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Abstract: With the advent of wireless communication and digital technology, low
power, Internet-enabled, and reconfigurable wireless devices have been devel-
oped, which revolutionized day-to-day human life and the economy across the
globe. These devices are realized by leveraging the features of sensing, processing
the data and nodes communications. The scale of Internet-enabled wireless
devices has increased daily, and these devices are exposed to various cyber-
attacks. Since the complexity and dynamics of the attacks on the devices are com-
putationally high, intelligent, scalable and high-speed intrusion detection systems
(IDS) are required. Moreover, the wireless devices are battery-driven; implement-
ing them would consume more energy, weakening the accuracy of detecting the
attacks. Hence the design of the IDS is required, which has to establish the good
trade-offs between Energy and accuracy. This research includes the Multi-tiered
Intrusion Detection (MDIT) with hybrid deep learning models for improved
detection accuracy in wireless networks; spotted hyena optimization (SHO) and
Long short-term memory (LSTM) have been studied to design IDS effectively.
Extensive experimentation has been carried out in real-time scenarios using the
Node MCU Embedded boards and standard benchmarks such as CIDDS-001,
UNSWNB15 and KDD++ datasets compared with the other traditional and exist-
ing learning models. The average prediction accuracy of 99.89% for all datasets
has been achieved. The results show that the proposed system guarantees a high
detection accuracy and reduces the prediction time, making this system suitable
for resource-constrained IP-enabled wireless devices.

Keywords: Internet-enabled; reconfigurable wireless devices; spotted hyena
optimizer; long short term memory; node MCU; multi-tier architecture

1 Introduction

Internet of Things (IoT) enabled Wireless Sensor Networks (WSN) are finding their various applications
such as health care [1], consumer electronics [2] and even image transmission [3]. The increased connectivity
between the networks, more extensive deployment of these devices, and the broadcasting nature of
communication make the devices vulnerable to different attacks, resulting in casualties in the network [4].
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Nowadays, these intrusion detection systems have changed their face of dimension with an application
of artificial intelligence (AI), especially of machine learning (ML) and deep learning (DL) applied to both
attack and defence measures in IP enabled wireless networks. These algorithms provide defence strategies
and resistance against security threats to prevent and minimize the impacts or casualties adaptively. Many
machine learning and deep learning models have applied intrusion detection [5–7], malware detection
[8–11], cyber-physical attacks [12–14] and data privacy protection [14].

In machine learning models, neural networks offer many advantages such as self-learning, proper
classification, scalability, which have prompted researchers to investigate the intrusion detection systems
based on neural networks and have achieved more excellent detection performance. As of late, Extreme
Learning Machines (ELM), considered single feedforward neural networks (SLFNN), have gained
popularity in designing the IDS for efficient detection of various attacks in the wireless networks [15].
Also, Wenjie et al. [16] proposed the new Kernelized Extreme Learning Machine (KELM) methodology,
which has overcome the drawbacks of traditional extreme learning machines and has shown more
compelling results in time and accuracy. These algorithms fail to detect different categories of attacks in
networks and have not been tested in real-time. The handling of more attacks leads to complex data
formation, which leads to the misclassification of attacks. Many deep learning models such as
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) have been proposed to
detect intrusion systems, giving better accuracy in detection and reducing false alarm rates to overcome
this problem [17–22]. Researchers have suggested and tested high performance deep learning algorithms
such as Channel Boosted Residual Convolutional Neural networks (CBR-CNN) [23], Improved Genetic
algorithm optimized Deep learning models [24], and ensemble deep learning models [25,26]. Some are
CICIS2017, UNSW NB15, NSL-KDD++ datasets found suitable for accurate detection of attacks.

The deep learning methods were applied in the Internet of Things to identify the malicious nodes. The
deep learning model was applied to improve the efficiency of the detection. However, the most existing deep
learning-based IDS have difficulty in applying intrusion detection for real-world environments. The
implementation in the real world scenario has resulted in a higher miscalculation rate. Hence the
intelligent system is required for solving the real-world attacks in the WSN-IoT environment. This
research article proposes the novel SHOLEN-IDS (Spotted Hyena Optimized Long Efficient Networks),
multi-tier architecture.

2 Related Works

Christopher et al. developed two intelligent investigation techniques for WSN intrusion detection. The
model was developed based on the backpropagation of the Support Vector Machine (SVM) supervised
classifier module. The method is deployed in the investigation of six types of cyber threats. The dataset
used is NSL-KDD data. The advantage of the model is that it holds good for low sample sizes and
provides highly accurate favourable detection rates. The drawback is that it suits less sample size linked
with the FPR rate of less than 1% [27].

Almomani et al. proposed and formulated a benchmark dataset for detecting four significant cyber-
attacks. The attacks include Blackhole, Grayhole, Flooding and Scheduling attacks. The LEACH protocol
is employed as a routing protocol in the WSN network. The dataset developed when analyzed by the NS-
2 simulator illustrates about 23 features. The dataset is named WSN-DS. The Artificial Neural Network
(ANN) model helps in the detection and classification of attacks. WEKA toolbox helps in the validation
of the dataset. It excludes the wormhole or Sybil attacks [28].

Anthi et al. introduced a threefold intrusion detection model. The module aids in the supervised
detection of weak links in IoT networks. Initially, the type and the behaviour of devices connected to the
IoT link of interest were classified. Malicious packs are identified, which can cause attacks on the
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network in the second stage. In the third stage, the attacks were categorized. This scheme is deployed to
identify 12 attacks in 4 IoT network links [29].

Chaabouni et al. performed a detailed survey classifying the IoT attacking threats and the challenges.
The survey mainly attempted studying the machine learning approaches for tracking the attacks with their
accuracy rates. The survey shows that drastic improvement is accomplished in tracking intrusion by
machine learning than traditional techniques [30].

Yin et al. proposed a learning model for intrusion detection systems based on the Recurrent Neural
Network (RNN) model. The model tracks the attack based on binary classification and multilevel
classification. The accuracy is higher than most machine learning algorithms such as ANN, Random
Forest Model, and SVM [31].

3 Proposed Framework

3.1 System Overview

Fig. 1 shows an overview of the proposed multi-tier SHOLEN IDS (Spotted Hyena Optimized Long
Efficient Networks-speed intrusion detection systems) system suitable for the real-time environment. The
first tier of the proposed framework consists of real-time data collection and is classified into two phases.
In the first phase, real-time implementation of the wireless nodes for data gathering in an energy-saving
hierarchal clustering environment. In the second phase, injections of the different attacks in the network
were carried out. At the second tier, different characteristics were retrieved from the pre-processed data
utilized to train the suggested model. SHOLE-networks were built at the third tier to anticipate various
types of assaults. The present research sets forth the suggested methodology for predicting the malicious
node and attack type.

3.1.1 Real-Time Data Collection

Wireless Sensor-IoT Assisted Model
Typical wireless sensor-IoT assisted model consists of sensor nodes, cluster heads, a base station (BS)

and aggregation nodes [32]. For the stable operation of the network, the WSN-IoT devices are clustered and
cluster heads transmit the collected information to the base station (BS) that reaches the central monitoring
station (CMS) through the Internet. The user can remotely monitor the nodes’ activities and control the nodes
by issuing different tasks.

In this research, intelligent health care data monitoring and collection system have been considered.
Fig. 2 shows the wireless model used in the research.

Figure 1: Overall framework for the proposed architecture–SHOLEN IDS
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The proposed IP-enabled wireless sensor nodes are deployed as clusters, cluster heads in the real-time
environment, base station, and monitoring systems. The MICOTT (Node MCU and MCP3008) interfaced
with four health care sensors used to design the sensor nodes; gateways are used as the base stations, and
cloud (firebase) is used as the monitoring station. The complete specification of the real-time setup is
shown in Tab. 1.

The above specifications are used to incorporate real-time wireless testbeds and are primarily used for
data collection under different scenarios such as normal conditions and attack conditions.

The assumptions of the IP enabled wireless sensor environment are quad folded and are given as follows

� This research uses clustered networks for data transmission, and nodes can communicate directly to the
cluster heads. The cluster nodes can transmit the data to the monitoring station through internet services.

� Each Node is static and has a unique IP address, and belongs to one cluster. Each cluster is identified
by another unique ID which consists of an IP address

� This research uses the hybrid data transmission model, including the event-based transmission and
sustainability models.

� The nodes state includes a sleep state, idle state and active state.

Figure 2: IP enabled wireless sensor model

Table 1: Specification of wireless sensor nodes used for experimentation

Sl. no Hardware used Specifications

01 Heart beat sensor MAX30100

02 Pulse rate The standard male header connectors with three holes around the
outside edge

03 Temperature sensor High sensitive, LM35 sensor

04 Blood pressure sensor

05 Sensor node CPU MICOTT (ABEmake)-operating voltage is 3.3 V with 9 channel
analog to digital convertors with 200 KHz sampling and inbuilt WIFI
ESP8266 transceivers.

06 Monitoring station Firebase cloud
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This experimental setup is now used for the dataset collection unit. Nearly 15 nodes are used for
experimentation in which the five nodes are randomly chosen for inducing the various attacks in the
networks. The various types of attack models which are used for emulating the networks are listed in Tab. 2.

Feature Extraction
Feature extraction plays an important role to differentiate the normal nodes and attack nodes. These

features are calculated using real-time testbeds by using various mathematical expressions listed in Tab. 3.

Table 2: List of attacks used in the experimentation

SI. no Types of attacks Description of attacks

01 DoS attacks Creates unwanted traffic in the network and sends more malicious nodes

02 DDoS attacks [33,34]

03 Wormhole attacks Observation/copying the data from one node to another [35]

04 Sybil attacks The introduction of duplicate cluster heads in the networks [36] affects the
routing and increases packet drops.

05 Probe attacks Introduces the numerous malicious data packets after obtaining the request

06 R2L of access in the networks [37].

07 U2R

Table 3: Types of features and their extraction mechanism

Sl. no. Features used Descriptions Mathematical expression

01 Node ID The IP address allocated
for each sensor nodes

Static IP address for each nodes(192.168.1.23)

02 Cluster-ID The IP address of cluster
heads

The static IP address for cluster heads nodes
(192.168.1.40)

03 Initial energy of
nodes

Initial Energy is
calculated at the
beginning of the
experimentation rounds.
This Energy is used to
transmit the sensors data
to the cluster heads.

E(i) = [E(n)]*n
Where E(i) is the Initial Energy, E(n) is the
energy of wireless sensor nodes and n–no of
bytes of transmitted data

04 Energy
consumption (Ec).

The consumed energy is
calculated at every
iteration of data transfer
between the nodes and
sink

Ec ¼ ½Erx� Nbs� þ ½Etx � fNts� dg� ð1Þ
Where, Ec = Energy Consumed for every
iteration, Erx = received Energy for the data
from cluster heads to sensor nodes, Etx =
Transmission energy of the nodes/distance
which is then elaborated as Etx = [E(n)]*n] × d2,
Nch = No of data bytes transmitted from nodes
to cluster head, d = Distance between the nodes
and the base station

(Continued)
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The above features are stored separately in CSV file formats and pre-processed for further prediction/
detection of the attacks.

3.2 Proposed Learning Models

In this section, the new hybrid integration of Spotted Hyena Optimizer (SHO) [37] and LSTM networks
[38] has been discussed. Even though LSTM is considered more advantageous than the existing RNN, it
suffers from overfitting problems when large datasets also lead to computational complexity [38]. It leads
to the LSTM failure in achieving the higher accuracy detection. The paper proposes the computationally
efficient hybrid modelling of LSTM with Spotted Hyena Optimizers, which can overcome the problem
mentioned above and accurately predict the different categories of attacks in WSN-IoT networks to
overcome this drawback.

Table 3 (continued)

Sl. no. Features used Descriptions Mathematical expression

05 Residual energy (Er) The residual energy is
the remaining energy
after each iteration

EðiÞ � Ec ¼ Er ð2Þ
Where E (i) is the initial energy, and Ec is energy
consumption.

06 Cluster head
distance (Dch)

The distance between
the Cluster head and
other nodes

As been kept constant and calculated manually
after the selection of cluster heads

07 Throughput (T) The throughput
measures as the ratio
between the received
bytes to the transmitted
bytes (at Cluster head
Side)

T ¼ DðCH ; RÞ=ðDðNðiÞ; TÞ � 100 ð3Þ
Where, D(CH, R )-Data received at Cluster
head, DðNðiÞ; TÞ�Data Transmitted
From each and every Nodes

08 Throughput-2 (T) The throughput
measures as the ratio
between the received
bytes to the transmitted
bytes (at Base station)

T ¼ DðBS; RÞ=ðDðCHðiÞ; TÞ � 100 ð4Þ
Where, D(CH, R )-Data received at base stations
DðCH ðiÞ; TÞ�Data Transmitted
From each and every cluster heads

09 Delay (ms) Time calculated for data
to reach from nodes to
cluster heads

Delay ¼ T Rð Þ � T Tð Þ ð5Þ
T(R) is the time taken to reach the destination T
(T) is the time to transmit from the source nodes.

10 Received signal
strength indicators
(RSSI)

This parameter is
predominantly used to
detect signal strength
which is in turn used to
calculate the distance.

RSSI is calculated using the mathematical
expression as mentioned in [34]
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In the proposed model, training LSTM cells can find the best weights and bias values. Two steps should
be carried out to formulate the problem of training the LSTM cells using Spotted Hyena Optimizers (SHO).

� A suitable way of representing the bias weights in LSTM cells

� Formulating the Fitness Function

The weights of the LSTM cells are given by the mathematical expression below

V ¼ fw1; w2; w3; w4; w5; . . .wn; h1; h2; h3; h4 . . . hng (6)

where wn are the weights of each LSTM cell and hn is the desired threshold values for obtaining the best
threshold weights. The fixing of the objective function is the essential mechanism. The primary objective of
training the feedforward deep learning models is to reach the highest classification in terms of prediction/
detection accuracy for both training and testing samples. In this proposed model, the fitness function for
training the LSTM cells is given by

fitness function ¼ minimum ðMSEÞ (7)

where

MSE ¼
Xt

k¼1

Xm

i¼1

ðOt
i � Et

iÞ
1

N
(8)

Ot
i is the threshold outputs, E

t
i is the obtained outputs from each LSTM cell, and N is the number of training

samples. Usually, the performance of the learning models is measured by Mean Square Error, whose outputs
are calculated by the mathematical expression (6). The fitness function is fixed to the lowest MSE so that the
highest accuracy of prediction can be obtained for scalable real-time datasets. The new SHOLEN model,
which has been formulated, are given as follows:

Sl. No. Algorithm 1 // Pseudo Code for the Proposed SHOLEN Models

01 Input = {f1, f2 , f3, f4, …f10} Let f be the Input Features

02 Output: Categorization of the attacks

03 Number of Epochs: 50

04 Assign the Input bias and weights randomly

05 While (true)

06 Calculate the output value from the LSTM cell using Eq. (6)

07 Calculate the MSE using the Eq. (8)

08 If (MSE> threshold)

09 For t = 1 to Max_iteration Max_iteration ;50

10 Assign the bias weights and input layers by the position of the vector equation ~Pðxþ 1Þ ¼ ~Cf

N

11 Calculate the output value from the LSTM cell using Eq. (6)

12 If (MSE== threshold)

13 Go to Step 18

14 Else

15 Go to Step 9

16 End

(Continued)
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17 End

18 If (output value <=1)

19 / Normal Data traces / // No traces found

20 Else if(output value <=2&& output value > 1)

21 / DDos attack is detected

22 Else if Else if(output value <=3&& output value > 2)

23 Wormhole attack is detected

24 Else if Else if(output value <=4&& output value > 3)

25 Sybil attack is detected

26 Else

27 Go to step 18

28 End

29 End

30 End

The complete working of the proposed deep learning model has been presented in the pseudo-code, as
shown in Fig. 3.

4 Experimental Setup

The real-time experimentations are carried out as discussed in Section. Nearly two months of different
traces of data were accumulated and used for further analysis. The details of the data traces which are
collected during the experimentation are given in Tab. 4.

32,273 records of data were collected for 2 months, and it has been used to train and test the proposed
model. The analysis was developed using Python-Tensorflow 1.3. The version runs on an i7 CPU, 2.4 GHz,
2TB HDD, 16GB RAM, and 2GB NVIDIA Geoforce.

Figure 3: SHOLEN framework for the 3-layered LSTM cells

Algorithm 1 (continued)
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The other universal benchmarks such as CIDDS-001 [35], UNSW-NB15 [32] and NSLKDD [33] are
used to evaluate the model under the various scenario to validate the performance of the proposed model.
These data sets contain live traffic with different attacks: 80,000 on average and 20,000 DoS records in a
total area are covered by the CIDDS-001 features. UNSW-NB15 benchmarks have 49 characteristics with
one class label and roughly 1,75,000 cases, comprising standard and attack data. For NSL-KDD, each
instance of regular traffic has 37,000 label attributes, while each instance of malicious traffic has 45,332.

4.1 Performance Metrics

Accuracy of prediction is used as the total number of correct decisions whether the incident of an attack
happened to evaluate the performance of the proposed model. The metrics such as precision, recall,
specificity and f-score were used for the analysis, representing the number of identified attacks in the
networks, false identification of attacks by the model and the number of cases identified as usual,
respectively.

Accuracy:
TP þ TN � ð100Þ

Total Testing Samples
(9)

Precision ¼ TP

TP þ TN
(10)

Recall ¼ FP

TP þ TN
(11)

Specificity ¼ FN

FN þ TP
(12)

TP are True positive values, TN-True Negative values, FP-False positive and FN-False-negative values.

4.2 Results and Discussion

This section highlights various performance analyses of the proposed deep learning models juxtaposed
with the existing deep learning models specific to the real-time datasets and other benchmarks. In this
validation, we have used the different ratios of data splitting that has been used for training and testing to
prove the efficiency of the proposed deep learning model.

Table 4: Total number of data traces recorded in the experimentation

Sl. no. Details of the data No traces were recorded per day Total traces

01 Number of normal data 19,600

02 Number of DoS/DDoS data 17,225

03 Number of Sybil data 15,400 62,273

04 Number of wormhole data 5225

05 Number of probe data 1223

06 Number of RPL 1200

07 Number of 2400
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4.2.1 SHOLEN-IDS Experimental Results
We have implemented SHOLE-spotted hyena optimized LSTM models for an optimal deep learning

model selection and performed 10 iterations using the real-time datasets as shown below. The test
datasets were set to a ratio of 80% training and 20% testing. Moreover, the SHO process tuned the
model’s hyperparameters to obtain the best accuracy results. The epochs are optimized to 100 with an
output batch size of 50 and a learning rate of 0.0001.

Figs. 4–9 shows the detection accuracy (%) for the proposed learning models using the real-time
testbeds. In all the cases, the average detection accuracy is 99.89% for predicting the different categories
of attacks in the network. Moreover, optimized 50 epochs demonstrated more accuracy, almost equal to
99.89%, with the stability of the learning network. Further, we have also calculated the other performance
metrics, which are presented in Tab. 5 below:

Tab. 5 depicts the performance of the proposed model in detecting the various attacks. The proposed
model exhibits good precision, recall, sensitivity, and f-score to detect the attacks. The optimized learning
model has proved its efficiency in detecting attacks using the real-time scenario. In the following
scenario, we have trained the proposed model with different benchmarks as mentioned in Section 4.1 and
calculated performance metrics under various scenarios.

Figure 4: Accuracy validation mechanism for the proposed SHOLEN models using the real-time datasets at
50 epochs
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Figure 5: Accuracy validation mechanism for the proposed SHOLENmodels using the real-time datasets in
detecting the dos attacks at 50 epochs

Figure 6: Accuracy validation mechanism for the proposed SHOLENmodels using the real-time datasets in
detecting the DDoS attacks at 50 epochs
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Figure 7: Accuracy validation mechanism for the proposed SHOLENmodels using the real-time datasets in
detecting the Sybil attacks at 50 epochs

Figure 8: Accuracy validation mechanism for the proposed SHOLENmodels using the real-time datasets in
detecting the wormhole attacks at 50 epochs
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The performance metrics of the proposed algorithm is calculated with the benchmark datasets and
presented in Tabs. 6–8. Tab. 6 presents the performance metrics of the proposed algorithms using UNSW-
NB15 Benchmarks; performance metrics such as accuracy, precision, recall, Sensitivity, and F-score has
demonstrated a very stable performance, ranging from 99% to 100% in detecting the various categories
of attacks. Similarly, Tab. 7 depicts the performance metrics of the proposed algorithm in detecting the
attacks using NSL-KDD datasets 99 in which the accuracy ranges from 99.87% to 99.64%, 99.5% to
98.67% precision, 98.50% to 97.50% recall, 99% to 98.67% sensitivity and 98.23% to 97.02% F-score.
Finally, Tab. 8 shows the performance of the proposed model using the CIDCC datasets 2017, exhibiting
a very high performance in detecting the various attacks. The experimental result shows that the
integration of the spotted Hyena optimizer in LSTM has exhibited a high performance in which it has
reduced the high false alarm rates.

Figure 9: Accuracy validation mechanism for the proposed SHOLENmodels using the real-time datasets in
detecting the RPL and URP attacks at 50 epochs

Table 5: Performance metrics for the proposed model in the detection of categories of attacks

Sl. no Types of Attacks Precision Recall Sensitivity F-Score

01 DoS attacks 0.9986 0.9978 1.00 0.9815

02 DDoS attacks 0.998 0.998 0.994 0.9814

03 Sybil attacks 0.9987 0.9988 0.978 0.9786

04 Wormhole attacks 0.9986 0.9992 0.989 0.956

05 Probe attacks 0.9987 0.978 0.982 0.966

06 RPL 0.988 0.976 0.978 0.9672

07 URP 0.986 0.967 0.977 0.9745
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4.2.2 Comparative Analysis
In this section, we have compared the existing deep learning algorithms such as RNN [31], ASCH-IDS

[30], Improved GA based DNN [38] and DBN [22] algorithms for the detection of various attacks using the
collection of the real-time dataset.

The performance metrics of different hybrid deep learning models have been compared for real-time
datasets, as shown in Fig. 10. It is evident from Fig. 10 that the proposed algorithm has outperformed the
other learning models with an accuracy of 99.89%. The AHCS-IDS has reasonable accuracy of 95%,
whereas other algorithms have even lesser performance than AHCS-IDS. The integration of the SHO in
LSTM has shown stable performance in the real-time test data, which makes it suitable for the real-time
scenario. The other benchmark datasets are taken to compare deep learning models’ performance in
Figs. 11–13. Experimental results showed the accuracy of all hybrid models ranges from 99.989% to
99.65%; precision ranges from 95.0% to 98%, recall ranges from 96% to 97%, and F-score ranges from

Table 6: Performance evaluation of proposed model using the UNSW-NB15 benchmarks

Sl. no Benchmarks used Attack types Performance metrics

Acc (%) Precision Recall Sensitivity F-score

01 UNSW-NB15 Dos 99.89 0.9997 0.9989 0.9934 0.9815

DDos 99.90 0.9984 0.9991 0.9943 0.9765

RPL 99.95 0.9882 0.992 0.9950 0.9723

URL 99.89 0.9875 0.974 0.9873 0.9726

Table 7: Performance evaluation of proposed model using the NSL-KDD datasets benchmarks

Sl. no Benchmarks used Attack types Performance metrics

Acc (%) Precision Recall Sensitivity F-score

01 NSL-KDD DATASETS 99 Dos 99.87 0.9995 0.9974 0.9945 0.9823

DDos 99.88 0.9945 0.9932 0.9934 0.9745

RPL 99.76 0.9856 0.993 0.9945 0.9719

URL 99.64 0.9867 0.985 0.9867 0.9702

Table 8: Performance evaluation of proposed model using the CIDCC 001 benchmarks

Sl. no Benchmarks used Attack types Performance metrics

Acc (%) Precision Recall Sensitivity F-score

01 CIDCC datasets Dos 99.87 0.9815 0.9924 0.9945 0.9823

DDos 99.86 0.9812 0.9930 0.9934 0.9745

RPL 99.75 0.9678 0.9912 0.9945 0.9719

URL 99.55 0.9745 0.9715 0.9867 0.9702
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97%–98%. Hence, the performance of the proposed model has a decisive edge over other deep learning
models. It was found that the proposed SHOLEN model has shown stable performances with the real-
time data and also with the other benchmarks. However, the performance of other hybrid deep learning
models has shown darker performance in real-time datasets and brighter under benchmarks. Our proposed
SHOLEN model has demonstrated its suitability for a real-time dataset applied in smart health care
monitoring systems considering the above results.

Figure 10: Comparative analysis between the different deep learning modes using the real-time datasets

Figure 11: Comparative analysis between the different deep learning modes using the NSL-KDD++
datasets
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5 Conclusion

The Spotted Hyena Optimizer integrated LSTM networks have been proposed in the paper. The
proposed algorithm is applied to the clustered WSN-IoT environments, architecting the multi-tier WSN-
IoT intrusion detection system model. The real-time datasets were collected using the embedded CPU
interfaced with esp8266 transceivers. Nearly 60,000 data were collected and used for training and testing.
Further, the proposed algorithm has been compared with the other hybrid deep learning models under two
scenarios: real-time environments and benchmark datasets. The results show that the proposed algorithm
has shown consistent performance, such as accuracy of 99.89%, precision of 98%, 97.5% recall, and 99%

Figure 12: Comparative analysis between the different deep learning modes using the UNSW-
NB15 benchmark dataset

Figure 13: Comparative analysis between the different deep learning modes using the CIDCC-dataset 2017

380 IASC, 2022, vol.33, no.1



f-score in predicting the various categories of attacks in the WSN-IoT environment using scalable datasets.
The other hybrid deep learning models have exhibited exemplary performance using benchmarks but showed
a marked dip in performance while using the real-time datasets. The experimentation shows that the proposed
deep learning model has shown better performance for different datasets and can gain immense traction in
innovative health care monitoring applications. Further, the proposed models need to focus on identifying the
increased attacks without compromising the reduction of energy consumption.
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