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Abstract: The Bacterial Foraging Algorithm (BFOA) is a well-known swarm col-
lective intelligence algorithm used to solve a variety of constraint optimization
problems with wide success. Despite its universality, implementing the BFOA
may be complex due to the calibration of multiple parameters. Moreover, the
Two-Swim Modified Bacterial Foraging Optimization Algorithm (TS-MBFOA)
is a state-of-the-art modification of the BFOA which may lead to solutions close
to the optimal but with more parameters than the original BFOA. That is why in
this paper we present the design using the Unified Modeling Language (UML)
and the implementation in the MATLAB platform of a front-end for the TS-
MBFOA algorithm to calibrate the algorithm parameters faster and with no need
for editing lines of code. To test our proposal, we solve a numerical optimization
problem with constraints known as tension/compression spring, where 30 indepen-
dent executions were conducted using the TS-MBFOA and then compared with
an earlier version called MBFOA. The runtime configuration and the parameter
tuning were fluent using our front-end, and the TS-MBFOA obtained the better
results. To date, there is no other user-friendly implementation of this specific
algorithm in an open-source code, and the front-end is flexible enough to include
other numerical optimization problems with minimal effort.
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1 Introduction

There are optimization problems considered complex due to their high dimensionality and their dynamic
nature. An optimization problem is also known as a general non-linear programming problem and can be
defined as:

Minimize or Maximize f ð~xÞ
Subject to: gið~xÞ � 0; i ¼ 1; . . . ; m and or hjð~xÞ ¼ 0; j ¼ 1; . . . ; p

In this definition,~x 2 Rn such that n ≥ 1, is the solution vector~x ¼ ½x1; x2; . . . ; xn�T , where every xi,
i = 1, …, n, is delimited by the lower and upper limit Li ≤ xi ≤Ui; m is the number of inequality constraints,
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and p is the number of equality constraints (in both cases, the constraints could be linear or non-linear). If we
denote F as the feasible region (where all the solutions that satisfy the problem are found), and S as the entire
search space, then F⊆ S.

These types of optimization problems are complex, and although they can be solved by mathematical
programming, they can be complicated to implement. Currently, metaheuristics are efficient methods that
allow to solve optimization problems with or without constraints, combinatorial or numerical, in an
approximate way. That is, they generate one or more feasible solutions close to the optimum in
reasonable times.

Some of these techniques emulate natural or evolutionary processes (grouped into the called bio-inspired
algorithms), which are part of the bio-inspired computation field [1]. These algorithms rise with the
motivation of improving search techniques and of solving optimization problems through the simulation
of intelligent and collaborative processes.

According to the natural phenomenon base of their design, bio-inspired algorithms are classified into
two groups: Evolutionary Algorithms (EAs) who operate emulating the natural evolution process and the
survival of the fittest [2], and the Collective Intelligence Algorithms (CIAs), which base their operation
on cooperative behaviors on certain simple yet intelligent organisms, such as bees [3], ants [4], bacteria
[5], and birds [6], among others.

1.1 Bacterial Foraging Algorithm (BFOA)

Among CIAs we have the Bacterial Foraging Optimization Algorithm (BFOA) [5]. This particular
algorithm has been less studied and analyzed to solve optimization problems, with and without
constraints, using different techniques for handling constraints such as feasibility rules, penalty function,
special operators, among others [7].

The natural process of BFOA is based on the fact that each bacterium tries to maximize its own energy
obtained per unit of time used in the foraging process while it also evades harmful substances. Moreover,
bacteria can communicate with each other by segregating substances. These characteristics are
represented in four main processes in the BFOA: chemotaxis (swim-tumble), swarming, reproduction,
and elimination-dispersion. Bacteria are potential solutions to the problem, and their location represents
the values of the decision variables of the problem. Bacteria can move (generate new solutions) through
the chemotaxis cycle, a movement is also generated by attracting solutions in promising areas to other
solutions in the search space, reproduction of the best solutions is allowed, and those bacteria located in
areas of poor quality are finally removed from the swarm.

The Modified Bacteria Foraging Optimization Algorithm (MBFOA) is a BFOA based algorithm. The
modifications of the BFOA include a reduction in the parameters of the original BFOA by grouping in a
generational cycle the four basic processes of the algorithm (initially an independent loop) and a
mechanism for handling constraints based on feasibility rules [8], which are: 1) between two feasible
solutions, the one with the best objective function value is selected; 2) between a feasible solution and an
unfeasible one, the feasible one is selected; 3) between two non-feasible solutions, the one with the
lowest Constraint Violation Sum (CVS), is selected. The CVS is calculated using the following equation:Pmþp

i¼1
maxð0; gið~xÞÞ. In addition, MBFOA was successfully applied to a set of Constraint Numerical

Optimization Problems (CNOPs) related to chemical and mechanical engineering design tasks. Results
obtained were competitive against state-of-the-art algorithms, such as EA [9].

In order to improve the performance of MBFOA to solve CNOPs, the Improved Modified Bacterial
Foraging Optimization Algorithm (IMBFOA) was proposed. IMBFOA implements a skew mechanism to
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create the initial population, two swim operators, dynamic step sizes, and the Sequential Quadratic
Programming (SQP) local search engine. This search engine aims to bring or introduce bacteria into the
feasible region or take bacteria out of a local optimum and move them to another place within the
feasible region [10].

Finally, the most recent adaptation is the Two-Swim Modified Bacterial Foraging Optimization
Algorithm (TS-MBFOA), where two swims are added in the chemotaxis process: the first is the original
swim (except for the step size, which is randomized), and the second swim includes the mutation
operator used in evolutionary algorithms. Both swims are included with the objective of improving the
exploration and exploitation capabilities of the algorithm [11]. This proposal has recently been
successfully used to solve engineering design problems such as tension/compression spring [12], and
menu planning [13].

Swarm intelligence algorithms and even evolutionary algorithms are widely used among the scientific
community. However, in most cases only their pseudocodes or source codes are distributed. Coding,
implementing and executing a metaheuristic algorithm may be a difficult task for end users unfamiliar
with complex algorithms in programming languages. Specifically, the algorithm based on the foraging of
bacteria is one of the popular ones in solving constraint numerical optimization problems. However, it is
not common to find in the state of the art or specialized literature a graphical user interface that may
allow end users to calibrate the algorithm parameters, run it, and view its results on some known test
problems, all of this without need to edit lines of code.

A front-end for the TS-MBFOA may help the end-user perform the optimal calibration of parameters
with minimum effort and time. In the context of human-computer interaction, a front-end consists of a
software interface (such as a user interface, UI) designed to enable user-friendly interaction with a
computer. That is why the implementation of the algorithm plus the UI is of the utmost importance for
those who have the need to use the algorithm. Also, since the UI isolates the source code from the end
user, he/she does not need of programming knowledge to interact directly with the calibration of the
parameters and, therefore, in the execution of the algorithm.

1.2 Related Work

In the specialized literature, there are several proposals developing UIs for the implementation of BFOA
in particular problems; some of these are described below.

In [14], the optimization of flexible manufacturing systems is carried out using conventional and
evolutionary approaches. The authors developed optimization procedures based on three approaches:
Genetic algorithm, Differential evolution, and BFOA. In the proposal, a MATLAB-based user interface
was developed using version 7.1, allowing the user to properly adjust the problem parameters to be
solved before the software execution.

In another work, BFOA has been implemented for planning route strategies for ships to avoid collisions.
The UI has general-purpose components to facilitate the adjustment of the problem parameters: navigation
direction, speed, longitude, and latitude. Also, this proposal displays a list showing a series of results and a
graph corresponding to the possible collision [15].

A BFOA-based factorial order controller for a multi-area automatic generation control system with
capacitive energy storage was proposed in [16]. The proposal investigates the effectiveness of a
fractional-order controller and the optimal gain configuration of the controllers. The simulations of the
test system are carried out in the MATLAB environment, and visualization graphs validate the dynamic
performance of the controller.

In another work, BFOA was applied for the comparative analysis of the double watermark technique
based on safe medical images [17]. The authors present a UI designed in MATLAB 7.1 as an integral
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tool capable of performing watermarks and different analyzes, as the user requires. This tool aims is to allow
the user to have ease of operation to load the image, mark it, and encrypt it.

To improve the recognition rate of a fingerprint verification system, BFOAwas implemented along with
a UI developed in MATLAB 7.11 in [18], where it allows the end-user to load the fingerprint to make the
biometric analysis.

In [19], a UI based on BFOA for lung cancer diagnosis is implemented through the fusion of support
vector machines and a neural network of backward propagation, where the simulation of performance is
conducted in a MATLAB environment 7.10. The UI has a series of parameters to select a specific task on
the image of the lung.

In another work, BFOAwas adapted for to optimize of multiple objectives to treat a medical image using
a watermark and thus avoid damaging it. The proposal presents a UI that allows the user to manipulate the
image easily [20].

In a previous work, we implemented TS-MBFOA for menu planning generating healthy menus. A UI
was designed in language M under MATLAB R2009b, where the end-user inputs the personal data, and the
healthy menu is automatically generated [13].

According to the revised proposals that implement BFOA with the help of a graphical interface, it is
noticed that the typical development platform is MATLAB. All authors use the UI to enter the input data
for the problem to be solved and show the results in graphs and tables that MATLAB can generate. In
none of the cases reviewed, the UI is used to introduce and calibrate the algorithm input parameters.
Furthermore, neither the performance of the algorithm is displayed using no performance metrics or
graphs such as convergence. Finally, none of the proposals allow configuring a custom problem to be solved.

That is why the main objective of this article is to present the design and development of a front-end for
the efficient adjustment of parameters of the TS-MBFOA in solving CNOPs.

2 TS-MBFOA: Two-Swim Modified Bacterial Foraging Optimization Algorithm

TS-MBFOA is an algorithm derived from MBFOA, and adaptation of BFOA proposed specifically to
solve CNOPs [11]. In this variant, a bacterium i represents a potential solution and is denoted as θi(j, G), into
a swarm of bacteria Sb, where j is the chemotaxis cycle. G is the generational loop that includes chemotaxis,
swarming, reproduction and elimination-dispersion processes and ends up reaching a maximum number of
generations (GMax) or using a number of evaluations, defined by the user, calculated as:
GMax ¼ Number of evaluations

Sb � Nc
.

In the chemotaxis process, two swims are interspersed; in each cycle, only one of exploitation or
exploration swims is performed. The process begins with the exploitation swim (classic swim). However,
a bacterium will not necessarily intersperse exploration and exploitation when swimming, since if the
new position of a given swim, θi(j + 1, G) has a better aptitude (based on the rules of feasibility) than the
original position θi(j, G), then another swim in the same direction will take place in the next cycle.
Otherwise, a new tumble will be calculated. The process stops after Nc attempts.

The exploration swim operator uses the mutation between bacteria and is calculated using:

hiðjþ 1; GÞ ¼ hiðj; GÞ þ ðbÞðhr1ðj; GÞ � hr2ðj; GÞÞ (1)

where hr1ðj; GÞ and hr2ðj; GÞ are two different bacteria randomly selected from the population. β is a user-
defined parameter used by the swarming operator which defines the proximity of the new position of a
bacterium with respect to the position of the best bacterium in the population. In this operator, β is a
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positive control parameter to scale the different vectors by (0, 1]. That is, it scales from the area where a
bacterium can move.

The exploitation swim operator is calculated using:

hiðjþ 1; GÞ ¼ hiðj; GÞ þ Cði; GÞfðiÞ (2)

where ϕ (i) is calculated with the original BFOA tumble operator defined in Eq. (3).

fðiÞ ¼ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðiÞTDðiÞ

q (3)

where Δ(i)T is a random vector generated with elements within an interval [−1, 1].

C(i, G) is the random step size of each bacterium updated using:

Cði; GÞ ¼ R ��ðiÞ (4)

whereΘ(i) is a uniformly distributed random vector of size nwith elements within the range of each decision
variable: [Uk, Lk], k = 1,….n, and R is a user-defined parameter to scale the step size, this value must be close
to zero. The initial C(i, 0) is generated using θ(i). This random stepsize allows bacteria to move in different
directions within the search space and prevents premature convergence as suggested in [21].

In the middle loop of the chemotaxis process, the swarming operator defined in Eq. (5) is applied, where
β is a positive parameter between (0, 1) as defined by the user.

hiðjþ 1; GÞ ¼ hiðj; GÞ þ bðhBðGÞ � hiðj; GÞÞ (5)

where θi(j + 1, G) is the new position of bacterium i, (θB(G) is the current position of the best generational
bacterium, and β is a parameter called scaling factor, which regulates how close bacterium iwill be to the best
bacterium θB. However, if a solution violates the limit of the decision variables, a new solution of x1 is
generated randomly between the lower and upper limits Li ≤ xi ≤Ui of the decision variables.

In the reproduction process, bacteria are ordered according to the constraint-handling technique based on
the feasibility rules, eliminating the worst bacteria Sb − Sr and duplicating the best ones every certain number
of cycles, defined by the user via the Repcycle parameter.

In the elimination-dispersion process, the worst bacterium of the population w(j, G) is eliminated (based
on the feasibility rules), and a new one is randomly generated.

Although a bias mechanism is used in the original TS-MBFOA proposal to generate the initial random
population and a local search engine, this paper does not use these mechanisms to reduce computational cost.
The pseudocode of TS-MBFOA is presented in Algorithm 1.

Algorithm 1: TS-MBFOA pseudocode.

1 Create an initial swarm of bacteria at random hiðj; 0Þ 8i ¼ 1; . . . ; Sb

2 Evaluate f ðhiðj; 0ÞÞ 8i ¼ 1; . . . ; Sb

3 for G = 1 to GMax do

4 for i = 1 to Sb do

5 for j = 1 to Nc do

6 In the chemotaxis process, the proposed swims are interspersed: Eqs. (1) and (2).

7 Apply the swarming operator: Eq. (5) using β for bacterium θi(j, G).

(Continued)

IASC, 2022, vol.32, no.3 1801



8 end

9 end

10 if G mod RepCycle = =0 then

11 Perform the reproduction process by ordering the population according to the feasibility rules.

12 Eliminate Sr worse bacteria.

13 Duplicate the best of bacteria Sb − Sr.

14 end

15 Perform the process of elimination-dispersion by eliminating the worst bacterium θw(j, G) of the

current population considering the constraint-handling technique.

16 Update the step size vector: Eq. (4).

17 end

Like all metaheuristic algorithms, TS-MBFOA has user-defined parameters (Sb, R, β, Nc, Sr, Repcycle,
and the number of evaluations). However, the optimal calibration of these parameters is a challenging
activity, and several experiments are necessary to find the combination of values that allows a better
performance of the algorithm in the particular problem to be solved.

Some algorithms are sensitive to their parameters, and this complicates the calibration. It is worth
mentioning that the values of a parameter can be an integer or a real number. Usually, the authors of an
algorithm mention the range values recommended for each parameter to solve a particular problem giving
only an idea of the possible values that we can use.

3 TS-MBFOA Implementation

The main goal of this work is to implement the TS-BFOA along with a front-end to be used by any
researcher or academic interested in bacterial foraging algorithms. After the analysis phase, we create the
corresponding design diagrams, implement the algorithm, and finally develop the UI. The development
environment used was MATLAB R2018a.

3.1 UML Modeling

To code TS-MBFOA and the front-end, a modular programming paradigm has been used to separate
each individual process of the algorithm into independent modules to have clean programming of each
process implementing functions and procedures.

We designed the prototype using the UML (Unified Modeling Language), a tool that captures the idea of
a system through a set of symbols and diagrams [22]. UML is used to visualize, specify, build, and document
the components of a software system [23].

To develop the TS-MBFOA front-end, we designed an activity diagram (Fig. 1), a package diagram
(Fig. 2), and a sequence diagram (Fig. 5). Each diagram will be explained in the corresponding section.

The activity diagram in Fig. 1 describes the functioning of our TS-MFOA implementation.

Algorithm 1: (Continued)
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Figure 1: TS-MBFOA activity diagram
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3.2 Modular Programming of the TS-MBFOA

Modular programming provides many advantages, e.g., simplifying the design, decreasing the coding
complexity, saving programming time (as it promotes the reusability of the code), favors teamwork, ease
of debugging, testing, maintenance, and structuring of specific libraries. Moreover, this technique allows
designing the solution of a problem based on modularization or segmentation, given a top-down approach
[24].

This modularization or segmentation, in turn, can be repeatedly divided into smaller problems until the
problems are easily solved. Each subproblem is desirable to be independent of the others and is called a
module. The original problem is solved within the main program (also called driver or main) and
subproblems (modules) through subprograms: procedures and functions [25].

An easy-to-understand programming language due to its practical syntax is the M language. This high-
level language allows users to group frequently used sentences within a program that can be invoked later.

In this work, each of the processes of the TS-MBFOA algorithm is modulated for a quick understanding
and easy adaptation, as shown in the package diagram in Fig. 2. Sub-package UI contains all elements
corresponding to the user interface. TS-MBFOA sub-package includes all modules related to the TS-
MBFOA. Results sub-package includes code related to the results obtained by the algorithm. Finally,
ProblemDefinition sub-package is where the CNOP is defined; in this case, a default problem known
as Tension/compression spring problem is included, and it will be detailed in Section 4.1.

Figure 2: TS-MBFOA front-end package diagram
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3.3 TS-MBFOA Front-end

The TS-MBFOA UI consists of two windows. The first window is for the calibration of parameters,
information regarding the state of execution of the algorithm, and an option for data visualization. In the
second window, results are presented.

Fig. 3 describe the elements of the first UI:

• File menu: includes options to run a new execution, load a previous configuration and show general
information of the front-end.

• Action buttons: the first button allows to save the configuration, the second one to start the algorithm's
execution, the third button stops the current execution, and the fourth one is enabled when the execution ends
and displays the second UI.

• Run settings: the left panel allows the user to name the test, choose the optimization problem, and set
the number of iterations.

• Parameter calibration: this is the main panel and allows the user to set the number of bacteria (Sb), step
size (R), scaling factor (β), chemotaxis cycle (Nc), bacteria to reproduce (Sr), frequencies of the reproduction
cycle (Repcycle), and the number of evaluations. It validates the input values and offers a correct range of
values for each parameter.

• Process: the right panel shows the execution time of the algorithm.

Fig. 4 depicts the second UI. In this window, the output of the algorithm is presented. Results are shown
in 5 panels:

• General configuration: shows the configuration and calibration of parameters for this execution.

• Results: this table shows the best solution found in each of the executions of the algorithm. Each
solution shows the value of the variables along with the value of the objective function and the
Constraint Violation Sum (CVS).

Figure 3: Configuration UI
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• Statistics: this panel presents the basic statistics such as: better, average, median, standard deviation,
and worse value of the set of solutions in the Final results table. In addition, performance measures of the
algorithm are presented, such as the feasibility rate, success rate, and successful performance [26].

• TS-MBFOA convergence: this graph shows the algorithm's convergence for the median value of the
set of solutions. It is helpful to show the behavior of the algorithm.

• Export data: it allows to export results to a spreadsheet file.

The sequence diagram in Fig. 5 shows the interaction between all the modules of the front-end. This
diagram shows the sequence that the user must perform to execute the algorithm and obtain the results.

4 Test and Results

To test our front-end, we chose the CNOP known as the Tension/Compression Spring. For this specific
problem, the best optimal value known in the state of the art is 0.012681. In this case, we compare the results
of the TS-MBFOA and the MBFOAwhen solving this problem. For the comparison of results, we used the
non-parametric test Wilcoxon Signed Rank test.

We use MATLAB R2018b to conduct the test on a laptop with an Intel(R) Core i5 CPU@1.60 GHz
processor, 8GB RAM, and 64-bit Windows 10 Operating System.

4.1 Test Problem

In the Tension/compression spring problem, the aim is to minimize the weight of a tension/compression
spring (see Fig. 6) subject to constraints of minimum deviation, cut-off tension, surge frequency, and limits
on the outside diameter; this on the design variables. The function to be optimized in the TS-MBFOA has the
following design variables: Cable diameter d(x1), Roll diameter D(x2), and the number of rolls involved N
(x3). Formally, the problem can be expressed as follows:

Figure 4: Results UI
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Minimize ðx3 þ 2Þx2x21 (6)

Subject to:

G1ðXÞ ¼ 1� ðx32x3Þ
ð71785x41Þ

� �
� 0

g2ðX Þ ¼ ð4x22 � x1x2Þ
12566ðx2x31 � x41Þ

� �
þ 1

510x21

� �
� 1 � 0 (7)

g3ðXÞ ¼ 1� 140:45x1
x22x3

� �
� 0

g4ðXÞ ¼
x2 þ x1
1:5

� �
� 0

where:

0:05 � x1 � 2

Figure 6: Representation of the design problem

Figure 5: TS-MBFOA front-end sequence diagram
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0:25 � x2 � 1:3 (8)

2 � x3 � 15

Fig. 6 shows a representation of the Tension/compression spring problem.

4.2 Algorithm Configuration and Calibration

The values of the TS-MBFOA parameters were bacteria (Sb) = 50, step size (R) = 0.001, scaling factor
(β) = 1.9, chemotaxis cycle (Nc) = 40, bacteria to reproduce (Sr) = 1, frequencies of the reproduction cycle
(Repcycle) = 100, and number of evaluations = 30,000. These same parameters were used to execute
MBFOA in 30 independent executions to make a fair performance comparison. These values were
calibrated in a set of a priori experiments.

4.3 Results

Tab. 1 shows the results of each of the 30 independent executions. All solutions were feasible; the best
one is shown in bold. We ran the algorithm for 25 s.

Table 1: Results of the TS-MBFOA across 30 independent executions. Best solution in bold

Execution x1 x2 x3 Objective function CVS

1 0.05159355 0.354262808 11.45072579 0.012684172 0

2 0.051786794 0.358909182 11.16852188 0.012675341 0

3 0.051640217 0.355334913 11.3815166 0.012680002 0

4 0.051857122 0.360755332 11.06220495 0.012672027 0

5 0.051181677 0.344562216 12.04584449 0.012677819 0

6 0.052105666 0.366772323 10.72887345 0.012675247 0

7 0.051293545 0.347208325 11.87874667 0.01267844 0

8 0.05228548 0.371232593 10.49086951 0.012676547 0

9 0.052045112 0.365289794 10.80590612 0.012670908 0

10 0.051899988 0.361746188 11.00524483 0.012672346 0

11 0.051441315 0.350758459 11.66735785 0.01268577 0

12 0.050529402 0.329409603 13.09886078 0.012698977 0

13 0.051851305 0.3605402 11.0830362 0.012681821 0

14 0.052165838 0.368170226 10.65591939 0.012679868 0

15 0.051410685 0.349908547 11.71354152 0.012682678 0

16 0.051495748 0.352057005 11.57182113 0.012670503 0

17 0.05188893 0.361519328 11.01850154 0.012671906 0

18 0.051572206 0.353298073 11.51576413 0.01270028 0

19 0.051482455 0.35166946 11.59573971 0.012672316 0

20 0.052102824 0.366748404 10.73141089 0.012675564 0

21 0.051537198 0.352957725 11.52150867 0.012676211 0

22 0.051303914 0.347267461 11.89056339 0.012696527 0
(Continued)
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The best solution found, and the basic statistical values of all the 30 independent executions are
presented in Tab. 2, where the best solution was obtained during execution number 24, as highlighted in
Tab. 1. We can notice that the standard deviation is very close to zero, which indicates that all the
solutions obtained in each of the 30 executions are similar. Furthermore, notice that each solution is
similar to the global optimum or best-known solution. This can be confirmed by the feasibility rate,
success rate, and success performance [27] where the 30 independent executions obtained feasible and
equal or better solutions than the global optimum known in the state of the art. Finally, about
15,314 evaluations are required to obtain a feasible and optimal solution for this problem with this algorithm.

The convergence of an algorithm occurs when a solution remains unchanged for a number of iterations
until the end of the algorithm execution. This solution can be feasible or not feasible, a local or global
optimum. Fig. 7 shows the convergence of the TS-MBFOA using execution number 15, which
corresponds to the median of the 30 executions. In this execution, the TS-MBFOA has a progressive and
continuous convergence before 15,000 generations. After these generations, the algorithm remains
unchanged. That is, it converges in a local optimum because the result of this execution has a value of
0.012682678, very similar to the best optimal value known in the state of the art: 0.012681. The

Table 1 (continued)

Execution x1 x2 x3 Objective function CVS

23 0.051661798 0.355817323 11.35260489 0.012680376 0

24 0.051742795 0.357982035 11.21789851 0.012668448 0

25 0.051829914 0.360030313 11.10680496 0.012676427 0

26 0.05183748 0.360125193 11.10733648 0.012683985 0

27 0.052329575 0.3722629 10.43538845 0.012676622 0

28 0.051862921 0.360491736 11.08950218 0.012692068 0

29 0.05161278 0.354869607 11.40594547 0.012673039 0

30 0.051589159 0.354117397 11.46248283 0.012687888 0

Table 2: Basic statistical values by TS-MBFOA for the Tension/compression spring problem

Metric Value

Best solution 0.0126684

Average 0.0126798

Median 0.0126772

Worst solution 0.0127003

Std. Dev. 8.4E-07

Feasible rate 100%

Success rate 100%

Success performance 15314
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convergence in a good quality solution for this problem is obtained between approximately 10,000 to
15,000 generations, according to Fig. 7 and the value of the metric Success performance.

Tab. 3 shows the results obtained from the 30 independent executions performed by the TS-MBFOA and
the MBFOA. The Wilcoxon Signed Rank test uses this data to know if there is a significant difference
between both groups of solutions.

Figure 7: Convergence of a TS-MBFOA execution

Table 3: Results of the TS-MBFOA and the MBFOA in the test problem

Execution TS-MBFOA MBFOA

1 0.012684172 0.01630937

2 0.012675341 0.01365103

3 0.012680002 0.01504151

4 0.012672027 0.01393995

5 0.012677819 0.01502329

6 0.012675247 0.01419695

7 0.01267844 0.01452018

8 0.012676547 0.01652729

9 0.012670908 0.01674499

10 0.012672346 0.01616278

11 0.01268577 0.0148695

12 0.012698977 0.0151396

13 0.012681821 0.01600057

14 0.012679868 0.01498494
(Continued)

1810 IASC, 2022, vol.32, no.3



Tab. 4 presents a comparison of the results obtained by the TS-MBFOA and the MBFOA. Results of
both algorithms were generated using the same configuration of parameters. According to the values
reported, TS-MBFOA is the algorithm that obtains the best results in each statistic when solving the test
problem.

The Wilcoxon Signed-Rank test was configured with a significance level of 0.05 using an online
calculator [28], obtaining a p-value value less than 0.00001. This indicates a significant difference
between the results of the TS-MBFOA and the MBFOA.

In general, TS-MBFOA performed better than MBFOA. In addition, the UI allows the end-user to
configure, calibrate parameters, and view the algorithm results with no additional effort.

Table 3 (continued)

Execution TS-MBFOA MBFOA

15 0.012682678 0.01339251

16 0.012670503 0.01593207

17 0.012671906 0.01429101

18 0.01270028 0.01675205

19 0.012672316 0.01897264

20 0.012675564 0.0147699

21 0.012676211 0.01474724

22 0.012696527 0.01395306

23 0.012680376 0.01699236

24 0.012668448 0.01425301

25 0.012676427 0.01466751

26 0.012683985 0.01499838

27 0.012676622 0.01687673

28 0.012692068 0.01372426

29 0.012673039 0.01485669

30 0.012687888 0.01494201

Table 4: Comparison of the TS-MBFOA and MBFOA algorithms based on the basic statistical values

Metric TS-MBFOA MBFOA

Best solution 0.0126684 0.01630937

Average 0.0126798 0.01524111

Median 0.0126772 0.0148695

Worst solution 8.4E-07 0.00125107

Std. Dev. 0.0127003 0.01897264
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5 Conclusions

This paper proposes an intuitive implementation of the TS-MBFOA along with a front-end for the easy
solution of constraints numerical optimization problems. The main objective is to make the algorithm more
straightforward in terms of parameter calibration and visualization of results. In the literature, the solutions
based on the BFOA only show the algorithm's pseudocode or the code released in some programming
language. However, there is no visual tool that allows to use of the algorithm in a fast way and to
implement it in any problem.

The TS-MBFOA was developed following the previously designed UML diagrams. The front-end
consists of two windows. In the first one, the end-user can configure the execution and calibrate the
algorithm parameters. In the second one, results obtained by the algorithm are displayed in graphs and
tables, in addition to exporting results to a spreadsheet file. The main advantages of our proposal to the
end-user are the saving of time and effort in the calibration of parameters, the control and order of the
executions to be conducted, and a clear and well-distributed display of the results.

The UI and the implementation of the TS-MBFOAwere tested in solving the Tension/compression spring
problem in 30 independent runs. We also compare the performance of the TS-MBFOA against the MBFOA
using basic statistics and the Wilcoxon Signed Rank Test. MBFOA turned out to be the best algorithm. Our
front-end is open-source software freely available at https://github.com/garcialopez/TS-MBFOA-GUI.

Future work is intended to provide an open-source graphical interface for recent swarm intelligence
algorithms found in the specialized literature, such as those based on the Monarch butterfly, Earthworm,
Elephant herding, Moth search, Slime mould, or Harris hawks, to name a few.
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