100 (16)

where ‘PosAcc’ represents the positioning accuracy, ‘Freq(ST)’ indicates a successful trial obtained and
‘Freq(T)’ denotes the number of trials taken as input for conducting the experiments. The position
accuracy measures in terms of percentage (%). For each resultobtained using a deep recurrent multilayer
perceptive neural network, the proposed framework measures error is occurring in the position estimation
process. Here, the error determines the squared difference between the actual and predicted results. Based
on the error value, the proposed framework decides whether the trial is a success or failure. Whenever the
error value is very minimal, an accurate estimation of position is obtained. According to the error value
involved during the position estimation process, a trial's success or failure is determined.

The performance results of GDFE-DRPNL frameworks and the other three related approaches, namely
without GDFE, PFRL and two-dimensional localization algorithm are discussed in this subsection with table
and graphical representation. Initially, the positioning accuracy measures are concerned with the number of
trials. Totally ten iterations are considered for fair computation of accuracy using the three methods.

While considering a simulation environment with 50 Wi-Fi devices and trials, the proposed GDFE-
DRPNL framework attains nine successful trials and one failed trial, whereas the one existing Without
GDFE gets to earn eight successful trials and two failed trials. Besides, conventional PFRL gains seven
successful trials and three failed trials, whereas the existing Two-dimensional localization algorithm
acquires six successful trials and four failed trials. Based on the simulation result of successful practices
and failed attempts are determined for ten iterations, positioning accuracy measures are presented in Tab. 1.
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In GDFE-DRPNL Framework, the experimental results of theWi-Fi device positioning accuracy and the
other three related approaches, namely without GDFE, PFRL and two-dimensional localization algorithm are
reported in Tab. 2. As shown in Tab. 2, accuracy results are obtained with various iterations. The results
obtained from the three methods indicate that the GDFE-DRPNL framework outperforms to achieve high
accuracy than the other three related approaches. The significant improvement of the proposed framework
is to use the deep recurrent multilayer perceptive neural network. The proposed deep-learning framework
analyses the principle features extracted from the dataset in the hidden layer with the Deming regressive
trilateral process. The tripartite process finds the exact is to coordinate for positioning the Wi-Fi devices.
This process of the GDFE-DRPNL framework achieves high accuracy. As depicted in Tab. 1, the
accuracy is found to be higher for all the iterations using the GDFE-DRPNL framework.

Table 1: Simulation measurement of successful trials

Number of
iterations

Number of
Wi-Fi devices

No. of trials Number of successful trials

GDFE-
DRPNL

Without GDFE PFRL Two-dimensional
localization algorithm

1 10 10 9 8 7 6

2 20 20 18 16 14 12

3 30 30 27 24 21 18

4 40 40 32 28 24 20

5 50 50 40 35 30 25

6 60 60 48 42 36 30

7 70 70 56 49 42 35

8 80 80 56 50 48 40

9 90 90 63 59 54 45

10 100 100 70 60 50 50

Table 2: Results of positioning accuracy

Number of
iterations

Number of
Wi-Fi devices

No. of trials Positioning accuracy (%)

GDFE-
DRPNL

Without GDFE PFRL Two-dimensional
localization algorithm

1 10 10 90.2 80.2 70.5 60.2

2 20 20 90.6 80.8 70.25 60.4

3 30 30 90.2 80.6 70.8 60.8

4 40 40 80.8 70.4 60.5 50.8

5 50 50 80.6 70.4 60.6 50.5

6 60 60 80.4 70.6 60.4 50.6

7 70 70 80.4 70.2 60.5 50.5

8 80 80 70.25 62.5 60.4 50.6

9 90 90 70.5 65.5 60.2 50.8

10 100 100 70.8 60.5 50.2 50.5
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In the first iteration, ten trials are considered while computing the Wi-Fi device’s positioning accuracy.
For each test has various sizes of floors view, the positioning of devices are accurately found in different sizes
of the floors. As shown in Tab. 2, the GDFE-DRPNL framework observed a ‘9’ successful trial out of ten
trials considered as input that achieves 90% of positioning accuracy. In the case without GDFE, ‘8’
successful attempts were obtained from ten tests and gained 80% of positioning accuracy. By using
conventional PFRL and two-dimensional localization algorithm, ‘7’ and ‘6’ successful trials were
obtained from ten tests and it has achieved 70% and 60% of positioning accuracy respectively. Similarly,
the remaining iterations were performed and the statistical analysis reveals that the GDFE-DRPNL
framework provides relatively better performance than the existing approaches. Analyzing the number of
successful trials, results are demonstrated as in Tab. 1, it is evident that the proposed GDFE-DRPNL
framework outperformed in comparison with the other three algorithms namely, without GDFE, PFRL
and two-dimensional localization algorithm.

3.1.2 Impact of Computational Time
The computational time measures the amount of time consumed by object localization within the

building. Accordingly, computational time (from 17) counts as follows:

CT ¼ TimeðwÞ � SizeðnÞ (17)

where ‘CT’ indicates computational time, ‘Time(w)’ denotes an amount of time required to localize a single
object whereas ‘Size(n)’ represents some objects localized within the building. The computation time
evaluations of three methods vs. several trials are illustrated in Tab. 3.

Tab. 3 presents the performance comparison of computation time concerning different trials. Totally ten
practices are considered for each method. The observed results illustrate the computation time to be higher
using the GDFE-DRPNL framework when compared with other methods. This improvement is achieved by
selecting the principal features from the dataset. The GDFE-DRPNL framework uses the Gaussian
distributive stochastic neighbour embedding technique for minimizing the dimension of the dataset. First,

Table 3: Results of computational time

Number
of trials

Number of
Wi-Fi
devices

Computational time (ms)

GDFE-DRPNL Without
GDFE

PFRL Two-dimensional
localization
algorithm

1 10 0.13 0.14 0.16 0.18

2 20 0.21 0.32 0.43 0.61

3 30 0.29 0.45 0.56 0.72

4 40 0.35 0.56 0.75 0.95

5 50 0.49 0.65 0.84 1.15

6 60 0.56 0.85 1.20 1.45

7 70 0.76 1.06 1.42 1.75

8 80 0.81 1.21 1.60 1.80

9 90 0.97 1.41 1.75 1.95

10 100 1.15 1.70 2.09 2.25
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the Gaussian distribution function is used to compute the probabilities. The probability value lies among zero
and one—next, the predefined threshold set to map the feature vector. If the probability result is maximum
than that of the predefined threshold (φ = 0.5) [it is the mean of maximum and minimum value] then, it is
mapped into the principle-feature subset. Also, the Deming regression provides accurate estimation results
with the obtained principle features. This process consumes the minimum time for the positioning of the
devices. All the ten results of the GDFE-DRPNL framework are compared with the existing ones without
GDFE, PFRL, and two-dimensional localization algorithm. The average of ten products confirms that the
computational time of the GDFE-DRPNL framework is minimized by 30%. Later, it is compared with
and without GDFE it is found to be 45% and in comparison with PFRL it is 55%, when compared with
the two-dimensional localization algorithm.

3.1.3 Impact of Computational Overhead
Computational overhead refers to the amount of memory consumed for object localization in indoor

floor planning. The overall computational overhead (from 18) is mathematically defined using the
following expression:

CO ¼ MEMðwÞ � Sizeðf Þ (18)

where ‘CO’ denotes computational overhead, ‘MEM(w)’ represents the memory consumed for localization
of objects, ‘Size(f)’ indicates the number of floors considered for conducting the experimental evaluation.
The overall computational overhead is measured in terms of kilobytes (KB). The computational overhead
measures are related to the number of trials. The statistical results of the three methods report in Fig. 5.

Fig. 5 depicts the performance comparison of computational overhead for many trials. The graphical
results demonstrate the amount of space utilized for floor planning that are significantly minimized by the
GDFE-DRPNL framework. The proposed GDFE-DRPNL framework maps the principle feature into a
subset in the first hidden layer of deep learning. With the obtained principle features, Wi-Fi device
positioning is carried out in the hidden layer. As a result, the positioning of various devices is performed
with a smaller number of features that results in the reduction of computational overhead. For each trial,
multiple sizes of the floors are considered and quantitative analysis was made. The observed results of the
GDFE-DRPNL framework compare to the effects of existing methods. The comparison of results proves
that the average computational overhead is found to be significantly reduced by 11% when compared to
that of without GDFE, it is 23% when compared with PFRL, it is 34% when compared with two-
dimensional localization algorithms.
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Figure 5: Graphical representation of computational overhead
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4 Conclusions

This work has proposed the GDFE-DRPNL framework for efficient wireless indoor positioning system.
The GDFE-DRPNL framework is validated on distributed machine learning-based network architecture that
comprises feature selection and position estimation. The feature selection achieves better positioning
accuracy using the Gaussian Distributive feature Embedding technique. Followed by this, an efficient
deep recurrent learning approach achieves high positioning system performance by integrating the
selected features with the Deming regression learning technique through RSS signal measure. The results
obtained demonstrate that the proposed framework is suitable for a robust indoor positioning system with
minimum error. The localization framework is evaluated with two existing approaches in terms of
different performance metrics. The observed evaluation results show that our proposed GDFE-DRPNL
framework gives more accurate localization results with minimum positioning accuracy by 70% and 60%,
time consumption is minimized by 45% and 55%, as well as overhead is reduced by 11% and 23% than
PFRL and two-dimensional localization algorithms. In future, to enhance the accuracy and also reduce
computational overhead the positioning of Wi-Fi devices for indoor floor planning could be carried out
using ensemble learning techniques.
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