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Abstract: Computer-aided arrhythmia prediction from ECG (electrocardiograms)
is essential in clinical practices, which promises to reduce the mortality caused by
inexperienced clinical practitioners. Moreover, computer-aided methods often
succeed in the early detection of arrhythmia scope from electrocardiogram
reports. Machine learning is the buzz of computer-aided clinical practices. Parti-
cularly, computer-aided arrhythmia prediction methods highly adopted machine
learning methods. However, the high dimensionality in feature values considered
for the machine learning models’ training phase often causes false alarming. This
manuscript addressed the high dimensionality in the learning phase and proposed
an (Ensemble Learning method for Arrhythmia Prediction) ELAP (ensemble
learning-based arrhythmia prediction). The proposed method is working as a clas-
sification approach that incorporates both supervised and unsupervised learning
methods. The experimental study addresses the rise of the proposed method in
the prediction accuracy of both labels. The cross-validation statistics of ELAP
have been compared to contemporary methods to scale the performance of the
ELAP. The proposed method ELAP. Concerning scale, the prediction accuracy,
the scope of the false alarm, the robustness of the label prediction, the outcomes
of the assessment metrics obtained from 10-fold leave pair out cross-validation
performed on proposed ELAP has compared to the corresponding outcomes
metrics obtained from the contemporary methods.

Keywords: Cardiovascular diseases; arrhythmia prediction; k-nearest neighbors;
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1 Introduction

Worldwide every year, 17.9 million people have been affected by CVD (cardiovascular diseases). For
the medical analysis, the signal has been considered, detecting the heart’s abnormality by computing
electrical muscle and electrical activity. Small electrical impulses have been formed by the cardiac, which
spreads all over the entire cardiac-muscle. Here, these impulses have been recognized often with the ECG
device. The ECG device has recorded the cardiac electrical action, and this information has been
exhibited on the graph sheet of ECG. The provider of healthcare understands the information that is
recorded. ECG aims to know the pain and sign in the heart and help perceive abnormal heart defects.
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Skilled clinical experts often suggest electrocardiogram tests to diagnose the arrhythmia scope in a
patient’s heartbeats. The cardiac disorder, identified by ECG (Electrocardiograms), considers distended
heart and abnormal cardiac rhythm. One of the significant cardiac illness diagnostic equipment is ECG.
Due to maximal cardiac illness death rate, accurate ECG signals discernment, and initial recognition
stands significant on patient action. The cardiogram signals technique would provide prominent research
for doctors to examine the recognition and diagnosis of heart illness and categorize the patient
abnormality. Cardiogram classification into types of heart diseases provides adequate information to
identify the illness of cardiac. The cardiogram signal classification is an intricate issue because of the
classification procedure issue. The feature normalization, changeability, lacking, non-existence of
optimal classification, unstable graphs, and originality are the critical constraints of classifying
electrocardiograms. Moreover, evolving the appropriate classifier, which attained categorizing illness and
the ECG signal classifier’s main application, identifies cardiac illness diagnosis.

2 Related Research

Over the former decades, numerous schemes have been projected to classify the heartbeat and detect
arrhythmia based on automatic ECG. Faezipour et al. [1] explored the wavelet-based ECG beats
classification. Chazal et al. [2] introduced an algorithm based on linear discriminant analysis. Kumar
et al. [3] present a model based on NN (neural network) to classify the five diversified ECG classes
automatically. The models based on SVM have been implemented for ECG signals classification [4–6].
Melgani et al. [5] projected a model based on SVM for classifying the ECG beats automatically and has
been compared to the other two classifiers like RFF-NN (Radial basis function NN classifier) and KNN
(k-nearest neighbors). Mondejar-Guerraa et al. [4] projected a novel model for classifying the ECG based
on the SVM classifier.

The most prominent ML techniques are ensemble learning that might be used in diversified issues like
regression and classification [7]. Peimankar et al. [8,9] used biomedical and electrical engineering. Each
ensemble learning approach comprises three significant parts: (a) forming the training set from the
dataset, (b) group of diversified classification algorithms has to be trained, and (c) integrating the
classification prediction algorithms. Polikar [7] presents that the required benefits of utilizing ensemble
learning possess a more precise classification method by transmitting the single weak-classifier selection.

A set of 26 features have been extracted and utilized as inputs for three classifiers to differentiate among
regular heartbeats and four diversified arrhythmia classes. Here, three classification algorithms have been
utilized in this contribution are Artificial NN (ANN) [10], Adaboost [11], and RF (Random Forest) [12].
Each of the above stated three single classification algorithms has been trained using 5fold cross-
verification schemes. Glenn [13] presents that these algorithms’ outcomes have been accumulated by
utilizing DST (Dempster-Shafer theory) to enhance these performance classification algorithms.

Several algorithms have been projected in this review to segmentation heartbeat [14–17] to achieve
optimal outcomes in well-recognized MIT-BIH databases [18]. Moreover, in this contribution, researchers
concentrated on the last two steps, classification, and extraction of the feature. Several features have been
investigated for explaining the heartbeats of ECG, emphasizing the wavelet utilization [19,20], HOS [21],
[22], and intervals of heartbeat popularly called RR intervals as stated in [23,24]. For designing the
classification method, several former contributions stated the ML algorithms feasibility for the challenge
[25]; incorporating models like AdaBoost [26], GA-BPNN (genetic algorithm-back propagation NN)
[27], SVM [28–33], MLP (multi-layer perceptron) [19,28,29] and linear discriminant [34].

The ensemble classifiers integrate the individual classifiers’ decisions, which compose them to enhance
the final estimation. Dietterich [35] present several schemes in this literature for forming ensemble classifiers.
Each classifier is trained by diversified training subset instances such as AdaBoost [36] or Bagging [37].
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Dietterichet et al. [38] present an issue that pre-requisites many classes, segmenting the number of outputs in
diversified sets and producing an ensemble classifier. Moreover, other contributions train every classifier in a
diversified input features subset. Robert et al. [39] performed experimentation and finalized that integrating
classifiers trained on diversified feature sets are very resourceful, mainly when single classifiers deliver an
optimal performance. Waske et al. [40] developed ensemble SVM classifiers in multi-source cover land
classification issues using a balanced dataset. Moreover, training every SVM with a diversified data
source prominently enhanced the outcomes when compared with a single SVM that has been trained with
entire data sources.

Automatic detection of cardiac arrhythmia (ADCA) using ensemble learning [41] has endeavored to
address the constraints of the contemporary methods of machine learning-based arrhythmia prediction.
Though the ADCA is an ensemble classification model, it does not address the false alarming caused by
the high dimensionality of the values representing the training phase’s features. Our earlier contribution
of a classification technique, Electrocardiogram Stream Level Correlated Patterns as Features (ESCPF)
[42], addressed a novel feature selection and feature optimization methods to perform heartbeat
classification to identify the arrhythmia scope in a given electrocardiogram. However, the false alarm due
to dimensionality in feature values has not been addressed by ESCPF.

Concerning addressing the false alarm in arrhythmia prediction caused by the dimensionality in feature
values, this manuscript portrayed a novel ensemble classification process that uses signal flow features.

3 Methods and Materials

This section explores the methods and materials used in the proposed ensemble learning-based
arrhythmia prediction from electrocardiograms. The section includes a detailed description of the data
corpus used in the classification process, the features extraction, feature optimization using the Dice
Similarity Assessment Scale, the method of handling dimensionality through clustering and cluster
optimization by Differential Evolution, the incremental binary classifier, and the method of the
classification process.

3.1 The Data

The dataset was prepared by the integration of diversified datasets EHCD (ECG Heartbeat
Categorization Dataset) [43] and MIT-BIH [18] of the records labeled either as positive or negative. Each
record considered for the experimental study is positive or negative, as stated in [44]. The records’ count
from these records labeled positive is 15000 records, whereas the rest of records 12100 are labeled as benign.

3.2 The Features

Let the dataset ECG represents the set of electrocardiogram reports of the subjects in digital format (as x,
y coordinates), which have been labeled either as negative (no evidence of arrhythmia) or positive (prone to
arrhythmia). The input corpus of ECG reports bipartite into two sets pT, nT contains the records labeled as
positive (prone to arrhythmia) and negative (normal heartbeat) in respective order. The sequence of
cardiogram elements (y-coordinate values projected for a sequence of x coordinates) of size one and
above are the considered features, referred to further as the sets fP, fN in respective order of the labels
positive and negative. Each feature f represents a sequence of elements (x-coordinates) of size 1 to the
record’s size |ri|, with maximum cardiogram elements than any other record of the corresponding set.
Each record fr9r 2 ECGg reflects the number |r| − s + 1 of size features s, which is the absolute
difference between the record r size |r| and the size of the sequence of elements (feature)s incremented by
1 [45].
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3.3 Features Optimization Using Dice Similarity Assessment Scale

The Dice similarity coefficient (DSC) has been used to select optimal labeled records attributes as
positive and negative [44]. Also, the use of DSC to choose optimal features has been explored in the
coming sections.

Diversity assessment using a distance scale is as follows. It is the variance observed between the values
projected for a feature, which is the column of both matrices E, and F. The main scheme for evaluating the
variance for the elements is adapting coding theory. Such a scheme is implemented to handle distance among
several unique values, which are noticed and the record set attribute tagged as false or true.

Let the ith column of the set E, and set F as vectors Ec, and Fc in respective order, which may be distinct
in vector size. Assessment of the diversity by distance scale is as following by (Eq. (1)).

dEc$Fc ¼ 1� ðjðEc \ FcÞj � ðjðEc [ FcÞjÞ�1Þ (1)

//dEc$Fc denotes a distance between the ith column Ec, and Fc of the matrix E and matrix F.

3.4 Forming the Initial Clusters

Clusters have been framed separately for both labels, such as positive as well as negative. The proposed
cluster from negative and positive labels and values exhibited for framing every given labeled records data
has been considered a unique set in respect to this. Every support value has been assessed as a ratio of records
having corresponding values against the overall records count. Every record has been weighted by
accumulative support values perceived for every value depicted in the corresponding record.

The records have been organized in descending weight sequence, which has been assessed as follows:

Primarily, it depicts average support ratio values avgS and the respective deviation eS of the
corresponding set of records. Further, it depicts the absolute difference in average support avgS and
deviation deS as a record weight rew. A record average weight has been considered to determine the
centroid threshold, as explored in the following description.

The record’s average weight is denoted as 〈rew〉 and deviation of the corresponding transaction’s weight
detw, indicated by RMSE of corresponding record weights for the specified training corpus. Also, consider
the accumulative of record average weight 〈rew〉 and representation of the threshold deviation value detw of
centroid cet.

The initial cluster count has been signified by the count of records having records weight greater than
cet. Also, clustering has been implemented. One or more cluster records can exist in other clusters if the
distance amid record and corresponding centroid cluster is greater than the threshold dit.

Further, assesses the distance amid each pair of clusters; if the distance is less than the distance threshold,
it replaces both clusters with a new cluster that results from the union of the corresponding pair of clusters.

3.5 Optimizing Clusters

The Differential Evolution (DE) [46] is a reliable evolutionary method to perform optimization routines.
The DE concept is approximately identical to GA, as stated in [47]. Even though the fluctuation from GA
considers unique genotypes moreover, among these inputs (parent) and resultant (child) chromosomes,
the fittest pair of chromosomes survive, and the rest evades.

The primary clusters have been deliberated to be input chromosomes set; further, DE (Differential
evolution) has been performed on every set of chromosomes that leads to a new pair of chromosomes.
Moreover, the following subsection explores the function of fitness used in the DE process.
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3.5.1 Fitness Function
Specified cluster input has been considered as a dataset, and average record weights have been

recognized. Moreover, identify cluster level utility-scale exhibited for multiple attributes values.

Cluster Optimization:

With cluster formation process completion, organize records in diminishing dataset sequence at the
transaction utility level, and DE has been performed and attained high fitness as follows:

Let CLS signifies set, which depicts total possible clusters,

Let TCLS indicates a set, which includes novel formed clusters.

while ðCLS \ TCLS 6¼ CLSÞ Begin
For each cluster fcli9cli 2 CLSg // Begin
For each cluster fclj9clj 2 CLS ^ j 6¼ ig
CRS  crsi \ crsj //Identify overall common transactions depicted in clusters cli, clj as a set CRS.

CHRS = null //The vacant set has been considered to preserve the novel chromosomes generated from
the crossover procedure.

CHRS  cli
CHRS  clj

�
// transmitting the parental chromosomes towards set CHRS

For each crossover fcrsk9crsk 2 CRSg // Begin
Let representation lcli signifies a subset cli containing total transactions that exist as predecessors

towards the crossover crsk.

Let representation rcli signifies a subset cli containing total transactions that exist as a successor towards
the crossover crsk.

Let representation lclj signifies a subset clj containing total transactions that exist as predecessors
towards the crossover crsk.

Let representation rclj signifies a subset clj containing total transactions that exist as predecessors
towards the crossover crsk.

CHRS  flcli; crsk ; rcljg
CHRS  flclj; crsk ; rclig

End

Identify fitness entry in CHRS, as stated in Section 3.5.1

Organize set CHRS in reducing order for utility level cluster and count of optimal records for manifold
attributes values.

if ðCHRSf1g =2 TCRg TCR CHRSf1g //transmit CHRS set first entry //primary cluster fittest

if ðCHRSf2g =2 TCRg TCR CHRSf2g //transmit CHRS set 2nd entry //second cluster fittest

End

End

if ðCLS \ TCLS 6¼ jCLSjÞ Begin
CLSnCLS // total entries have to be eradicated in a set CLS

CLS← TCLS // transmit entire entries in a set TCLS to set CLS
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TCLSnTCLS // overall entries have been eradicated in a set TCLS

End

End

Further, these clusters are used for training the classifier such that the cluster must be formed
individually, and a binary-classifier has been trained.

3.6 Ensemble Classification

The work [48] presents a cuckoo search-based incremental binary classifier that enhanced binary
classifier has been modified for performing sentiment analysis. The above-stated classifier is optimum for
performing binary classification compared with other existing intricate classification approaches.
Moreover, the label and training prognosis states of classifiers have been explained in the following
description. The work [49] diabetes is predicted using significant attributes, and the relationship of the
differing attributes is also characterized. Various tools are used to determine significant attribute selection
and for clustering, prediction, and association rule mining for diabetes.

Sometimes individual classifiers would deliver excellent outcomes in the classification of ECG
heartbeat. These excellent instances can be good results, extreme or bad results. Prominently, diversified
outcomes have been attained when such classifiers have extended to other kinds of datasets. The
ensemble classifier has better capabilities in general. Additionally, the ensemble classifier error rate has
usually been less than an individual one. Thus, optimal and ensemble classifier has offered several
balanced outcomes for entire categories. The ensemble classifier comprises numerous device learners that
might be integrated and constructed as the ensemble classifier.

3.6.1 Learning Phase
The binary classifier designed on cuckoo search (CS) has two stages. Here, the primary step called

training builds a hierarchy of nest so that every level comprises various perches more than the amount of
predeceasing level perches if there are any. Moreover, the training step builds two hierarchies for both
negative and positive labels. The branches formed in each level of both hierarchies are in the following:

For sentiment polarity labels, the patterns of n-gram have been discovered in the form of optimum
features from respective label training corpus has to be organized in decreasing sequence of size.
Moreover, n-gram features with maximum size n must be segmented into clusters so that similar size n-
grams possess the same frequency that might present in one cluster. Each cluster with n-grams of n size
needs to keep as branches in the respective hierarchy’s primary level fl9l ¼ 1; 2; 3; ::; ng. Identically,
features n-gram size fðn� iÞ9i ¼ 1; 2; 3; . . . ; ðn� 1Þg has to be segmented into clusters so that each
cluster comprises distinct n-grams possessing similar frequency. Moreover, these clusters have to be kept
as branches in fl ¼ ðiþ 1Þ9i ¼ 1; 2; 3; . . . ; ðn� 1Þg level. Here, this procedure is repeated until the
last level’s hierarchy has been framed in the following. The size of n-grams has to be segmented into
clusters so that every cluster comprises unique n-grams set possessing a similar frequency. Entire these
clusters would be kept as branches (nthlevel), which is the last level.

The branch hierarchies of entire clusters for both negative and positive labels have been building. Here,
the representation depicts negative or positive label clusters.

8
jCLj

i¼1
fcli9cli 2 ClLg

L = 1// index levels in peHcli perch hierarchy of cli cluster

k = n // The size of the n-grams index has been represented that initialized by higher n-grams size n
(Continued)
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3.6.2 Prognosis of Arrhythmia
The record R shall be labeled as either prone to arrhythmia or not by measuring the average record fitness

R concerning diversified records clusters labeled positive and fitness average for diversified records clusters
labeled negative & their corresponding RMSD. By utilizing the conditions determined below, the labeled
record has been determined as prone to arrhythmia or not.

(continued)

while(k ≥ 1)// Begin

8
jongðcliÞj

j¼1
fngj9ngj 2 ongðcliÞg// Begin

if ðj ¼ 1Þ ongfrk ðcliÞ  ngj

else if(|ngj| ≡ k)// Begin

ongfrk ðcliÞ  ngj

End

End
Place every ongfrk ðcliÞ set possessing n-grams size k and possessing fr frequency ratio as perch in the
hierarchy phci at a level L.
k = k − 1// reduce the size of the n-gram index by one

L = L + 1// enhancing index L depicting the level in pehcli perch hierarchy

End

This section depicts the algorithmic flow of the label prediction strategy, which includes the estimation of
positive fitness

Let the notation tr representing the test record given to identify the arrhythmia scope
Let the notation wv representing the resultant word vector of the preprocessing phase be applied to the test
record tr
Let the notation ng(tr) representing all possible n-grams discovered from the electrocardiogram signal
Perform perch search on all hierarchies to find the competent perches concerning the n-gram features ng
(tr) of the test record tr as follows

#Estimating positive fitness#

pf = 1// fitness initialized to maximum 1; fitness always is greater than to 0 and lesser than or equal
to 1

8
jClþj

i¼1
fci9ci 2 Clþg Begin // for each cluster of the positive label

8
jphcij

l¼1
fl9l ¼ 1; 2; 3; . . . :jphcijg// for each level l of the hierarchy phci of the cluster ci of the

positive label
(Continued)
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3.6.3 Label Prediction

4 Experimental Study

The total number of labeled records considered for the experimental study is 81614, comprising
46103 records labeled as positive and 35511 records labeled as negative. The k-fold Leave-Pair-Out
Cross-Validation (LPOCV) [50] has been used to scale the proposed method’s performance. The cross-
validation metrics have considered assessing the performance of the proposed method ELAP (ensemble
learning-based arrhythmia prediction). Concerning scale, the prediction accuracy, the scope of the false
alarm, the robustness of the label prediction, the outcomes of the assessment metrics obtained from

(continued)

8
jjphcli j

m¼1
fpm9pm 2 jphclig Begin // for each perch of the level l of the perch hierarch phci

8
jngðtrÞj

p¼1
fðpf ¼ pf � frðpmÞÞ9ngp 2 pmg

End
End

End
pF(tr) = 1 − pf // The result of the absolute product of fractions (value between 0 and 1) is lesser than the
values used in an absolute product.

#Estimating negative fitness#

nf = 1// fitness initialized to maximum 1; fitness always is greater than to 0 and lesser than or equal
to 1

8
jCl�j

i¼1
fci9ci 2 Cl�g Begin // for each cluster of the negative label

8
jphcij

l¼1
fl9l ¼ 1; 2; 3; . . . :jphcijg // for each level l of the hierarchy phci of the cluster ci of the

negative label

8
jjphcli j

m¼1
fpm9pm 2 jphclig Begin // for each perch of the level l of the perch hierarchy phci

8
jngðtrÞj

p¼1
fðnf ¼ nf � frðpmÞÞ9ngp 2 pmg

End
End
End
nF(tr) = 1 − nf //since the result of the absolute product of fractions (value between 0 and 1) is lesser than
the values used in an absolute product.

The depicted fitness pF(tr), nF(tr) shall use further to predict the arrhythmia scope is positive or negative
as follows

if((pF(tr) − nF(tr)) > dτ) confirms that the given test record is reflecting the arrhythmia scope as positive

elseif((nF(tr) − pF(tr)) > dτ) confirms that the given test record is reflecting the arrhythmia scope as
negative
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10-fold leave pair out cross-validation performed on proposed ELAP has compared to the corresponding
outcomes metrics obtained from the contemporary methods. Investigates the recovery and death factors
that contribute to schistosomiasis disease preprocessed dataset, collected from Hubei, China. A
computerized learning method, association rule mining (Apriori), is used to spot factors [51]. Automatic
Detection of Cardiac Arrhythmias (ADCA) Using Ensemble Learning [41] and Electrocardiogram Stream
level Correlated Patterns as Features (ESCPF) [42].

Fig. 1 addresses the significance of the precision observed from ELAP compared to the precision
observed from ADCA and ESCPF. Though the ESCPF is most similar to the ELAP concerning feature
extraction and optimization, it ranked last about precision due to the curse of dimensionality in a training
corpus. Though the method ADCA performing an ensemble learning process, it is evincing low precision
compared to the precision observed from ELAP.

The graph has been plotted among metric specificity and ten folds of leave pair out cross-validation
performed on ELAP, ADCA, and ESCPF models, as shown in Fig. 2. The metric specificity is also called
selectivity. It has been envisioned from the above figure that the performance of specificity ELAP is
better than the ADCA and ESCPF models.

Fig. 3 addresses the metric sensitivity, also called recall, observed from ELAP, ADCA, and ESCPF
models. The method ELAP outperforming the ADCA and ESCPF towards sensitivity. Among the three
methods compared, ELAP, ADCA, and ESCPF ranked in corresponding order since the contemporary
methods lagged in handling the curse of dimensionality in a training corpus.

Figure 1: Precision exhibited by 10-fold leave pair out cross-validation of ELAP, ADCA, and ESCPF

Figure 2: Specificity exhibited by 10-fold leave pair out cross-validation of ELAP, ADCA, and ESCPF

IASC, 2022, vol.32, no.3 1737



The graph has been plotted among metric accuracy and ten PCV IDs over the proposed ELAPmodel and
ADCA and ESCPFmodels, as shown in Fig. 4. It has been envisioned from the above figure that the accuracy
performance for the ELAP is better when compared to the ADCA and ESCPF models.

In Fig. 5, the metric F-measure is also called as F1score. The graph represents the f-measure observed
from tenfold leave pair out cross-validation performed on ELAP and contemporary ADCA and ESCPF. The
ELAP has been compared with ADCA and ESCPF models. These statistics exhibit that ELAP is
outperforming the contemporary methods ADCA and ESCPF.

Figure 3: Sensitivity exhibited by 10-fold leave pair out cross-validation of ELAP, ADCA, and ESCPF

Figure 4: Accuracy exhibited by 10-fold leave pair out cross-validation of ELAP, ADCA, and ESCPF

Figure 5: F-measure exhibited by 10-fold leave pair out cross-validation of ELAP, ADCA, and ESCPF
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The graph has been plotted among metric MCC and ten PCV IDs over the proposed ELAP model and
ADCA and ESCPF models, as shown in Fig. 6. This metric MCC has been used as a measure to assess the
performance of the binary classification. It is envisioned from the above figure that the MCC observed from
the projected model is better when compared to the ADCA and ESCPF models.

5 Conclusion

The arrhythmia prediction by ensemble classification using sequence patterns of the electrocardiogram
signals has been addressed in this manuscript. Unlike the contemporary models, which are specific to train
the different classifiers on the same feature values, the proposed method is partitioning the training corpus
into multiple clusters. The entries of one cluster may occur in one or more other clusters. It treats each
cluster as a different corpus and discovers sequence patterns of the corresponding cluster’s
electrocardiogram signals as features. The discovered features of each cluster are used further to train the
classifier. The training phase uses different objects of the same classifier for different clusters. The
experimental study performed on proposed and other contemporary methods exhibits the significance and
performance optimality of ELAP to identify arrhythmia scope compared to other contemporary methods
ADCA and ESCPF. Future research can introduce the fusion of feature optimization methods and
classification methods to improve arrhythmia prediction accuracy.
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