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Abstract: Electromagnets are commonly used as support for machine components
and parts in magnetic bearing systems (MBSs). Compared with conventional
mechanical bearings, the magnetic bearings have less noise, friction, and vibra-
tion, but the magnetic force has a highly nonlinear relationship with the control
current and the air gap. This research presents a dynamic sliding mode backstep-
ping control (DSMBC) designed to track the height position of modeless vertical
MBS. Because MBS is nonlinear with model uncertainty, the design of estimator
should be able to solve the lumped uncertainty. The proposed DSMBC controller
can not only stabilize the nonlinear system under mismatched uncertainties, but
also provide smooth control effort. The Lyapunov stability criterion and adaptive
laws are derived to guarantee the convergence. The adaptive scheme that may be
used to adjust the parameter vector is obtained, so the asymptotic stability of the
developed system can be guaranteed. The backstepping algorithm is used to
design the control system, and the stability and robustness of the MBS system
are evaluated. Two position trajectories are considered to evaluate the proposed
method. The experimental results show that the DSMBC method can improve
the root mean square error (RMSE) by 29.94% compared with the traditional
adaptive backstepping controller method under different position tracking
conditions.

Keywords: Magnetic bearing system (MBS); Lyapunov stability; dynamic sliding
backstepping control (DSMBC) algorithm; adaptive laws; model uncertainty

1 Introduction

Dating back to 1842, it was first proposed to use permanent magnets or fixed current electromagnets
alone. No matter how they were configured, it was impossible to suspend a magnetically guided object
stably in midair, so it was necessary to find ways to better stabilize the operation. The active magnetic
bearing was first produced in 1937 [1,2]. The MBS have many advantages over mechanical and
hydrostatic bearings. These include zero frictional wear and efficient operation at extremely high speeds.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.019555

Article

echT PressScience

mailto:wlmao@yuntech.edu.tw
http://dx.doi.org/10.32604/iasc.2022.019555
http://dx.doi.org/10.32604/iasc.2022.019555


In addition, they are considered an ideal choice for clean environments as they do not require lubrication.
MBS are used in many applications, such as energy storage flywheels, high-speed turbines, compressors,
pumps and jet engines. Compared with other bearings, magnetic bearings have many advantages [3], as
follows: (1) It has almost no rotation resistance and the rotor speed can be much higher than other
bearings; (2) They do not require complex lubrication or pneumatic system and can save space; (3) They
have a long service life and low maintenance cost; (4) They can avoid the friction-induced noise; (5)
They can be applied to special working environment such as under extremely low temperature or high
vacuum; (6) They can provide the required rigidity through active control and effectively restraining the
vibration problem caused by high-speed operation. Because of the advantages mentioned above, the
magnetic floating bearings have been widely used in many fields.

In recent years, several researches have been devoted to the development of magnetic floating bearings
[4]. Although many studies have determined the magnetic circuit structure and mechanical structure design
of magnetic floating bearings, few researchers have analyzed and studied the nonlinear dynamic
characteristics of the magnetic bearing system (MBS). Besides, two estimator based nonlinear controllers
[5,6] have been proposed, which are used to estimate the total uncertainty of parameter variations and
external disturbances in real time. The design of backstepping control [6,7] cannot respond to the input
signals effectively, so it should be combined with the adaptive estimator [8] to estimate the unknown
parameters of the system. In the self-tuning controller, the parameters are adapted and the estimated
parameters are provided to the controller to solve the nonlinear problem of the MBS. The adaptive
backstepping controller [9] can perform better steady-state response by using an estimation system with
adaptive rules.

This research paper promotes the application of dynamic sliding mode backstepping control (DSMBC)
for the MBS [10]. The slip line from the sliding mode control is used to estimate the total uncertainty of the
system. The slope of the sliding line tends to make the coming speed faster, so that the response is
compensated in time. Moreover, the estimated values are more effective to reach the accurate values. In
this case, the system produces better results than the backstepping control. The Lyapunov function is used
in the backstepping control to guarantee the convergence of the position tracking error. Two height
position tracking is considered and tested. The simulation and experimental results demonstrate that the
developed controller provides better tracking performance in the respect of model uncertainty.

The rest of this paper is structured as follows. Section II introduces the construction of the MBS and
system model. In Section III, the dynamic sliding backstepping control is designed and analyzed.
Section IV provides the experimental results. Finally, in Section V, conclusions are drawn.

2 Magnetic Bearing System Architecture

The structure of MBS is illustrated in Fig. 1. The system consists of a permanent magnet part and an
electromagnet part. The magnetic bearing can float in the air when the electromagnet is electrified. The
output current can reduce the power consumption to better alleviate the power required when the
magnetic bearing position moves near the center. After comparing the command signal with the height
signal feedback, the error signal is sent to the power amplifier through the controller operation.
Furthermore, the voltage of the controller is transformed into electric current by a power amplifier and
sent to an electromagnet to produce magnetic force. After the magnetic bearing can be suspended in the
air, the height information is measured using an infrared sensor. The servo motor is used as the load
platform, through which the load is added to complete the experiment. According to the Newton’s laws
of motion, the dynamic system model is given by
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m€x ¼ Fz � mg þ fd (1)

where m is the bearing mass with a parameter of 1.6 kg, fd is external interference, x is the position of the
magnetic bearing, and Fz is the sum of the magnetic forces produced by the top and bottom of the
electromagnet. In Fig. 2, the nonlinear electromagnetic force [11,12] can be expressed as

Fz ¼ k
ði0 þ icÞ2
ðx0 þ xÞ2 �

ði0 � icÞ2
ðx0 � xÞ2

" #
(2)

Figure 1: The structure of MBS

Figure 2: The electric currents and the positions of magnetic bearing
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where x0 and i0 are the initial position of magnetic bearing and the initial electric current respectively, ic is the
control current, and k is the electromagnetic force coefficient. Fig. 2 shows the current of magnetic bearing
and the relationship between the positions. The nonlinear electromagnetic force is modeled and linearized by
using the curve fitting method [12], and is defined as

Fz ffi �Czx1 þ Ciic (3)

where Cz is the position parameter, and Ci is the current parameter. Eqs. (3) and (4) are substituted into
Eq. (1), and obtain

m€x ¼ �Czx1 þ Ciic � mg þ fd (4)

The dynamic system can be written as

_x1
_x2

� �
¼ 0 1

�Cz 0

� �
x1
x2

� �
þ 0

Ci

� �
ic þ 0

�mg þ fd

� �
(5)

where x ¼ x1 x2½ �T ¼ x _x½ �T 2 R2 is the state vector of system.

3 Proposed Dynamic Sliding Backstepping Control

3.1 Conventional Adaptive Backstepping Control

The MBS can be considered as a general second-order nonlinear system.

_x ¼ fðxÞ þ bðxÞu (6)

y ¼ x (7)

where f ðxÞ and bðxÞ are unknown continuous nonlinear functions, u ∈ R is the control input, y ∈ R is the
system output, and x ¼ x1 x2½ �T ¼ x _x½ �T 2 R2 is the state vector of the system, which is assumed to be
available for measurement. In order for the dynamic system to be controllable, the function bðxÞ must be
nonzero for vector x in certain controllability region. Without losing generality, we assume that
0 < bðxÞ < 1. Considering the effect of parameter uncertainty, the dynamic equation is written as

_x ¼ f 1ðxÞ þ b1ðxÞuþ EðxÞ (8)

where fðxÞ ¼ f 1ðxÞ þ f 2ðxÞ, bðxÞ ¼ b1ðxÞ þ b2ðxÞ, and EðxÞ ¼ f 2ðxÞ þ b2ðxÞu,
f 1ðxÞ and b1ðxÞ are the known real continuous functions. f 2ðxÞ and b2ðxÞ are the unknown real

continuous functions. The tracking error selected is z1 ¼ xd � x1. xd is the desired height. The differential
height error defined is as follows

_z1 ¼ _xd � _x1 ¼ _xd � x2 (9)

The stability function is defined as

a ¼ c1z1 þ _xd (10)

where c1 is a positive constant. The variable z2 is defined as

z2 ¼ � _x1 þ a (11)

where z2 is the stability function.

The difference between the actual value of the total uncertainty and the estimated value of the total
uncertainty is given as
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~EðxÞ ¼ EðxÞ � ÊðxÞ (12)

The continuous Lyapunov function is defined as

V1 ¼ 1

2
z21 (13)

The time derivative of function V1 can be expressed as

_V1 ¼ z1ðz2 � c1z1Þ (14)

The second Lyapunov function is selected as

Vb2 ¼ V1 þ 1

2
z2

2 þ 1

2r
~E2ðxÞ (15)

where r is a positive constant. After differentiation operation, it can be expressed as

_Vb2 ¼ _V1 þ z2 _z2 � 1

r
~EðxÞ _̂EðxÞ

¼ z1ðz2 � c1z1Þ þ z2ð�€x1 þ _aÞ � 1

r
~EðxÞ _̂EðxÞ

¼ z1ðz2 � c1z1Þ þ z2ð�f 1ðxÞ�b1ðxÞu� ð~EðxÞ þ ÊðxÞÞ þ c1 _z1 þ €xdÞ � 1

r
~EðxÞ _̂EðxÞ

¼ z1ðz2 � c1z1Þ þ z2ð�f 1ðxÞ�b1ðxÞu� ÊðxÞ þ c1 _z1 þ €xdÞ � ~EðxÞ 1

r
_̂EðxÞ þ z2

� �
(16)

The ideal control input uðtÞ is defined as

uðtÞ ¼ 1

b1ðxÞ €xd�f 1 þ c1 _z1 þ z1 � ÊðxÞ þ bsignðz2Þ
� �

(17)

_̂EðxÞ ¼ rz2 (18)

where b is a positive constant.

Substituting Eqs. (16) and (17) into Eq. (15), which can be represented as

_Vb2 ¼ �c1z
2
1 � z2bsignðz2Þ

¼ �c1z
2
1 � b z2j j � 0

(19)

By using the control law, the state can always approach the sliding surface and hit it. The asymptotic
stability of the system can be guaranteed.

3.2 Proposed Dynamic Sliding Mode Backstepping Control

The DSMBC method is derived and developed in the MBS system. The tracking error is defined as
z1 ¼ xd � x1. The xd is the desired height. The error differentiation variable is given as follows

_z1 ¼ _xd � _x1 ¼ _xd � x2 (20)
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The stability function can be given by

a ¼ C1z1 þ _xd: (21)

where C1 is a positive constant. The sliding surface is selected as

S ¼ _z1 þ C2z1 (22)

where C2 is a positive constant. The difference between the actual value of the total uncertainty and the
estimated value of the total uncertainty is given by

~EðxÞ ¼ EðxÞ � ÊðxÞ (23)

where E is the actual value of the total set uncertainty. The error parameter of C2 is defined as

~C2 ¼ C2 � Ĉ2 (24)

where C2 is a constant. The variable z2 is defined as

z2 ¼ � _x1 þ a (25)

The candidate Lyapunov function is given by

V1 ¼ 1

2
z1

2 (26)

The time derivative of the Lyapunov function is

_V 1 ¼ z1 _z1 ¼ z1ð_xd � _x1Þ
¼ z1ð� _x1 þ a� C1z1Þ ¼ z1ðz2 � C1z1Þ

(27)

The second Lyapunov function can be written as

Vb3 ¼ V1 þ 1

2
S2 þ 1

2n1
~E2ðxÞ þ 1

2n2
~C2

2
(28)

where n1 and n2 are positive constants. The differential operator is used and it becomes

_Vb3 ¼ _V1 þ S _S � 1

n1
~EðxÞ _̂EðxÞ � 1

n2
~C2

_̂C2

¼ z1ðz2 � C1z1Þ þ S½�f 1ðxÞ�b1ðxÞu� ðÊðxÞ þ ~EðxÞÞ þ _z1ð~C2 þ Ĉ2Þ þ €xd� � 1

n1
~EðxÞ _̂EðxÞ � 1

n2
~C2

_̂C2

¼ z1ðz2 �C1z1Þ þ S½�f 1ðxÞ�b1ðxÞu� ÊðxÞ þ _z1Ĉ2 þ €xd� � ~EðxÞ 1

n1
_̂EðxÞ þ S

� �
� ~C2

1

n2
_̂C2 � _z1S

� �
(29)

The ideal control law is defined as

uðtÞ ¼ 1

b1ðxÞ €xd�f 1ðxÞ þ _z1Ĉ2 � ÊðxÞ þ b1signðSÞ þ
1

S þ �
z1z2

� �
(30)

_̂C2 ¼ n2S _z1 (31)

_̂E ¼ �n1S (32)

where b1 is a positive constant, and � is the limited coefficient.
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Substituting Eqs. (29), (30) and (31) into Eq. (28), we obtain

_Vb3 ¼ �C1z
2
1 � Sb1signðSÞ

¼ �C1z
2
1 � b1 Sj j � 0

(33)

If gd > 0, it can be expressed as

_Vb3 ¼ �K � gjSj
� �gdjSj

(34)

with C1z21 ¼ K > 0, gd > g

Integrating the above equation with respect to time, resulting in

Z t

0

SðsÞj jds � 1

gd
Vb3ð0Þ � Vb3ðtÞ½ � (35)

Because Vb3ð0Þ is bounded, and Vb3ðtÞ is nonincreasing and bounded. We obtain that S is bounded,
which implies S 2 L1 [13,14]. By using Barbalat’s lemma [5,13,14], S will converge to zero as t ! 1.
And the lemma implies that limt!1 eðtÞj j ¼ 0. Thus, the designed system is stable and the error
converges to zero asymptotically. The stability of the DSMBC scheme is guaranteed.

4 Experimental Results

The experimental results show the control capability of the developed algorithm for MBS. In this study,
two types of control methods are compared. They are (a) the adaptive backstepping control method, (b) the
proposed DSMBC method. Fig. 3 illustrates the experimental setup of the MBS equipment.

Figure 3: A photograph of the MBS system

IASC, 2022, vol.32, no.2 929



Fig. 4 describes a block diagram of an adaptive backstepping control system. The MBS system with
uncertainties is considered and analyzed. An error estimator is designed to estimate the system with
unknown parameters. The estimator can modify the parameters according to the signal fed back to the
system. It can also provide the estimated parameters to the controller on-line and calculate the estimated
values of the parameters. The adaptive estimation scheme and backstepping control are used to solve the
nonlinear problem of MBS. The adaptive backstepping control can keep the robustness of the system
when the parameters of the system change or external disturbance occurs.

The system block diagram of the proposed DSMBC of the magnetic bearing is shown in Fig. 5. After the
height command is obtained from the system, the controller can send the control command, and know the
bearing system’s height and the calculation error subtracted by command. Then, the output of the bearing
system enters the control card to calculate the error adjustment sliding mode control to estimate the
uncertainty. After adjustment, it enters the control card operation until the command is chased. The
controller tends to be based on step-return control and cooperates with the sliding. The model can
estimate the uncertainty, where we adjust the parameter C2 to achieve faster compensation when the
bearing encounters external disturbance.

Figure 4: The system structure of adaptive backstepping controller

Figure 5: The system structure of dynamic sliding mode backstepping controller
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Tab. 1 lists the controller and MBS parameters in this research. The parameters were determined
according to the rule of thumb to achieve better transient and steady-state responses under simulated and
experimental conditions, considering the requirements of stability.

4.1 Simulation Results

The simulation results using adaptive backstepping control method and the proposed DSMBC method
were obtained and compared to verify the control performance.

Table 1: Controller and MBS parameters

Control Methods MBS Parameters Controller Parameters

Adaptive backstepping controller Cz ¼ 21, m ¼ 1:6, g ¼ 9:8,
Ci ¼ 2641:6

c1 ¼ 0:03, r ¼ 50, K ¼ 0:1651

Dynamic sliding mode backstepping
controller

K ¼ 0:651, n1 ¼ 1, n2 ¼ 1:4,
E ¼ 1:23

Figure 6: The simulation response of 2.5 mm command height. An additional external load of 0.3 A is
added at t � 5 s. (a) Comparison of the height output responses, (b) comparison of the height error
responses, (c) comparison of the control inputs, (d) comparison of the estimated uncertainty responses

IASC, 2022, vol.32, no.2 931



In Fig. 6, the output response of command height is 2.5 mm, and an additional external load of 0.3 A is
added at t � 5 s. In addition, it is clear from Fig. 6a that the overshoot response of adaptive backstepping
control method is bigger and faster. The DSMBC method has a slower transient response, but a height
response can be rendered smoother and more accurate. Compared with the tracking response depicted in
Figs. 6b–6d, the conventional sliding mode backstepping control has larger tracking error and estimation
error. Therefore, the DSMBC approach can have better error convergence than backstepping control scheme.

As shown in Fig. 7, the adaptive backstepping control has a faster transient response, as illustrated in
Fig. 7a. However, the DSMBC method achieves the robustness performance under difference inputs and
load conditions. The amount of control increases immediately after the height command changes, see
Fig. 7c. Meanwhile, in Fig. 7d, the DSMBC also outperforms the adaptive backstepping control for
estimation comparison. It can be seen that the DSMBC method performs better in real-time compensation
and robustness tracking regardless of the height command and load disturbance.

Figure 7: The simulation response of 2.5 mm height command during 0 � t < 5 s. The height command
changes to 2.3 mm at t � 5 s, and an additional external load of 0.3 A is added at t � 10 s. (a)
Comparison of the height output responses, (b) comparison of the height error responses, (c) comparison
of the control responses, (d) comparison of the estimated uncertainty responses
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4.2 Experimental Results

To verify the practicality of the proposed DSMBC system, the experimental tests were performed and
demonstrated. Fig. 8 depicts that the height command is set as 2.5 mm during 0 � t < 5 s and an additional
external load of 0.3 A is added during t � 5 s. The two adaptive controllers are employed, and the adaptive
laws are also developed to estimate the uncertainty of the model. The parameters of DSMBC are adjusted
adaptively, so that the adaptation gain can improve the tracking accuracy effectively. Figs. 8a–8d show
that the DSMBC method has a faster response time and less overshoot than the traditional adaptive
method. The DSMBC method can quickly track the height command in the transient state and has a
smooth response in the steady state.

Fig. 9a illustrates the height position response, and the error responses are shown in Fig. 9b. Fig. 9c
presents the control input signals, and Fig. 9d depicts the estimated uncertainty responses. During the
development of the proposed control method, the height error can be effectively reduced to within 1.1 s.
The proposed DSMBC controller guarantees the asymptotic stability and exhibits better tracking capability.

Figure 8: The experimental responses of 2.5 mm height command. An additional external load of 0.3 A is
added at t � 5 s. (a) Comparison of the height output responses, (b) comparison of the height error responses,
(c) comparison of the control responses, (d) comparison of the estimated uncertainty responses
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Tabs. 2 and 3 give the calculation results of root mean square error (RMSE). The RMSE performance
index is defined as follows

Figure 9: The experimental responses of height command of 2.5 mm during 0 � t < 5 s. The height
command changes to 2.3 mm at t � 5 s, and an additional external load of 0.3 A is added at t � 10 s. (a)
Comparison of the height output responses, (b) comparison of the height error responses, (c) comparison
of the control responses, (d) comparison of the estimated uncertainty responses

Table 2: Comparisons of RMSE in simulations

Height position tracking(mm)

Control Methods 2.5 mm 2.5 mm to 2.3 mm

Adaptive backstepping controller 0.2153 0.2336

Dynamic sliding mode backstepping controller 0.1776 0.1778
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
i¼1

e2½i�
a

vuuut
(36)

where a is the number of the sampled points, and e i½ � is the position error.

Tabs. 2 and 3 clearly demonstrate that the DSMBC method is superior to the dynamic sliding
backstepping schemes under all operational conditions because its energy control input is considered in
our design. Thus, the experimental results can conclusively establish the regulation ability, dynamic
tracking capability and robustness of the proposed adaptive method in a wide speed range.

5 Conclusion

The DSMBC method was successfully developed and used for vertical MBS in height tracking
applications. The dynamic model of the MBS system was built by referring to the nonlinear
characteristics, and the estimate functions of these nonlinear factors were proposed and applied to the
equivalent control law of sliding mode control. The control system was designed, using the backstepping
algorithm, and the stability of the MBS system was analyzed. Based on the Lyapunov theorem, the
adaptive control law can be obtained and utilized for height position control application. The proposed
DSMBC method achieves better tracking capability in real-time compensation and robustness tracking,
and is not affected by height command and load disturbance. Two height trajectories are simulated and
experimented to illustrate the robustness of the proposed system. Compared with the conventional
adaptive backstepping method, the proposed DSMBC control system demonstrates more accurate
performance, showing 20.70% improvement of RMSE in simulations and 29.94% improvement of RMSE
in experiments. In the future, our goal is to establish a microcontroller or DSP platform, so that the
proposed DSMBC method can be better implemented and widely used in industrial applications.
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