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Abstract: Musical emotion is important for the listener’s cognition. A smooth
emotional expression generated through listening to music makes driving a car
safer. Music has become more diverse and prolific with rapid technological devel-
opments. However, the cost of music production remains very high. At present,
because the cost of music creation and the playing copyright are still very expen-
sive, the music that needs to be listened to while driving can be executed by the
way of automated composition of Al to achieve the purpose of driving safety and
convenience. To address this problem, automated Al music composition has gra-
dually gained attention in recent years. This study aims to establish an automated
composition system that integrates music, emotion, and machine learning. The
proposed system takes a music database with emotional tags as input, and deep
learning trains the conditional variational autoencode generative adversarial net-
work model as a framework to produce musical segments corresponding to the
specified emotions. The system takes the music database with emotional tags as
input, and deep learning trains the CVAE-GAN model as the framework to pro-
duce the music segments corresponding to the specified emotions. Participants lis-
ten to the results of the system and judge whether the music corresponds to their
original emotion.

Keywords: Car driving safety; musical emotion; Al music composition;
automated composition; deep learning; CVAE-GAN model

1 Introduction

In present-day transportation, most car drivers drive in heavy traffic daily. To reduce the probability of
car accidents, certain smart sensors or methods have been developed [1,2]. At present, self-driving cars are an
immature technology that can neither replace a human driver nor ensure safe driving [3,4]. Listening to music
can rejuvenate the driver and thus reduce the probability of traffic accidents [5,6]. The present study applied
the conditional variational autoencoder-generative adversarial network (CVAE-GAN) method proposed in
[7,8] to develop an emotionally intelligent system that automatically composes music to ensure safe
driving. The proposed system automatically generates music depending on the driver’s emotional state,
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reducing the probability of car accidents. However, pop music is musically rich and varied and its production
requires much labor and talent; moreover, buying the intellectual property rights to pop music is highly
expensive. To address the aforementioned problems, increasingly popular automated composition systems
have been formulated, which require pre-calculated models or machine learning systems. These systems
randomly generate music based on principles in music theory, such as pitch, rhythm, and harmony,
through algorithmic standardization. A well-known system for this purpose is the hidden Markov model
(HMM)-produced soundtrack [9]. Due to rapid advances in science and technology, artificial neural
networks (ANNs), which originally relied on expensive hardware computation, has now been improved.
In addition to the statistical basis of the HMM, the ANN now comprises additional model features, which
can substantially reduce the preparatory work required in generating music. This study aims to use a
simple, neural network based automated system to compose music that relates the listener to their current
emotion. Human emotions are extremely complex, and one’s emotions changes depending on the music
they are listening to [10,11]. Researchers have provided differing definitions of basic types of emotions.
For example, in 1972, Ekman defined the six basic emotions by analyzing facial expressions [12]. In
1980, Russell developed an emotional circle model with arousal, on the horizontal axis, indicating
positive emotions, and valence, on the vertical axis, indicating negative emotions to distribute common
emotions in a two-dimensional plane to how emotions are correlated with each other [13]. Since then,
this model has been extensively applied in different fields to explore the relationship between emotions.
In 2007, Gomez et al. explored the relationship between emotion, organized in two-dimensional planes,
and musical characteristics [14], and they, after conducting a series of experiments, proposed formulas
corresponding to various musical characteristics and emotions. Since then, several scholars have analyzed
the relationship between emotion and music. With the development of similar neural networks, various
models have been proposed, such as DNN, CNN, RNN, and generative adversarial network (GAN)
models, and scholars have applied machine learning to music (e.g., the papers published by MidiNet [15]
and MuseGAN [16]). Many repetitive tasks, including music theory analysis and music information
retrieval, which are necessary when using the HMM, have been simplified, and the efficiency of
automated composition has improved; these advances have all owed nonmusicians to conduct research on
music composition. At present, few scholars have discussed emotion, music, and machine learning
simultaneously; the present study thus aims to do so, specifically by using emotion as the conditional
information for neural network—based automated music composition. This contribution of the present
study will gradually simplify the steps involved in song conversion and serves as a prototype for
multidisciplinary research.

2 Classification of Emotions

Emotion-related research is based on the emotional circle model proposed by Russell and has been
extended to other domains. For example, in 2009, Laurier et al. used a two-dimensional emotional plane
as their basis and, through self-organized mapping, established a new emotional distribution plane [17].
In this novel plane, two additional but similar emotional words are distributed at a closer distance. This
distribution indicates the similarity between emotional words and the trend in group classification.
Furthermore, some researchers have used various calculation models to analyze two types of emotion
classification methods in music: semantic classification and dimensional squares classification [18].
Through the distribution, the similarity between emotional words and the trend of group classification can
be seen. In addition, some researchers used different calculation models to further discuss and study the
two kinds of emotion classification methods in music, including semantic classification and dimensional
squares [18].
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3 Proposed Al Emotional Music System for Safe Car Driving

Most transportation accidents occur in part due to the driver’s emotional state [19,20]. This study’s
emotionally intelligent system for automated music composition (Fig. 1) uses the driver’s emotional state
as the input and generates a corresponding music composition to stabilize the driver’s emotions; in doing
so, the likelihood of a traffic accident is reduced.

Emotional Intelligence Automated Music Composition Generation System
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Figure 1: Safe car driving through the emotionally intelligent system for automated music composition

4 Proposed Music Generation System

The proposed system mainly comprises the three following parts: creating a music library, establishing
the system model, and obtaining the system output. The system is detailed as follows (Fig. 2).

Music Library Creation - System Model Establishment -  System Output Resultx

Figure 2: Proposed music generation system

The architecture of the proposed system is based on the CVAE-GAN model (Fig. 3). The encoder and
decoder, as the same generator, are connected in series in a sequence-to-sequence (Seq2Seq) fashion, and the
remaining generators (decoders), discriminators, and classifiers are connected in a general CGAN fashion;
each component is based on a multilayer GRU model. Several preliminary steps must be followed when
using music as the input vector in the model, as shown in (Fig. 3).

When raw music data obtained from a database are entered into the model, they are initially expressed in
the form of a one-hot vector; subsequently, through embedding, their dimensions are reduced. In addition to
yielding computational savings, this process can also avoid the formation of considerable one-hot vector
data. This is because the waste generated by the occurrence of zero values is reduced [21]. In the ADAM
algorithm [22] which is used for the first-order gradient-based optimization of stochastic objective functions
based on adaptive estimates of lower-order moments, the original one-hot vector data have lengths of
99 dimensions. After embedding, the number of dimensions is reduced to 24, of which pitch and pitch
length occupy 8 and 16 dimensions, respectively. In the model code, the input data are represented as a
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shape (number of songs, maximum number of notes in a song, and number of pitches). For example, a data point
represented by the shape (4, 6, 8) indicates four inputs of eight-dimensional vectors of length six. After the data
are encoded, the tile function is used to condition the emotion (called attribute in this experimental code); its
length is expanded in correspondence with each note, and the Concat function is used to connect the
emotion and the input data. All the system model parameters in this article has been listed in Tab. 1.
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Figure 3: Flowchart of the proposed system

5 Deep Learning Framework

The deep learning framework of this study’s system is similar to one using a deep learning library
[23,24] where the developer can freely add models, classifiers, algorithms, and other required components
to substantially lower the barriers to writing machine learning code. Machine learning frameworks are
usually open source, and most of them provide multiple open-language interfaces. Users can choose a
suitable framework to write in according to their requirements. Most deep learning frameworks comprise
several parts, including tensors, various operations based on these tensors, computation graphs, automatic
differentiation tools, and their own expansion packages for each framework. A tensor represents data and
forms the core of the deep learning framework. It lists the properties of the deep learning frameworks
Caffe, Neon, TensorFlow, Theano, and Torch as of 2 August, 2016 [25], which are used by the proposed
system to ensure safe car driving. It also shows that all these frameworks support languages such as
Python and C++. Thus far, the mainstream framework is dominated by TensorFlow, although PyTorch is
increasingly popular.

6 MusicXML Dataset

The Music Extensible Markup Language (MusicXML) is an open file format based on XML for
encoding Western sheet music. The format is open for recording and can be freely used in accordance
with the W3C community’s license agreement [26,27]. The most common file format for sheet music is
MIDI, which can represent complex compositions and is relatively playable. However, it is more difficult
to read music information in this format. By contrast, MusicXML precisely defines the display format in
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the music score, such as pitch and duration. Thus, it can open the same file in different formats and display
the same score format and music information covered [28,29], as shown in Tab. 2. To ensure that the training
model’s data are unified and complete, this paper uses MusicXML as the file format for the training data and

integrates the data into a standardized database under a given set of specifications.

Table 1: System model parameters

1943

Embedding  Encoder Generator/ Discriminator ~ Classifier
layer Decoder
Model type GRU GRU GRU GRU
Input units 99 24 Total = 480 24 24
(Pitches:35  (Pitches:8 (120 x (Pitches:8 (Pitches:8
Durations:64) Durations:16) 4 layers) Durations:16) Durations:16)
Hidden N/A 120/120/120/120 120/120/120/  120/60 120/60
units 120
Output 24 Mean vector = 480 24 1 5
units (Pitches:8 Stddev vector = 480 (Pitches:8 (4 emotion
Durations:16) (120 x 4 layers) Durations:16) dimensions and
1 for others)
Activation N/A Layers with batch Layers with ~ Layers with ~ Layers with
function normalization: batch batch batch
LeakyReLU normalization: normalization: normalization:
LeakyReLU LeakyReLU LeakyReLU
Output: Output: Output:
Sigmoid Sigmoid Softmax
Additional N/A Use another function to N/A N/A N/A
information sample tensors for
generator/decoder which
sampled from Gaussian
distribution by previous
mean and stddev
Optimizer N/A ADAM ADAM
Learning  N/A 0.00001 0.00001
rate
Learning  N/A 2 1
times
per step
Epoch 500 500
Batch size 150 150
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Table 2: Comparison between MIDI and MusicXML file formats

File format Information focus Shared information Other information
MIDI Performance Pitch, rhythm, tempo Dynamics, controller information, etc.
MusicXML Notation Beam direction, slur, etc.

7 Seq2Seq

Seq2Seq is composed of two RNNS: the encoder and decoder. The input sequence is digested by the
encoder and absorbed into a vector (context vector); subsequently, the text is generated by the decoder
according to the context vector. The encoder is responsible for compressing a sequence of length M into a
1-vector, whereas the decoder generates N outputs based on this 1-vector. Under the complementarity of
M—1 and 1—N, an M-to-N model is constructed. Thus, Seq2Seq can handle any input and output
sequence of variable length; one of its common applications is a translation system, as shown in Fig. 4
[30,31]. In addition, the model used by the encoder and decoder in Seq2Seq can be replaced by any other
model, and it is thus widely applicable.
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Figure 4: Schematic of sequence-to-sequence learning

8 Variational Autoencoders

A variational autoencoder (VAE) is a generative model through which a distribution model is
constructed to approximate the unknown data distribution and to make the generated sample similar to
the actual sample. VAE uses two sets of parameters, the mean and variance, to convert the abnormally
distributed data into a more meaningful normal distribution. As indicated by the VAE structure shown in
Fig. 5, each sample passes through a normal distribution and is sampled within a specified range to avoid
the generation of discretely distributed information.

The sampled value of z in Fig. 6 is the coordinate value of latent space. The difference between the
sampled z value and the expected latent value is used by the KL divergence to calculate the loss
difference. The closer the KL loss can be to 0, the better, which can be expressed as normally distributed
data [32,33]. A conditional variational autoencoder (CVAE) is another generative model that integrates
the vector of a specific label into the encoder and decoder of the VAE to generate samples that meet
specific requirements [34].
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Figure 5: Variable encoder structure
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Figure 6: Schematic of variational autoencoder

9 Generative Adversarial Network

AGAN is an unsupervised learning method that learns by letting two neural networks confront each
other. This network comprises a generative network and a discriminative network. The generative
network samples a randomized input from a predefined latent space, and its output must imitate the real
samples in the training set as much as possible. The input of the discriminative network is the real sample
or the output of the generative network; the output of the generative network ought to be as distinct from
the real sample as possible. Moreover, the generative network must deceive the discriminative network as
much as possible. Through the confrontation between the two networks and the constant adjustment of
parameters, the discriminative network is expected to be unable to judge whether the output of the
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generative network is true [35-37], as shown in Eq. (1).
mingmaxpV (D, G) = Exp,, (x)[l0gD(x)] + E..p. ;) [log(1 — D(G(2)))] (1

Fig. 7 shows the GAN training process [22], where the black dots in the middle indicate the real data
distribution, the zigzag dashed line on the left indicates the discriminator distribution, the solid line on
the right indicates the generator data distribution, the horizontal z axis indicates the noise, and the upper
horizontal x axis is where the real data fall under. The mapping relationship is expressed as x = G(z). In
the figure, (a) is the initial state, (b) and (c) are the training stages, and (d) indicates that the graph has
converged and the distributions of the generated and real data are overlapping. Thus, the discrimination
network cannot distinguish the real data from the generated data.

//////H ///////\ /////l\\\

Figure 7: Training process of generative adversarial network
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10 CVAE-GAN

As shown in Fig. 8, the CVAE-GAN system structure comprises four neural networks (the encoder,
generator, classifier, and discriminator) whose structures complement each other. The encoder
(abbreviated as E in the figure) produces a latent vector z, which is expected to satisfy the Gaussian
distribution through the given raw data x and category c; the generator (abbreviated as G) provides the
latent vector z and category c, and then produces the relevant generated data x'; the classifier (abbreviated
as C) outputs the category to which it belongs after inputting data x or x'; the discriminator (abbreviated
as D) inputs the information x or x’ and distinguishes the input information into real information or
generator-generated information. This is one of the main structures of GAN and is competitive with G
[35]. As mentioned, VAE forms the front part of the CVAE-GAN structure and GAN forms its back part.
In addition, the generated data must be C, which meets the category, where G is the generator in the VAE
structure. In CVAE-GAN, the generator part covers three types of losses: Lg(Real), Lg(C), and Lg(D).
Li(Real), we indicates that z is generated by E from x, and G is expected to restore x’ to be closer to x;
Ls(C) can understand indicates that the information x’ is generated by G, which is classified as C; and
Ls(D) means indicates that the information generated by G is identified as real information by D [35].
This paper’s system is based on CVAE-GAN.
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Figure 8: Structural diagram of the CVAE-GAN system
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11 Musical Elements that Affect Emotions

Music has many elements that each have their unique effects on the listener’s mood. In 2007, Gomez
listed 11 musical characteristics that are pertinent to emotion and explored their relationships with
emotional direction (positive vs. negative valence) and emotional arousal [36]. Juslin and Timmers also
explored the emotional circle model, specifying emotions and their corresponding musical characteristics.
As indicated in Fig. 9, volume, timbre, speed, and the player’s technique influence emotional arousal,
whereas musical tonality and timbre noise influence emotional valence [37].

Positive
A
Serene and Gentle: Happy Joy:
1. Slower speed, slower attack
1. Slower speed, slower attack 2. Low volume, relatively unchanged
2. Low volume, relatively unchanged 3. Articulation is mostly smooth
3. Articulation is mostly smooth 4. Dark and soft tone, tempo rubato
4. Dark and soft tone, tempo rubato 5. Emphasize the stable note
5. Emphasize the stable note 6. Slow down at the end
6. Slow down at the end
Calm -= » Excited
Depressed and Sad: Fear Afraid:
1. More staccato, darker tone
1. Slower tempo, slower attack 2. Fast tempo a.nd changeable .
2. Articulation is less, and mostly smooth 3. The vo].ume is very small and changes drastically
3. Articulation is mostly smooth 4. More vibrato Anery and Crazy:
4. The volume is low and gradually slows down at the end ery "y X
1. Loud volume, sudden improvement
2. Faster tempo, less change
3. The timbres are sharper and noisier
A J 4. More staccatos and synchopations
Negative

Figure 9: Juslin and Timmers’ emotional circle model and the relationship between music elements
(arranged by those two authors)

Among these musical elements, tempo, rhythm, tonality, and pitch exert the greatest influence on
emotion. For example, music with a fast tempo, clear rhythm, and a major key induces joy and
excitement, whereas music with a slow tempo and minor key induces melancholia. Through this
inductive correspondence, the composer can create music that is more consonant with the listener’s
mood. In this study, tempo and tonality were used as the major elements when selecting music for
CVAE-GAN system training.

12 Musical Structure that Affects Emotions and Tensions

In addition to the aforementioned musical elements, song structure is another important factor affecting
emotions. In pop music, the typical song structure is intro—verse—prechorus—chorus—bridge—outro, where the
verse and chorus are indispensable. The verse is the main storytelling passage in a pop song [38,39], where
the melody varies little and the music is simple; the verse is indispensable to emotionally priming the listener
for the climax that is the chorus, where lyrics and melody are repeated to intensify the emotions induced by
the verse that preceded it. According to narratology (i.e., the theory of storytelling), a piece of artwork ought
to tell a story based on its various tensions with emotion arousal [40—42], such as the musical structure of
verse and focus. Fig. 10 illustrates the structure of a pop song and the corresponding tensions of the
song’s various parts. Using these tensions, the proposed CVAE-GAN system can train the music dataset
to generate a typical pop song that induces emotion through tensions in the song structure.
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Figure 10: Flow of musical tension in the structure of a typical pop song

13 Model Structure of the Proposed CVAE-GAN System

This paper uses the CVAE-GAN model as the main architecture, as shown in Fig. 11. The encoder and
the decoder (the same generator) are connected in series using the Seq2Seq method, while the remaining
generators (that is, the decoder), discriminators and classifiers are used per the general CGAN, and each
component is based on the implementation of the multilayer GRU model. Several preliminary steps must
be executed when music is used as the input vector in the model (Fig. 8). When the raw data of the
database enters the model, it is initially expressed in the form of a one-hot vector; subsequently, through
embedding, the original music data will be reduced in dimension. In addition to yielding computational
savings, this method can also avoid generating a large number of one-hot vectors by eliminating the
waste caused by the occurrence of a zero value [30]. As indicated in Tab. 3, the original one-hot vector
data have lengths of 99 dimensions. After embedding, the data are reduced to 24 dimensions, of which
pitch occupies 8 dimensions and pitch length occupies 16 dimensions. In the model code, the input data
are represented as a shape (number of songs, maximum number of notes in a song, and number of
pitches). For example, a data point represented by the shape (4, 6, 8) indicates four inputs of eight-
dimensional vectors of length six. After the data are encoded, the tile function is used to condition the
emotion (called attribute in this experimental code); its length is expanded in correspondence with each
note, and the CONCAT function is used to connect the emotion and the input data.

14 Experiments and Results

In its experiment, this study administered a questionnaire survey to an ethnically diverse sample of
young adults (in their 20s and 30s). The questionnaire contained four question groups, each of which
covered two pieces of music and inquires into participant judgments of a piece of music with regard to its
emotional content. The questions are scored on a five-point scale. The questionnaire covered two broad
aspects: the first is the relationship between melody and emotion, and the second is whether this
relationship is affected by phrase length. The following four groups of emotions were considered:

A (happy, excited, surprised), B (angry, discouraged), C (sorrowful, melancholic), and D (calm, relaxed,
comfortable). Tab. 4 shows the scoring statistics for two generated pieces of music.
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Figure 11: Model structure of the proposed CVAE-GAN system

Table 3: Model parameters

Embedding  Encoder Generator/decoder
layer
Model type GRU GRU
Input units 99 24 Total = 480
(Pitches:35  (Pitches:8 (120 x 4 layers)
Durations:64) Durations:16)
Hidden units N/A 120/120/120/120 120/120/120/120
Output units 24 Mean vector = 480 24
(Pitches:8 Stddev vector = 480 (Pitches:8
Durations:16) (120 x 4 layers) Durations:16)
Activation N/A Layers with batch Layers with batch normalization:
function normalization: LeakyReLU LeakyReL U
Output: Sigmoid
Additional N/A Use another function to sample tensors for generator/
information decoderwhich sampled from Gaussian distribution by
previous mean and stddev
Optimizer N/A ADAM
Learning rate N/A 0.00001
Learning times ~ N/A 2
per step
Epoch 500
Batch size 150
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Table 4: Scoring statistics for the generated music

Emotion: Emotion A Emotion B Emotion C  Emotion D
Calm, relax, and at ease

Generated music 1  Average 2.525 1.525 2.275 4.100
Standard deviation  1.240 0.784 1.062 0.900
Variation 1.538 0.615 1.128 0.810
Mode 3 1 3 4
Median 3 1 2 4

Generated music 2 Average 2.400 1.700 2.500 4.225
Standard deviation  1.317 0.966 1.177 0.768
Variation 1.733 0.933 1.385 0.589
Mode 1 1 3 4
Median 2 1 2 4

As shown in Fig. 12, after epoch 500, the loss value of each element did not change much between
epochs 280 and 320, and the convergence was completed in this interval. In the training process, multiple
steps were run in each epoch and the number of steps was determined from the batch size and the size of
the dataset. Each step output the current loss value to Fig. 9; thus, any two epochs have different steps.

— loss_enc
12 = loss_gen

loss_cls

10

T loss_dis

| Epoch 1 | | Epoch 101 | | Epoch 201 | | Epoch 301 | | Epoch 401 |

| Epo'ch 51 | | EpolL 151 | [ Epot‘:;l 251 | | Epoch 351 | Epolil 451

Figure 12: Error convergence curve

15 Conclusions and Future Work

The establishment of the music database in this experiment requires a long period of manual collection
and review. Therefore, building a music database is expensive, whether financially or in labor. Careful
evaluation and consideration are required during the selection of models, the musical characteristics that
affect the listener’s mood, the number of tracks, and the file format of the input data. The experimental
results indicated that first, the emotional category of the music clips produced after model learning had a
higher similarity score than the preset emotional category and second, the other three categories differed
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significantly in their emotional similarity scores. Thus, most of the emotional similarity scores could be
learned. In addition, the participants were found to be highly satisfied with generated music. In the future,
the CVAE-GAN emotionally intelligent system for automated music composition, which functions to
improve driving safety, can be applied using biofeedback sensors, such as brainwave EEG [43] or heart
rate trackers [44], to detect the physical and mental state of the driver in real time. In addition, the
response to the proposed system and the generated music can be used automatically with more accurate
music elements to reduce the probability of traffic accidents.
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