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Abstract: This paper proposes a soft tissue grasping deformation model, where
BP neural network optimized by the genetic algorithm is used to realize the
real-time and accurate interaction of soft tissue grasping during virtual surgery.
In the model, the soft tissue epidermis is divided into meshes, and the meshes gen-
erate displacements under the action of tension. The relationship between the ten-
sion and displacement of the mesh is determined by the proposed cylindrical
spiral spring model. The optimized BP neural network is trained based on the
sample data of the mesh point and vertical tension, so as to obtain the force
and displacement of any mesh point on the soft tissue epidermis. The virtual
experiment platform is built using a PHANTOM OMNI haptic hand controller
and the 3D Max software, by which the simulation experiment of grasping the
human abdomen is realized. The experimental results show that the proposed
model has good visual interaction and real-time force feedback, which can meet
the requirements of deformation simulation for soft tissue grasping in virtual

surgery.

Keywords: Soft tissue grasping; genetic algorithm; BP neural network; surgical
simulation

1 Introduction

With the rapid development of the information technology, the intelligent era is coming. Various
emerging technologies and applications are increasingly widespread. The aggravation of the global aging
population [1], the shortage of medical staff [2,3], and the tediouness of surgical training task [4] have
brought severe challenges to the traditional surgical training. The traditional surgical training has such
shortcomings as few specimens, long cycle, slow effect, and high cost; therefore, the intellectualization of
the virtual surgical training system is needed urgently. The emergence of virtual reality technologies and
haptic interactive equipments has brought new opportunities to the virtual surgery training system, and its
development and application have promoted the intellectualization of virtual surgery [5—7].
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The key of the virtual surgery system is designing virtual soft tissue deformation model. In virtual
surgery, the soft tissue model needs to simulate various deformation operations and to feedback the
deformation operation, so as to simulate the operation process of real soft tissue. Generally, it is common
to grasp the soft tissue with surgical instruments during the surgical simulation. For example, it is often
necessary to grasp the wound when removing tumors in soft tissue.

With the rapid development of artificial intelligence technology, many researchers apply deep learning,
neural network, and other optimization algorithms to deformable soft tissue models. In order to achieve the
requirements of real-time performance and accuracy of the virtual models, Zhong et al. [8] proposed a
cellular neural method for interaction of soft tissue deformation by virtue of real-time computing of
cellular neural networks, where the soft tissue deformation is executed based on the potential energy
propagation [9]. According to the law of conservation of energy, the external force applied to soft tissue
is regarded as equivalent potential energy and propagates in soft tissue through nerve propagation based
on CNN [10]. De et al. [11] also studied the neural network technology based on machine learning for
soft tissue deformation. The calculation process is divided into off-line and on-line stages, in which the
response of the FEM model under specified displacement is calculated in advance in the off-line stage,
and the coefficients of neurons are optimized by training the radial basis function network (RBFN); the
deformation field is reconstructed by using the trained RBFN in the online stage. Lorente et al. [12]
further explored the method based on machine learning for calculating soft tissue deformation, by which
liver deformation simulation was realized during respiration. In this method, a supervised machine
learning model based on deformation data is used to construct the mapping function of input variables to
approximate the known model output. The mapping function constructed in the training stage can
generate exact output for unknown input in following testing stage, that is, the mapping function can
reconstruct the overall deformation of soft tissue. Therefore, the performance of the machine learning
model highly depends on the training data and the selected learning algorithm. Tonutti et al. [13] further
studied the ability of machine learning method in real-time modeling of soft tissue deformation and
experimental results showed that the position error is less than 0.3 mm, which exceeds the general
threshold of surgical accuracy in images.

In this paper, a novel variable model of soft tissue deformation is proposed to model and simulate soft
tissue grasping deformation in interactive surgical simulation. In this model, the grasping deformation of soft
tissue is studied by using BP neural network optimized by the genetic algorithm, and the varieties of soft
tissue in the direction of tension are determined. The paper is organized as follows: Section 2 introduces
the establishment of the soft tissue grasping deformation model and determination of the functional
relationship between key points and stress. Section 3 describes the construction of the virtual surgery
simulation system based on the model proposed in this paper. In Section 4, we analyze and compare the
experimental results through adjusting the stress range of the soft tissue model and the load of the model.

2 System Design

The soft tissue grasping deformation model consists of four major components: the establishment of a
rectangular coordinate system, the study of key points, the functional relationship between key points and
stress, and the establishment of the model. The following sections describe in detail the major
components of the soft tissue grasping deformation model.

2.1 Establishment of a Rectangular Coordinate System

Under the action of given tension /', when the virtual robot manipulator collides with any point on the
virtual soft tissue epidermis with arbitrary shape, under the collision point, it is assumed that the plane of
the soft tissue epidermis with arbitrary shape connected with the collision point is XY plane. The
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midpoint of the longest distance between any two points is regarded as the centroid point O. The centroid
point O is considered as the origin point and the line passing through the origin O and perpendicular to
the XY plane is considered as the Z-axis. Based on the above definition, the space coordinate system is
established. It is assumed that m lines are parallel to the X-axis, and the distance between adjacent lines
is 1 mm. The m lines include the X-axis , where the value range of m is m = 2,3,4,---,300. It is
assumed that n lines parallel to the Y-axis, and the distance between adjacent lines is 1 mm. The n lines
include the Y-axis, where the value range of n is n = 2,3,4,---,300. Through m lines are parallel to the
X-axis and n lines are parallel to the Y-axis, which is shown in Fig. 1, the soft tissue epidermis without
deformation can be divided into a series of regions, the number of the divided regions is s. The number
of regular block areas and irregular edge areas are s; and s;, respectively.

The soft tissue epidermis can be divided into a series of areas. which denotes as,
s=m-(n—1),m=2,3,4,...,300,n =2,3,4,...,300 @))

where the number of regular block areas s; < s, 51 is not less than 80% of the total number.

Y

Figure 1: Division of soft tissue epidermis

Note that s is the number of the divided a series of regions in soft tissue epidermis with any shape. m is a
straight line parallel to the X -axis and includes the X -axis. NV is a line parallel to the Y-axis and includes the
Y-axis. If the soft tissue epidermis with arbitrary shape is under tension, only the regular block area is
considered in the deformation calculation, and the irregular edge area is mainly generated by the
expansion internal force of the soft tissue epidermis.

2.2 Research on Key Points

The origin point O of the XYZ space coordinate system where the soft tissue epidermis with arbitrary
shape is placed is the starting point. Parallel to the X-axis, the total number of rows is m. With the
direction paralleling to the Y-axis as the column, the total number of columns is n. The soft tissue
epidermis with arbitrary shape is divided into a series of regular block regions, with the intersection of
rows and columns as the vertices.

The four vertices of each block area are marked with spacial coordinates. In this way, the coordinates of
the vertices of each block area in the four quadrants can be expressed as A o(x00,)00,0),

Ay 1o —1,y-1-1,0), A_11(x=1,1,-11,0), Al,fl(xl,fhyl,fh0)---14%’%()6%,%7)/%,%’0), respectively,

where m = 2,3,4,---,300, n = 2,3,4,---,300, and the distance d;; from each vertex to the origin point
O can be expressed as:
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dij = \/(Xu - X0.0)2 + (Yi,j - Y0.0)2 +(Z; — Zo,o)2 )

where i and j represent the abscissa and ordinate of the coordinate system, respectively, i = 2,3, 4, ...,300,
andj = 2,3,4,...,300. X, Y, Z are the vertex coordinates. If the vertices of each block mesh are subjected to
a slight tension in the Z-axis direction at the origin, the displacement changes of the mesh vertices in the
four quadrants in the Z direction are AZ(),(), AZ—I,—I, AZ_I’I, AZI,—I, AZLI,...AZ_% _ %, AZ_% %,
Y )
AZ% 1 and AZ% — respectively. If the tension F; is applied at the origin O, the displacement changes
of all points on the circle with the same distance to the origin are the same, so when the coordinate points
are selected as the key points, only the XY plane of the cross-sectional coordinate system of the soft
tissue epidermis is opted. The vertices on ¥ = X in the first quadrant can be regarded as key points,
which can be expressed as 41 1,412, - - - ,An,, Where n = 2,3,4,---,300, as shown in Fig. 2.

Figure 2: Deformation of key points in spacial coordinate system

2.3 The Functional Relationship Between Key Points and Stress

If any key point on the line ¥ = X in the first quadrant of XY plane is subjected to the tension F; in
different Z directions at the center of the circle, the change in the vertical direction of Z axis can be
measured by experiments, thus can establish the database of key points. The key points are selected
according to the vertex of ¥ = X in the first quadrant of XY plane of the cross-section coordinate system
where the soft tissue epidermis is located, that is the vertical displacement variation of any point and the
tension F; in the Z-axis direction applied at point O. The distance from the key point to the origin O is d;.
The database can be represented as Eq. (3):

d0,0 d],l d2,2 cee dnfl.nfl dn,n (3)
AZO_() AZ[J AZZ,Z cee AZn—l,n—l AZ,,J[

In order to study the relationship between the Z-axis change and the tension F;, the micro-cylindrical
compact coil spring is used as the deformation model to study the relationship between the Z-axis change
AZ and the tension F;. The spring model accords with the elastic characteristics of soft tissue epidermis
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and is suitable for analysis. If any point on the soft tissue epidermis is stressed, the vertical spring can be
simulated as the micro-tension in the direction of the vertical spring cross-section. Through the spring
model, the following relationship between the magnitude of tension F; and AZ in the Z-axis direction on
the soft tissue epidermis can be obtained as Eq. (4):

_ MR )
413

In Eq. (4), spring tension is proportional to the elongation of deformation, that is, the tension F; received
by the soft tissue epidermis is proportional to the change AZ in the Z-axis direction. k is the spring stiffness
coefficient, N is the shear modulus, R is the radius of the spring, # is the number of turns of the spring, and r is
the radius of the spring cylinder.

The database is used to help the genetic algorithm optimize the BP neural network. Through the BP
neural network, the change amount AZ; of any point 4; on the soft tissue epidermis on the Z-axis and the
tension F; in the Z-axis direction at the origin O can be obtained. There is a non-linear functional
relationship between the spatial distances d;; from the vertex of the mesh divided on the soft tissue
epidermis to the origin O. The genetic algorithm is used to optimize the initial weights and thresholds of
the BP neural network so that the optimized BP neural network can better predict the output, that is, the
BP neural network optimized by the genetic algorithm can obtain the exact functional relationship
between AZ;;, F; and d,;, as is shown in Fig. 3. The genetic algorithm to optimize BP neural network
includes five elements, i.e., population initialization, fitness function, selection function, crossover
operation, and mutation operation. The detailed flow chart is shown in Fig. 4.

The Z-axis direction pulling
force F; is applied at the
coordinate origin O

Study the displacement
change AZ; in the vertical
direction at any point

The spatial distance d;
from the research point to
the origin O

Output layer

Input layer

Hidden layer

Figure 3: Schematic diagram of neural network training
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Figure 4: Flow chart of the genetic algorithm

2.4 Model Construction

If a tension F; in the Z-axis direction is employed at the origin point of the soft tissue epidermis, the
change amount AZ in the Z-axis direction of any coordinate point on the soft tissue epidermis can be
obtained by optimizing the BP neural network through the genetic algorithm and can be obtained through
the micro spring model. The force of each point in the Z-axis direction is obtained, so that a planar soft
tissue epidermal mesh model can be established and the change AZ in the Z-axis direction of any point
on the soft tissue epidermis can be obtained.

In order to test the usability of the virtual platform, operate the PHANTOM OMNI hand controller to
grasp the modeled lower abdomen. The process of simulated grasping operation is shown in Fig. 5.
Experiments show that this model is effective, can grasp the modeled soft tissues, and can provide visual
and tactile feedback.

In the grasping process, the color map is used to display the deformation characteristics of the soft tissue,
which more intuitively and clearly shows the deformation of the soft tissue under local stress. The colors
from blue to red indicate the strength of the force, blue indicates no force, and red indicates the area that
is deformed by the force, as shown in Fig. 6.
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Figure 6: Virtual soft tissue stress and deformation map (K is the deformation process, the deformation of
the four models during the deformation process)
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3 System Realizations

The virtual surgery simulation system is composed of three modules, including the input module,
information processing module, and output module. The input module mainly uses force-tactile
interaction devices to input the tension force, including the magnitude, direction, and duration of the
force. The information processing module is a soft tissue model programmed by 3D MAX software,
which relies on the computer operating system for processing, including force signal processing and
model shape processing. The output module is for feeding back the information to the operator after the
signal processing by the input module, including the feedback force from the force-tactile interactive
device and the deformation of the model displayed on the displayer. The pipeline of the simulation test is
shown in Fig. 7.

VCH —7/ Preprocess /

Instrument Model

Organ Model

Biological
Properties

Functional
Properties

Interactive
Data Sources Device

3D Scene

Render

TV Monitor User

Figure 7: Pipeline of the simulation test

In order to realize the algorithm, a virtual simulation platform is first established. Our platform consists
of'a computer and a haptic interaction facility called PHANTOM OMNI. The computer is based on Windows
10 with an Intel (R) Xeon (R) CPU, E5-1650 v3 @ 3.5 GHz processor, and NVIDIA GeForce GT 720M
graphics. The simulation is carried out on VC++ 2019 and 3DS MAX 2019 software with OpenGL
graphics libraries. The PHANTOM OMNI allows the operators to touch and operate on the virtual object
simulated by our method. The experimental environment is shown in Fig. 8.

A three-dimensional model of 65536 lower abdomens and forceps is used, which is shown in Fig. 9.
Import the 3D model into the 3D MAX software, and render the entire 3D model surface with the
colorful lower abdomen CT data obtained from the First Affiliated Hospital of Southeast University,
including 36,542 color rendering triangles. The rendering effect is shown in Fig. 10.
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Figure 10: Three-dimensional rendering effect

3.1 Collision Detection Validation

The top-K algorithm in the bounding box hierarchy method has better performance and high real-time
detection accuracy [14,15], therefore, the study selects it as the collision detection method. The basic idea of
the bounding box hierarchy method is to use a slightly larger bounding box and more simple geometric
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structure characteristics than the simulation model to approximately represent the complex simulation object,
and gradually approach the object by constructing a tree-like hierarchy until the geometric characteristics of
the object is completely obtained. If the collision of the object is detected, the bounding box is intersected.
Since finding the intersection of the object is easy by the intersection ratio of the bounding box, it is possible
to quickly exclude many disjoint objects. The overlapping parts of the bounding boxes are further tested for
intersection, thereby speeding up the algorithm.

4 Experimental Results and Analysis
4.1 Simulation Deformation Time

Under the same experimental conditions, 50 grasping operations were performed on the virtual
abdomens. The virtual abdomens are constructed by the model proposed in this paper and the spring-
mass model [16], respectively. Additionally, we also select fresh living soft tissues for 50 real grasping
operations, and the deformation time of the 50 grasping operations is shown in Fig. 11, where the
deformation time is from the beginning of the grasping operation on the abdomen to the end of the model
deformation. The blue grid points denote the results of the proposed model in this paper, green grid
points denote the results based on the Spring-mass model and red grid points denote the results based on
living soft tissues.

38
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32

30 /\ o ‘A\
28 w(/

26

swy/owily,

24
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of repetitions

Figure 11: Response time for grasping

4.2 Stress Range of Soft Tissue Model

The soft tissue has the maximum stress range during the deformation process after being stressed. In
order to make the deformation of this model more accurate, it is necessary to determine its maximum
stress. This paper used real living soft tissues to grab and obtain real data, which is shown in Fig. 12.
Based on the obtained real data, we improved the parameter settings of the proposed model.

4.3 Stability of Deformation

The stability of model deformation is an important metric of the performance of the model. In order to
verify the stability of the proposed model, the traditional spring-mass model [16] and the proposed model are
simulated, respectively. The proposed model achieves stable at about 50ms for the soft tissue deformation of
12 cm, but traditional spring-mass model has a slight increase after 75 ms without reaching a steady state. As
shown in Fig. 13, the proposed model has better stability after the grasping operation.
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Figure 14: Load-displacement behaviors of the proposed model and FEM model
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4.4 Model Load Comparison

The finite element model with better load performance [17-21] and the model proposed in this paper are
simulated, respectively, and the deformation results are shown in Fig. 14. The load-displacement of the local
deformation of the proposed model is also in good agreement with the finite element model, and the
maximum deviation between the load and displacement is about 5%. The experimental results show that
the proposed model is excellently similar to the finite element model in the load performance.

5 Conclusions

This study proposed a soft tissue grasping deformation model to simulate the grasping deformation
process on the human abdomen soft tissue by virtual human-computer interaction. Using 3DS MAX
2019 with OpenGL graphics libraries and VC++ 2019 software, the abdominal soft tissue model training
system for grasping operation was built through the PHANTOM OMNI force-tactile interactive device.
The proposed model combines the displacement and deformation of any point of the irregular cross-
section elastic cylinder under grasping action, where the BP neural network optimized by the genetic
algorithm is used to calculate the deformation of the elastic tissues intuitively, accurately and quickly. A
real-time deformation simulation system was constructed to improve the fidelity of virtual force tactile
interaction. The real-time performance and accuracy of the proposed model are verified by comparative
experiments. The experimental results show that the proposed model has better stability and on-site
perception.
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