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Abstract: Accurate estimation of communication bandwidth is critical for the sen-
sing and controlling applications of smart grid. Different from public network, the
bandwidth requirements of smart grid communication network must be accurately
estimated in prior to the deployment of applications or even the building of com-
munication network. However, existing methods for smart grid usually model
communication nodes in coarse-grained ways, so their estimations become inac-
curate in scenarios where the same type of nodes have very different bandwidth
requirements. To solve this issue, we propose a fine-grained estimation method
based on multivariate nonlinear fitting. Firstly, we use linear fitting to calculate
the convergence weights of each node. Then, we use correlation to select the
important characteristics. Finally, we use multivariate nonlinear fitting to learn
the nonlinear relationship between characteristics and convergence weight, and
complete the fine-grained bandwidth estimation. Our method exploits multiple
node characteristics to reveal how different nodes affect bandwidth requirements
differently, and it can learn multivariate estimation parameters from present net-
work without human interference. We use NS2 to simulate a real-world regional
smart grid. Simulation shows that our method outperforms existing works by up
to 56.5% higher estimation accuracy.

Keywords: Bandwidth estimation; fine-grained; multivariate nonlinear fitting;
smart grid communication network

1 Introduction

Smart grid empowers modern society by creating the foundation necessary for electric transportation,
energy efficiency, emissions reductions, and new energy technologies. Private communication networks
are widely used by smart grid to deliver massive sensing and controlling data for critical applications like
power metering, environment monitoring, and power dispatching. Different from the applications in
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public networks (e.g., social media), the applications in smart gird usually have very stringent communication
QoS (Quality of Service) requirements. For instance, dispatching application demands that transmission delay
must be lower than 100 ms and transmission error rate must be lower than 10−8. As a result, to meet these
applications’ QoS demands, the bandwidth requirements of each communication node must be accurately
estimated in prior to the deployment of applications or even the building of communication network.

The most reasonable idea for bandwidth estimation is using present networks’ bandwidth consumption
information to estimate new networks’ bandwidth requirements. Based on this idea, [1] and [2] propose
elastic coefficient method, which has been widely used in practice due its ease of use. However, because
elastic coefficient method assumes that all data are uploaded to a few core nodes (namely, the dispatching
centers of smart grid), it often results in significant overestimation of bandwidth demands.

To solve the above problem, some works like [3–7] exploit importance recognition methods to reveal the
influences of different nodes on bandwidth estimation. However, they mainly identify important nodes based
on the physical topology of the network, such as node centrality, K-shell, structure hole, PageRank. But to
accurately analyze node importance, the applications on each node should also be considered explicitly.

There are some other ways to improve bandwidth estimation. For instance, [8] proposes a newmethod of
optimizing bandwidth calculation. In [9], the bandwidth of each application is estimated and accumulated to
obtain the bandwidth of a single node. Although these works increase bandwidth estimation accuracy to
some extent, they still have some shortcomings such as ignoring the characteristics of different nodes and
relying on human experience for parameter selection.

In this paper, we propose a novel fine-grained bandwidth estimation method for smart grid. Compared to
present works, our method achieves up to 56.5% higher estimation accuracy. Such performance is mainly due
to the following two novelties:

1) Our method divides the characteristics and studying the influence of different characteristics of each node.
Our method explicitly reveals how data converge from outer nodes to core nodes in smart grid, and how
such convergence is affected by each node’s characteristics (e.g., number and type of applications). As a
result, our method can provide fine-grained bandwidth estimation for different nodes;

2) The parameter setting in our method requires no human interference. The parameters are learned
through multiple iterations. Our method exploits multivariate nonlinear fitting to learn parameter
settings from present network. Since our method can learn multiple node characteristics as well as
the nonlinear relationships among these characteristics without human interference, it achieves
higher estimation accuracy especially in heterogeneous networks where nodes have highly diverse
bandwidth requirements.

The rest of this paper is organized as follows. Section 2 introduces the existing researches related to our
work. Section 3 introduces two important features of smart grid communication network. Section 4 proposes
a fine-grained bandwidth estimation method. Section 5 proposes a multivariate nonlinear fitting scheme to
learn estimation parameters. Section 6 exploits simulations to validate the accuracy of our estimation
method. Section 7 concludes this paper.

2 Related Works

The most popular methods estimate bandwidth according to node’s voltage level [1–2,10,11]. In general,
these methods assume that the grid nodes with the same voltage level (e.g., 220 kV substations) have very
close bandwidth demands for uploading data to their upper nodes. While these methods have very simple
estimation process, they often make significant overestimation of bandwidth demands especially for the
core nodes like dispatching centers, due to the fact that nodes with the same voltage level probably have
very different bandwidth requirements.
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Recognizing the importance of different nodes based on network topology [12] is an effective way to
improve bandwidth estimation. Reference [13] introduces several types of node centralities, such as degree
centrality, close centrality, intermediate centrality, and eigenvector centrality. Furthermore, several centrality
indicators may be used together to comprehensively analyze the importance of a node. In [14], a K-shell
algorithm is used to calculate the influence of nodes in the network. In [15], an E-Burt algorithm based on
structural holes is proposed, which sets the weight of the edge as the edge connection. Reference [16] uses
PageRank algorithm to obtain the node weight to replace the node degree matrix in the centrality, and
determines the importance of nodes in the network through the improved centrality. Reference [4] improves
the traditional calculation method by evaluating the importance of power communication network nodes
based on node strength and node tightness.

Some works analyze how different applications affect bandwidth requirements. Reference [8] improves
estimation accuracy in tree-structured networks through selecting concurrent proportions for different
applications. In reference [9], the bandwidth of each service is estimated and accumulated to obtain the
bandwidth of each node. This work uses no machine learning technologies, and it focuses on estimating
bandwidth of single node rather than whole network. Reference [17] proposes a passive capacity and
available bandwidth measurement method for the data plane, employing packet dispersion and autocorrelation.

However, as far as we know, the existing works only consider one or two node characteristics (e.g.,
voltage level, topology, applications, etc.), which makes their estimations coarse-grained and thereby
inaccurate especially in heterogeneous networks with highly diverse nodes. Moreover, since many of the
existing works rely on expert experience to select and configure estimation parameters, they are less
adaptive to rapidly developing smart grids with more advanced applications like demand response [18],
integrating renewable energy [19], and cyber security [20].

Machine learning is one of today’s most rapidly growing technical fields [21–23]. Traditional machine
learning models, such as logistic regression [24], support vector machine [25], and decision tree [26], are
based on statistical learning theories. These models have high interpretability (i.e., a human can easily
understand the models’ behaviors) [27,28] and are relatively simple to train. In recent years, deep
learning models based on artificial neural networks have achieved outstanding performances for many
difficult tasks like computer vision [29–32], medical diagnosis [33], translation [34], path planning [35]
and semantic understanding [36–39]. However, deep learning models still lack sufficient interpretability
until now [27]. In this paper, we exploit traditional logistic regression model (namely, nonlinear fitting) to
estimate bandwidth requirements, because power grid is a highly regulated domain where the
interpretability of decisions is mandatory. In fact, our nonlinear fitting method is able to provide rather
accurate estimations in complex smart grid scenarios, as will be proved by simulations later.

3 Features of Smart Grid Communication Network

Unlike public network, communication network in smart grid is built according to the structure and the
applications of smart grid, thus it has the following two distinct features, as Fig. 1 illustrates.

Firstly, communication nodes of smart grid are usually built on electricity substations, and
communication links are usually built along electricity cables. As a result, smart grid communication
network has a hierarchal tree structure, where lower-voltage nodes connect to higher-voltage nodes, and
the latter connect to dispatching centers.

Secondly, as lower-voltage substations generate application data, some of these data are aggregated to
higher-voltage substations (these higher-voltage substations may also generate some data to upload), and
eventually aggregated to dispatching centers. Hence, bandwidth requirements hierarchically converge
from lower-voltage substations to dispatching centers.
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For a new smart grid communication network, we often just know the number and the bandwidth
demands of the applications on each node. The bandwidth requirements from lower-voltage nodes to
higher-voltage node are unknown and need to be estimated, as discussed in the next section.

4 Fine-Grained Bandwidth Estimation Method

Based on the aforementioned features, we propose a fine-grained method for estimating bandwidth
requirements of communication nodes in smart grid. We divide and study the characteristics of each node
to obtain a more accurate bandwidth estimation method. Tab. 1 summarizes the variables used in this paper.

Figure 1: Hierarchical structure and converged data flow of smart grid communication network

Table 1: Summary of variables

Variable
notation

Definition Type

�y Estimated converged bandwidth of higher-voltage node. Estimation result

y Converged bandwidth of higher-voltage node. Known parameter (only for
learning)

N Number of lower-voltage nodes. Known parameter

Bi Bandwidth requirement of lower-voltage node. Known parameter

ωi Convergence weight of lower-voltage node. Coefficient to learn

�xi Estimated Convergence weight of lower-voltage node. Coefficient to learn

Xj Node characteristic that may affect bandwidth
convergence.

Coefficient to learn

βj Coefficient relating node characteristics to node
convergence weight.

Coefficient to learn

k Number of key node characteristics Hyperparameter

n Power of nonlinear fitting from key characteristics to
convergence weight.

Hyperparameter

α1 Learning rate of gradient descent of linear fitting. Hyperparameter

α2 Learning rate of gradient descent of nonlinear fitting. Hyperparameter
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As shown by Fig. 2, our basic idea is using lower-voltage nodes’ bandwidth requirements (which are
derived from application requirements) to estimate the bandwidth requirements of higher-voltage nodes,
and then use these bandwidth estimations to further estimate the bandwidth requirements of even higher-
voltage nodes, and eventually estimate the bandwidth requirements of dispatching centers.

Specifically, the bandwidth of an upper node (a higher-voltage node or a dispatching center) can be
estimated as follows:

y ¼
XN

i¼1
wi � Bi; wi 2 ½0; 1� (1)

where �y is the estimated converged bandwidth of the upper node, B1, B2, …, BN are the total bandwidth
requirements of N lower nodes (i.e., data uploaded by even lower nodes plus data generated by the node
itself), w1, w2, …, wN are the convergence weights of the N nodes (i.e., the ratio of data to upload).

The convergence weight wi of node i must lie in [0,1] because a lower-voltage node can never transmit
data more than its own bandwidth. The value of wi can be derived from k characteristics of node i:

wi ¼
Xk

j¼1
bj � f ðXjÞ þ bkþ1 � gðX1; X2 . . .XkÞ (2)

where X1, X2,…, Xk are node characteristics, f( ⋅ ) is a multinomial function of single characteristic, g( ⋅ ) is a
multinomial function of multiple characteristics, βj and βk+1 are coefficients relating node characteristics to
node convergence weight.

Eqs. (1) and (2) reveal the bandwidth convergence of lower-voltage nodes to higher-voltage nodes (and
dispatching centers), and how such convergence is affected by multiple node characteristics. This way, we
achieve fine-grained estimations corresponding to the differences among nodes.

Notably, we have not determined which node characteristics should be considered, and how these
characteristics are related to node convergence weight. These two issues will be solved by multivariate
nonlinear fitting in the next section.

Figure 2: Fine-grained bandwidth estimation method
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5 Multivariate Nonlinear Fitting Scheme

In this section, we propose a multivariate nonlinear fitting scheme to relating node characteristics to node
bandwidth. In other words, our scheme will learn all the undetermined coefficients in Eqs. (1) and (2) from
measured node bandwidth and characteristics.

As Fig. 3 illustrates, our fitting scheme has three major steps. The first step is linear fitting, which takes
converged bandwidth as target value to construct the loss function. Linear fitting uses the gradient descent
method to derive convergence weight for each node. The second step is correlation coefficient calculation,
which is using correlation coefficient to find key characteristics with more significant impacts on
convergence weight across network. The last step is multivariate nonlinear fitting. This step reveals the
nonlinear relationship among multiple characteristics and the convergence weight of each node, and
therefore relates node characteristics to node bandwidth.

5.1 Linear Learning

Here we utilize gradient descent to learn node convergence weight from real bandwidth data. In brief, we
iteratively calculate the cost between the estimated bandwidth (which is derived from node convergence
weight) and the actual bandwidth, and update convergence weight with gradient descent [40], until the
cost becomes minimal.

First, we initialize node convergence weights as small positive numbers that are randomly generated
within (0, 1), and substitute these weights and the known bandwidth requirements of lower nodes into
Eq. (1) to derive the estimated bandwidth of the upper node �y.

Then we calculate the cost for gradient descent as follows:

cost ¼ ðy� �yÞ2 (3)

where y is the actual bandwidth of the converged node.

The idea of gradient descent is to minimize cost by gradually adjusting node convergence weights.
Specifically, the gradient of the cost function can be computed as:

@cost

@wi
¼ 2� ðy� �yÞ � Bi (4)

where wi and Bi are the convergence weight and the bandwidth of the node i, respectively.

Figure 3: Multivariate nonlinear fitting scheme relating node characteristics to node bandwidth
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We gradually adjust the convergence weight of each node as follows:

wi  wi � a1 � @cost

@wi
(5)

where α1 is the learning rate of gradient descent. Its value will be determined by experiments later.

Eqs. (4) and (5) will be executed iteratively until the cost function converges to its minimum. The
obtained convergence weight wi essentially reflects the radio of node i’s bandwidth that converges to its
upper node.

5.2 Correlation Coefficient Calculation

We use correlation coefficient calculation to decide which node characteristics (e.g., number or type of
application) have more significant impacts on convergence weight. Only these key node characteristics will
be concerned for bandwidth estimation. This is to simplify the acquirement process of node characteristics as
well as the subsequent non-linear multivariate learning.

Specifically, for all N nodes, we calculate correlation coefficient between each candidate characteristic
and the set of convergence weights as follows:

corrðw; XjÞ ¼ covðw; XjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðwÞ � varðXjÞ

p (6)

wherew is the set of the convergence weights of all nodes (obtained in Section 5.1),Xj is the set of the values
of a candidate characteristic for all nodes, cov(w,Xj) is the covariance ofw andXj, and var(w) and var(Xj) are
the variance of w and Xj, respectively.

After calculating the correlation coeffecients for all candidate characteristics, we choose the key
characteristics with higher correlation coeffecients for the non-linear multivariate learning in the next
subsection. The number of key characteristics should be carefuly decided to balance between
implemation complexity and bandwidth estimation accuracy. This will be further disccussed in Section 6.

5.3 Nonlinear Multivariate Fitting

At last, we exploit nonlinear multivariate fitting to reveal how a node’s convergence weight is affected
by its characteristics. Here, “nonlinear” is to reflect the complexity of such relationship, and “multivariate” is
to reflect the combined impacts of multiple node characteristics. Multivariate nonlinear fitting means using
mathematical model to express the nonlinear relationship between different characteristics and the
convergence weight.

Since we have derived the convergence weight in Section 5.1 and the key characteristics in Section 5.2,
we only need to determine the rest unknown parameters in Eq. (2), namely, the multinomial functions f( ⋅ )
and g( ⋅ ), and the coefficients βj and βk+1. This is accomplished through fitting Eq. (2) to the convergence
weight obtained in Eq. (5).

First, suppose that we have decided there are k key characteristics and the power of f( ⋅ ) is n (we will
discuss how to derive them later). The nonlinear influence of each characteristic Xj on the convergence
weight can be expressed by:

f ðXiÞ ¼ a1Xi þ a2X
2
i þ . . . . . .þ anX

n
j (7)

and the nonlinearly correlated influence of the k key characteristics on the convergence weight can be
expressed by:
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gðX1; X2 . . . ; XkÞ ¼ bð1;2ÞX1X2 þ bð1;3ÞX1X3 . . .þ bð1;2;...;kÞX1X2 . . .Xk (8)

where the coefficients a1,…, an, b(1,2),…, b(1,2,…,k) will be learned later. It is noteworthy that the complexity
of g( ⋅ ) is o(2k), which is why we should keep the number of node characteristics k as small as possible.

Second, we substitute Eqs. (7) and (8) into Eq. (2) to express the fitted convergence weight �wi for node i
as follows:

�wi ¼
Xk

j¼1
bj � f ðXjÞ þ bkþ1 � gðX1; X2 . . .XkÞ (9)

Third, we compare the fitted convergence weight �wi in Eq. (9) to the convergence weight wi derived by
Eq. (5), i.e.,

loss ¼
Xn

i¼1
ðwi � �wiÞ2 (10)

Now we can learn the undetermined parameters via multivariate gradient descent [10]:

h ¼ h a2 � @loss
@h

(11)

where α2 is the learning rate, and its value will be determined by experiments later. θ represents multiple
variables a1, …, an, b(1,2), …, b(1,2,…,k), β1, …, βk+1.

The above Eqs. (10) and (11) will be executed iteratively until the loss function Eq. (10) converges to
its minimum. By repeating this process on all node convergence weights, the values of a1, …, an, b(1,2), …,
b(1,2,…,k), β1, …, βk+1 are learned.

5.4 Determining Hyperparameters

Finally, we determine the hyperparameters that should be set before learning, namely, the learning rates
α1 in Eq. (5) and α2 in Eq. (11), the number of the key node characteristics n, and the power of nonlinear
fitting k in Eq. (7).

We begin with the learning rates α1 and α2. We initially set them to very small values, e.g., 10−8, and
observe that whether the cost in Eq. (3) or the lost in Eq. (10) steadily decreases as we perform linear
fitting in Eq. (4) or nonlinear fitting in Eq. (11), respectively. If the decrement is too slow, we gradually
increase α1 or α2 to learn the unknown parameters more drastically. On the other hand, if the decrement
is unstable, we gradually decrease α1 or α2 to learn more cautiously. We keep adjusting α1 and α2 until
the decrement is stable and notable. The resulting α1 and α2 will be used for learning later.

Afterwards, we determine the number of the key node characteristics n, and the power of nonlinear
fitting k. For practical considerations, we should set them as small as possible (otherwise, there are too
many variables to learn in Eqs. (7) and (8)). Therefore, we gradually increase them from n = 1 and k = 1.
For each pair of (n, k), we use Eq. (6) to find the k key node characteristics, use Eqs. (9)–(11) to derive
the other unknown parameters in Eqs. (7) and (8), and use Eqs. (1) and (2) to obtain bandwidth
estimations for all upper nodes. This increment process stops as the bandwidth estimation accuracy has
become reasonably high and the accuracy increment has become marginal. The pair of (n, k) that has the
highest bandwidth estimation accuracy will be used for learning later.

After determining the hyperparameters α1, α2, n, and k, we can learn all parameters’ values in Eqs. (1)
and (2) from a present network with Eqs. (3)–(11). Then we can use Eqs. (1) and (2) to estimate the
bandwidth requirements of new networks.
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6 Simulation Results

We perform NS2 and TCL simulations to test our estimation method. Among them, NS2 is an open-
source simulation platform for network technology. TCL is the script language on NS2.The simulated
networks are based on a real-world regional smart grid in China. The network topologies are set as Figs.
4 and 6, and the applications are configured and deployed according to [1].

Figure 4: Network for learning estimation parameters

Figure 5: The fitting curves relating node characteristics to convergence weight for different values of n.
Note that Z2 is excluded here for it is used for validating (a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4
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6.1 Learning from Present Network

We learn the estimation parameters from the network in Fig. 4. This network is based on the regional power
grid of a moderate-sized city in China, which has 2 regional dispatching centers, 9 220 kV substations, and 1
110 kV substation. It represents a “present network” where the nodes’ bandwidth consumptions have been
known. During learning, Z2 node is used for validating, and the rest nodes are used for fitting.

We first determine the linear learning rate α1 and the nonlinear learning rate α2. We increase α1 and α2
from 10−8 to 10−4, respectively, and find that the fitting costs of Eqs. (4) and (11) stably decrease only when
α1 ≤10

−6 and α2 ≤10
−6. Since larger learning rates lead to quicker learning, we choose α1 = 10

−6 and α2 = 10
−6.

Next, we investigate 8 node characteristics that maybe related to convergence weight, as listed in Tab. 2.

We calculate correlation coefficient as Eq. (6) to find that there are k = 3 node characteristics closely related
to convergence weight, which are: node’s total bandwidth > number of real-time applications > node strength.

Figure 6: Network for estimating bandwidth

Table 2: Definitions of node characteristics

Node characteristics Definition

Node’s total bandwidth The total bandwidth of the data uploaded from the lower nodes and the data
generated by the node itself

Number of real-time
applications

The number of real-time applications (e.g., controlling signals of dispatching
system) carried by the node.

Node strength The number of other nodes connected to the node.

Number of normal
applications

The number of non-real-time applications (e.g., consumer information of
energy meters) carried by the node.

Bandwidth of real-time
applications

The bandwidth requirements of the real-time applications on the node.

Bandwidth of normal
applications

The bandwidth requirements of the non-real-time applications on the node.

Node’s voltage level The node’s voltage level in power grid (e.g., a 220 kV substation).

Node capacity The node’s transmission channel capacity to its upper nodes.

Node distance The length of the shortest path between the node and the dispatching center

Node centrality The average length of the shortest path between the node and all other nodes
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We show 4 node characteristics with the highest correlation coefficient values in Tab. 3, which are node’s
total bandwidth, number of real-time applications, node strength, and number of normal applications. It can
be seen that while the first 3 characteristics have correlation coefficients larger than 0.6, the fourth
characteristic (i.e., number of normal applications) drastically drops to 0.36. Such result indicates that
number of normal applications (and the characteristics after it) has statistically ignorable impacts on
convergence weight.

The above result is reasonable. Firstly, a node’s total bandwidth basically reflects how important it is for
smart grid (as complex applications tend to be deployed in critical grid sites), which means that a node with
higher bandwidth requirement often has proportionally more data to upload. Secondly, most real-time
applications need to communicate with dispatching center, so a node with more real-time applications
implies that it has more data to upload. Thirdly, a node with higher node strength means that it is
connected by many other nodes, so it tends to have more data to upload. Later we will show that our
estimation based on these three characteristics indeed achieves rather high accuracy.

Afterwards, we determine the power of Eq. (7), n. According to Eq. (9), the value of n directly affects the
fitting performance from node characteristics to convergence weight. To demonstrate this, we draw the fitting
curves relating the 3 node characteristics (for conciseness, we only show each node’s total bandwidth on the
x-axis) to the 11 nodes’ convergence weights in Fig. 5. Observe that the fitting curve can barely match itself
to all the points when n ≤ 2, which means that the relationship between the node characteristics and the
convergence weight is too complicated for these values of n to capture. When n ≥ 3, the fitting curve is
able to reach most of the points, and thereby the convergence weight is well related to the node
characteristics.

Nevertheless, according to machine learning theory, n being too large will lead to overfitting, that is, our
method can achieve high accuracy during learning, but its accuracy will drop if it is applied to nodes
excluded by learning process (i.e., Z2 in this case). This statement is verified by Tab. 4, where we
compute the average bandwidth estimation accuracy across the network for different values of n. Observe
that although the fitting accuracy keeps increasing as n grows, the validating accuracy for Z2 reaches the
maximum at n = 3, and decreases as n becomes larger. This clearly indicates that overfitting occurs for
n > 3. Combing this result with Fig. 5, we let n = 3.

Finally, with k = 3 and n = 3, we can further derive the values of a1, …, an, b(1,2), …, b(1,2,…,k), β1, …,
βk+1. The deriving process and the final results are omitted here.

Table 3: The first 4 node characteristics most related to convergence weight

Node bandwidth Number of real-time
applications

Node strength Number of normal
applications

Convergence weight 0.78 0.73 0.63 0.36

Table 4: Average accuracy for different values of n

n 1 (%) 2 (%) 3 (%) 4 (%)

Fitting accuracy 78.5 91.9 93.7 93.8

Validating accuracy 71.5 89.3 90.6 89.6
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6.2 Estimating on New Network

Now we use the results in Section 6.1 to estimate the network bandwidth in Fig. 6. This network is based
on a small city’s power grid, which has 1 regional dispatching centers, 1 220 kV substations, 5 110 kV
substation, and 1 35 kV substation. This represents a “new network” where only applications’ bandwidth
requirements are known. Note that the network is highly heterogeneous with 4 different types of nodes,
which is difficult for bandwidth estimation.

We are mostly interested in the estimation accuracy of the dispatching center, because it is the most
important node in smart grid’s control system, and its estimation accuracy basically depends on the
estimation accuracies of all the other nodes. Tab. 5 compares our method with 3 recent works in [2,4,6],
where t, a, and b mean that network topology, applications, and node’s total bandwidth are considered in
estimation, respectively.

Observe that our method (t + a + b) is just slightly higher than the actual bandwidth requirement of
759.56 Mbps, which outperforms the alternative methods (PCCM [2], CA [4], and CBT [6]) by 12.6% to
56.5% higher accuracy. The major reason is that our method accomplishes finer-grained estimation via
considering network topology (node strength), applications (number of real-time applications), and node
bandwidth as key node characteristics (see Section 6.1). In contrast, the alternative methods only consider
one or two of these characteristics, thus they can hardly differentiate the convergence impacts of different
lower-voltage nodes on the dispatching center.

In fact, Tab. 5 also shows that our method achieves higher accuracy as it takes more characteristics into
consideration, i.e., t < (t + a) < (t + a + b). Such result further proves that finer-grained estimation leads to
higher accuracy.

We further investigate how the selection of node characteristics affects convergence weight learning, and
eventually affects bandwidth estimation. This can be clearly illustrated by the ranking of learned convergence
weights of different methods in Tab. 6.

By considering node strength (t), number of real-time applications (a), and node bandwidth (b), our
method derives the same ranking as the actual network does. As the matter of fact, for the dispatching
center (S7), the ranking of the convergence weights of all nodes should be: itself (S7), the nodes linked
by lower-voltage nodes (S2, S6, and S4), the nodes without lower-voltage nodes (S0, S1, S3), and the
lowest-voltage nodes (S5, S8). Our method’s fine-grained recognition of different nodes is the key to
accurate bandwidth estimation.

Table 5: Estimated bandwidth of dispatching center

Method b t a Estimation (Mbps) Accuracy (%)

PCCM [2] – – √ 1190.10 43.1

CA [4] – √ – 662.27 87.3

CBT [6] – √ √ 660.81 87.0

Our method (t) – √ – 807.53 93.6

Our method (t + a) – √ √ 802.58 94.2

Our method (t + a + b) √ √ √ 761.59 99.6

Actual bandwidth – – – 759.56 –
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On the other hand, because PCCM ignores network topology and node bandwidth, it cannot fully
recognize the differences among various nodes to learn convergence weights in a heterogeneous network
like Fig. 6. This explains why PCCM has rather low estimation accuracy in Tab. 5.

Both CA and CBT have considered topology for estimation, so they can roughly infer how the nodes
converges the dispatching center, and hence make partially correct rankings in Tab. 6. However, note that
both CA and CBT incorrectly rank S3 after S5 due to their neglection of node bandwidth. This explains
their relatively low estimation accuracy in Tab. 5.

7 Conclusion

In this paper, we propose a novel fine-grained bandwidth estimation method for smart grid
communication network. The method achieves fine-grained estimations through explicitly considering
how bandwidth requirements of different nodes converges to upper nodes, and it exploits multivariate
nonlinear learning to derive multiple convergence parameters from present network without needing
human experience. Due to these two novelties, our method outperforms existing methods by up to 56.5%
higher estimation accuracy. Through the comparison of different characteristics, we find that the fitting
accuracy of the three characteristics selected in this paper is higher, which can reach 99.6%. In future, we
will collect transmission data from other industrial Internet to train this model. So that this method can be
applied to other Industrial Internets, such as the communication networks of railway or oil pipeline.
Furthermore, we will study how to directly estimate bandwidth requirement and predict long-term
development based on current network information using deep learning and big data technologies.
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