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Abstract: This paper proposes a novel gradient free multi-simplex topology fabric
aided imperialist competitive algorithm (ICA) for solving nonlinear systems of
algebraic equations by transforming them to equivalent global optimization pro-
blems. The high dependence of traditional gradient based solvers of such systems
on initial guesses and the Jacobeans resulting in false convergence is the main
motivation behind the present work. The present work provides a mechanism
for enhancing exploitation powers of imperialist search phase of the algorithm
and hence improves the convergence speed. The variants emerging from the pro-
posed approach are applied to diverse nonlinear systems arising in different scien-
tific areas and the results so obtained are analyzed in details. Based on the analysis
of empirical results on complex benchmark models, it is observed that the pro-
posed enhancement of ICA has not only boosted the problem solving power of
the imperialist system when applied multidimensional nonlinear physical systems
but also emerged as an efficient gradient/initial guess free alternative solver with
high accuracy for nonlinear systems.

Keywords: Imperialist competitive system; simplex topology; nonlinear physical
models; optimization

1 Introduction

Nonlinear systems of algebraic equations often arise in diverse scientific areas such as computational
mechanics, economics, chemical engineering, weather forecasting, robotics, and electrical engineering.
Nonlinear systems of equations are one of the non-deterministic polynomial-time (NP)-hard problems and
resemble multi-objective optimization problems [1] and nondeterministic. For any n ∈ℕ, let Ej:Ω⊂ℝn→
ℝ be a nonlinear function for at least one j ∈ {1, 2, 3, …, n}. With these notations, the general nonlinear
system of equations can be described as follows.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.021788

Article

echT PressScience

mailto:s.alkhalaf@qu.edu.sa
http://dx.doi.org/10.32604/iasc.2022.021788
http://dx.doi.org/10.32604/iasc.2022.021788


E1ðx1; x2; x3; . . . ; xnÞ ¼ 0;
E2ðx1; x2; x3; . . . ; xnÞ ¼ 0;

..

.

Enðx1; x2; x3; . . . ; xnÞ ¼ 0:

8>>><
>>>: (1)

Subject to the following bounds on variables:

xLj � xj � xUj : x
L
j ; xUj 2 R 8 1 � j � n: (2)

To develop new reliable techniques for solving nonlinear systems is a critical issue. Newton–Raphson
method [2,3] is the most common method but it is very sensitive to starting solution and hence requires
additional efforts for determining suitable initial guess. Moreover, traditional gradient based methods are
applicable to the system (1) only when the availability of a suitable initial guess, the differentiability of
each Ej and non-singularity of the associated Jacobean are guaranteed. However, gradient based methods
may produce favorable results in a very limited number of iterations if the Taylor’s approximation is
employed at the current initial guess occurring sufficiently close to the root of the system. Such kind of
efficiency is beyond expectations when the initial guess is far from the exact solution [4]. The limitations
of Newton type methods were highlighted when Powell [5] provided an interesting counter example
showing divergence of Newton’s method to two different non-stationary points under absolute and
squared residual merit functions when started with the same initial guess. Similarly, Byrd et al. [6]
presented another counter example which caused singularity of the Jacobean at many points making the
choice of initial guess to be difficult. Bader [7] highlighted the impracticality of Newton’s method to high
dimensional problems and proposed a new Krylov subspace based tensor method that also requires first
order continuously differentiability condition [8]. Recently, Vahidi et al. [9] and Sharma et al. [10]
proposed new effective solvers for solution of nonlinear systems. Massive amount of existing literature
[11–18] is dedicated to improve the convergence order of the classical deterministic recursive or iterative
methods. The most recent trend for solving system of nonlinear equations is to transform it into an
equivalent global optimization problem of the following form.

Minimize f ðxÞ ¼
Xn
j¼1
fEjðxÞg2 þM �maxf0; xLj � xj; xj � xUj : 1 � j � ng (3)

Here M is a large positive number.

Over the recent years, modern stochastic solvers have been employed to solve the global optimization
problems associated with nonlinear systems. For examples, Luo et al. [19] proposed a combination of chaos
search with a Newton type method, Sihwail et al. [20] proposed a hybrid of Haris Hawks Optimization with
Newton’s method, Mo et al. [21] used a combination of the conjugate direction method (CD), particle swarm
optimization (PSO) algorithm and its hybrid were used by Jaberipour et al. [22] and Ouyang et al. [23]
respectively. Abdollahi et al. [24] used the standard imperialist competitive algorithm (ICA), Oliveira
et al. [25] proposed a variant of simulated annealing algorithm with fuzzy rules adaptations, Wu et al.
[26] used a new variant of the Social emotional optimization for solving nonlinear systems of equations.
Other applications of metaheuristics for nonlinear systems include invasive weed optimization algorithm
[27], polarization technique [28], cuckoo optimization algorithm [29], genetic algorithm [30–32], artificial
bee colony algorithm [33] and multi-population parallel ICA [34] their successful applications, there also
exist two main challenges for metaheuristics that are (i) maintaining balance between exploration and
exploitation (ii) avoiding large computational cost. Abdollahi et al. [35] highlighted that in most of the
previous applications [1,21–26,29,30,33,36,37] of metaheuristics to nonlinear systems large population
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sizes were used which resulted in high computation costs and slow convergence. To cope with these
drawbacks, it is needed to construct an effective and reliable combination of local and global search
algorithms for solving nonlinear systems of equations.

This work proposes a multi-simplex imperialist competitive algorithm (MS-ICA) for solving physical
models described by the system of Eq. (1). The basic element of the proposed MS-ICA is to equip each
imperialist with additional socio-political elements connected with it through a simplex topology. The
operations on the associated simplex try to enhance the problem-solving abilities of the imperialist. Rest
of the paper is ordered as follows: in Section 2, we describe the imperialist competitive algorithm (ICA),
in Section 3, some well-known systems are presented to demonstrate the effectiveness and robustness of
the proposed ICA and Section 4 presents statistical results of the proposed methods on some nonlinear
systems. Finally, some concluding remarks are presented in the end.

2 Basic Concepts of the Imperialist Competitive Algorithm

Imperialist competitive algorithm (ICA) was developed by Atashpaz et al. [38] as a tool for modeling
learning and imperialist evolution. The ICA belongs to a class of cultural/social algorithms [39]. Along with
the essential population module of evolutionary algorithms, the ICA is equipped with a peer component of
empires comprised of countries that are further classified as colonies and imperialists. Each of the empires
stocks and deploys information that sequentially impacts the progress of the population component. The
competition mechanism among the empires is identified through the imperialists’ policies to extend their
empire’s powers and rules beyond their boundaries, which models the optimum search procedure of the
ICA. The decision-making knowledge of the ICA resides in the elimination of weak empires and
expansion of strong empires so that the strongest empire eventually takes possession of the other empires.
Colonies and imperialists of the empires continuously interact while being governed by three basic
operators called assimilation, revolution, and competition. Repeated interaction between the strategic
action phases of members of the colonial space in the imperialist competitive environment leads to the
genesis of “imperialist swarms” of individuals roving within the problem search space. The meta-level
swarming of imperialist dominance evolves an algorithmic process in the problem domain with the aim
of exploring the search space and exploiting promising areas, thus correctly locating the optimum. The
standard pseudo code of the ICA is presented in Algorithm 1. The respective components of the ICA are
described in the following subsections.

Algorithm 1: Imperialist Competitive Algorithm

Step 1: Initialize the ICA parameters

Step 2: Generate initial set of countries and construct empires

Step 3: While termination criteria not met do steps (i)-(vi)

(i) Assimilate colonies

(ii) Revolve colonies

(iii) Update position of imperialists

(iv) Calculate the power of the empires

(v) Perform likelihood-based control of weakest colony of the weakest empire to the stronger
empires based on their power

(vi) Perform elimination

End while
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2.1 Initialization

Let Npop, Nimp and Ncol be positive integers. ICA is initiated by randomly generated population
{xj ∈Ω⊂ℝn:1 ≤ j ≤Npop} of Npop solutions called countries each with cost cj = f(xj). For each k = 1, 2, 3,
…, Nimp the kth imperialist state is denoted by xk,imp = arg((min({cj:1 ≤ j ≤Npop} − {ci:1 ≤ i < k}))) with
cost ck,imp. The remaining Ncol (=Npop −Nimp) countries are called colonial states. The kth imperialist state
heads an empire and acquires NCk colonial states based on its normalized fitness pk defined below.

pk ¼
max1�i�Nimpfci;impg � ck;impPNimp

i¼1 ci;imp

�����
�����; 1 � k � Nimp: (4)

NCk ¼ roundðpk � NcolÞ: (5)

2.2 Assimilation Phase

In the assimilation phase, an imperialist builds infrastructure and attempts to alter the position of its
colonies within the space of its socio-political elements [40]. The colonial movement towards an
imperialist (see Fig. 1a) is modeled by the following relation.

New position ¼ old positionþ b� r � ðimperialist � old positionÞ (6)

Here, r is a 1 × n dimensional vector of random numbers drawn from the interval (0, 1), β is a real number
having a default value of 1.5, and ⊗ denotes the Minkowski product of two vectors.

2.3 Revolutionary Phase

The revolutionary phase models the concept of resistive reforms of colonies to repel complete socio-
political absorption into an empire [40,41] In this modeled phenomenon, colonies try to independently
explore the search space by probabilistically undoing the influence of imperialists. The revolutionary
explorative steps are carried out by the following two equations:

New position ¼ old positionþ r� randn if probability � PR;
old position otherwise

�
(7)

old positionðelement #iÞ ¼ new positionðelement #iÞ; 1 � i � cielðn� lÞ: (8)

In Eq. (7), PR is the revolution probability, σ is an appositive real number, and randn is a 1 × n
dimensional vector of pseudorandom numbers drawn from a standard normal distribution. In Eq. (8), the

Figure 1: (a) Assimilation; (b) Revolution; and (c) Intra-empire competition
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parameter μ ∈ [0, 1] is the revolution acceptance rate, and the function ciel denotes the smallest integer greater
than or equal to a given real number. Fig. 1b shows the revolutionary phase of an empire.

2.4 Intra-Empire Competition

As a result of the assimilation and revolutionary phases, a colony may dominate an imperialist by
acquiring a superior position in the empire. In such a case, an exchange of positions between an
imperialist and dominating colony takes place [38]. The rest of the colonies preserve their current
locations. Such a type of exchange of positions in an empire is the result of what is termed intra-empire
competition [40,41]. Fig. 1c depicts the intra-empire competition process.

2.5 Inter-Empire Competition

In this phase, the stronger empires have likelihood-based tendency of taking possession of the weakest
colony of the weakest empire. As a result of this process, an empire becomes the weakest by gradually losing
its colonies to other empires until it ultimately collapses and is eliminated when all of its colonies are gone.
The strength Pk of the k

th empire is calculated as under.

Pk ¼
dTCkPNimp

i¼1 dTCi

�����
�����: (9)

TCk ¼ cost of imperialist þ f� mean cost of its all colonies (10)

dTCk ¼ max
1�i�Nimp

fTCig � TCk (11)

The parameter ζ is a real number in the interval (0, 1).

2.6 Termination

With the course of the imperialist evolutionary process, some empires will be weaker and collapse, and
only one will eventually control all of the colonies in the population and be deemed the most powerful. As the
algorithmic iterations proceed, the colonies will get closer to and help create a uniquely existing most
powerful empire; at the end, all the colonies will capture the same position as that of the imperialist [38].
The algorithm is terminated at such a stage.

3 Proposed Multi-Simplex Imperialist Competitive Algorithm (MS-ICA)

The basic motivation behind the current work involves the related innovative ideas of social fabric
implemented in [42,43]. Social fabric is defined as a living informational membrane woven by tissue
fibers produced by the engineered emergence of mediators that illustrate the connectivity strain between a
member and the community [42]. The tissue fiber is the basic unit of the fabric that defines and controls
the topology and type of connectivity in the sense of interactions among its agents.

Several types of topologies exist in the PSO literature [44] to visualize interactions within the
population. These include ring (lBest), fully connected (gBest), tree, star, hexagon, square, and octagon
topologies. Figs. 2a–2b and 2d show the (lBest), (gBest) and tree topologies [42] respectively, whereas
Fig. 2c provides a picture of the star topology [45].

The social fabric paradigm can be extended to economic, religious, military, geographical and political
information connectivity among the countries in an imperialist competitive system. The topologies shown in
Fig. 2 are often used for entire populations, but the actual focus of an imperial system is on improving and
maintaining the efficiency of the imperialist. Many approaches, such as the subpopulations of countries,
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organizations, firms or NGOs can be incorporated through the social fabric to boost the supremacy of the
imperialist. However, the present study considers the association of topological simplexes with
imperialists. A simplex is a convex hull of n + 1 affine independent points in an n-dimensional search
space. Fig. 3 presents two-, three-, and four-dimensional simplexes.

The connectivity of members of a simplex can be established similar to that of [42]. Let C be a set of
n + 1 individuals that involve an imperialist. The interactions among the members of C are defined by a
simplex S ¼ Vi: 1 � i � nþ 1, where each Vi = (vi1, vi2, vi3, …, vin) ∈ℝn is a vertex and has an invertible
mapping of C onto S. The degree of each vertex/node of the simplex is n. The vertices are ranked from
the best to the worst as to satisfy the following ordering condition:

f ðV1Þ � f ðV2Þ � f ðV3Þ � . . . � f ðVnþ1Þ: (12)

The imperialist is always maintained as the best vertex V1 ofS. Each imperialist is supported with a
simplex in a similar fashion.

In the optimization process, the operations of reflection/rotation, expansion, contraction, and shrink are
used to try to improve the vertices of the simplex. The nature of learning among associated individuals
depends on the way in which a simplex is utilized in the dynamic behavior of a population. In the
Nelder-Mead simplex (NMS) method [46], the operations of reflection, rotation, expansion, and
contraction about the centroid of the face opposite to the best vertex are used to improve the worst
vertex, whereas the shrink step is executed toward the best vertex. Fig. 4a shows the NMS operations of
reflection, rotation, expansion, and contraction, whereas Fig. 4b shows its shrink operation.

Figure 2: (a) Ring topology; (b) fully connected topology; (c) star topology; and (d) tree topology

Figure 3: (a) Two-dimensional simplex; (b) three-dimensional simplex; and (c) four-dimensional simplex
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Points A, B, C and D are the results of reflection, expansion, outside contraction and inside contraction
respectively whereas G is the centroid of the face opposite of the worst vertex (W). The standard NMS
method evaluates these points accordingly, as follows:

G ¼ 1

n

Xn
i¼1

Vi; (13)

y ¼ Vnþ1 þ qðG� Vnþ1Þ: (14)

The generated y is A, B, C or D according as ρ is set equal to 2, 3, 1.5 or 0.5. In the shrink step, the non-
best vertices are replaced accordingly, as follows:

Vi  Vi þ 0:5ðV1 þ Vi Þ; 2 � i � nþ 1 (15)

Algorithm 2 is an extension of the standard NMS method extracted from the studies in [46–48]. The
complete framework of the proposed MS-ICA is presented in Fig. 5.

Algorithm 2: NMS operations on a simplex associated with an imperialist.

1. Perform ordering of the simplex as in relation (12)

2. Move the imperialist to the best vertex

3. Find G using Eq. (12) and calculate the reflected point A using Eq. (14)

4. If f(A) < f(V1), find B. If f(B) < f(A), set Vn+1 = B; otherwise, set Vn+1 = A

5. If f(V1) ≤ f(A) < f(Vn), set Vn+1 = A

6. If f(Vn) ≤ f(A) < f(Vn+1), find C. If f(C) ≤ f(Vn+1), set Vn+1 = C

7. If f(Vn+1) ≤ f(A), find D. If f(D) ≤ f(Vn+1), set Vn+1 = D

8. If Vn+1 is not updated by A, B, C or D, then perform shrink step using Eq. (15)

9. Perform ordering of the simplex as in step 1

10. Assign best node to the imperialist

4 Experimental Framework and Benchmark Physical Models

A comprehensive analysis of different variants of the ICA and MS-ICA regarding different parametric
settings was conducted. The parameters of the population size (nPop), selection pressure (α), revolution
probability (p) and colony mean cost coefficient (θ) were fixed at 50, 1, 0.05 and 0.2, respectively. The
variants of the ICA and the proposed MS-ICA were based on combinations of a number of parameters:
the number of empires (nEmp1 = 5, nEmp2 = 10, nEmp3 = 20); assimilation coefficient (β1 = 1.5, β2 = 2);

Figure 4: Operations on a simplex
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and revolution rate (μ1 = 0.1, μ2 = 0.5). For simplicity, a triplet (βi, μj, Empk): i = 1, 2; j = 1, 2; k = 1, 2, 3 of
parameter settings is denoted by Pijk. The experimental design used the following seven benchmark systems
of nonlinear equations to describe complex physical models. For numerical simulations have been
implemented in MATLAB programming environment on a Core (TM) i3 machine with 2.00 GB RAM.

4.1 Kinematic Synthesis Problem (KS) [25]

EiðxÞ ¼ A2
i þ B2

i � C2
i ¼ 0; i ¼ 1; 2; 3:

where

Ai ¼ yiðx2sinwiþ1 � x3Þ � ziðx2sinwiþ1 � x3Þ; Bi ¼ zið1þ x2cos’iþ1Þ � yiðx2coswiþ1 � 1Þ;
Ci ¼ ð1þ x2cos’iþ1Þðx2sinwiþ1 � x3Þx1 � ðx2sin’iþ1 � x3Þðx2coswiþ1 � x3Þx1:
yi ¼ x2ðcos’iþ1 � cos’1Þ � x2x3ðsin’iþ1 � sin’1Þ � ðx2sin’iþ1 � x3Þx1;
zi ¼ �x2coswiþ1 � x2x3sinwiþ1 þ x2cosw1 þ x1x3 þ ðx3 � x1Þx2sinw1;

w1 ¼ 1:3954170041747090114; ’1 ¼ 1:7461756494150842271;w2 ¼ 1:7444828545735749268;

’2 ¼ 2:0364691127919609051;w3 ¼ 2:0656234369405315689; ’3 ¼ 2:2390977868265978920;

w4 ¼ 2:4600678478912500533; ’4 ¼ 2:4600678409809344550;�10 � xi � 10:

Figure 5: Flowchart of proposed MS-ICA
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4.2 Chemical Equilibrium Problem (CE) [25]

E1ðxÞ ¼ x1x2 þ x1 � 3x5 ¼ 0;

E2ðxÞ ¼ 2x1x2 þ x1 þ x2x
2
3 þ r8x2 � rx5 þ 2r10x

2
2 þ r7x2x3 þ r9x2x4 ¼ 0;

E3ðxÞ ¼ 2x2x23 þ 2r5x23 � 8x5 þ r6x3 þ r7x2x3 ¼ 0; E4ðxÞ ¼ r9x2x4 þ 2x24 � 4rx5 ¼ 0;

E5ðxÞ ¼ x1ð1þ x2Þ þ r10x
2
2 þ x2x

2
3 þ r8x2 þ r5x

2
3 þ x24 � 1þ r6x3 þ r7x2x3 þ r9x2x4 ¼ 0:

where r0 ¼
ffiffiffiffiffi
40
p

, r = 10, r5 = 0.193, r6 = 0.002597/r0, r7 = 0.003448/r0, r8 = 0.00001799/r0,
r9 = 0.0002155/r0, r10 = 0.00003446/r0, xi > 0 for all i.

4.3 Combustion Problem (CP) [25,33]

E1ðxÞ ¼ x2 þ 2x6 þ x9 þ 2x10 � 10�5 ¼ 0; E2ðxÞ ¼ x3 þ x8 � 3� 10�5 ¼ 0;

E3ðxÞ ¼ cþ x3 þ 2x5 þ 2x8 þ x9 þ x10 � 5� 10�5 ¼ 0; E4ðxÞ ¼ x4 þ 2x7 � 10�5 ¼ 0;

E5ðxÞ ¼ x5 � 0:5140437� 10�7 � x21 ¼ 0; E6ðxÞ ¼ x6 � 0:1006932� 10�6 � 2x22 ¼ 0;

E7ðxÞ ¼ x7 � 0:7816278� 10�15 � x24 ¼ 0; E8ðxÞ ¼ x8 � 0:1496236� 10�6 � x1x3 ¼ 0;

E9ðxÞ ¼ x9 � 0:6194411� 10�7 � x1x2 ¼ 0; E10ðxÞ ¼ x10 � 0:2089296� 10�14 � x1x
2
2 ¼ 0;

� 10 � xi � 10:

4.4 Neurophysiology Problem (NP) [1,24,25,33,35]

E1ðxÞ ¼ x21 þ x23 � 1 ¼ 0; E2ðxÞ ¼ x22 þ x24 � 1 ¼ 0; E3ðxÞ ¼ x5x
3
3 þ x6x

3
4 � c1 ¼ 0;

E4ðxÞ ¼ x5x
3
1 þ x6x

3
2 � c2 ¼ 0; E5ðxÞ ¼ x5x1x

2
3 þ x6x2x

2
4 � c3 ¼ 0;

E6ðxÞ ¼ x5x3x
2
1 þ x6x4x

2
2 � c4 ¼ 0; �10 � xi � 10:

4.5 Thin Wall Girder Section Problem (GS) [21,22,24,27]

E1ðxÞ ¼ x1x2 � ðx2 � 2x3Þðx1 � 2x3Þ � 165 ¼ 0;

E2ðxÞ ¼ x31x2=12� ðx2 � 2x3Þðx1 � 2x3Þ3=12� 9369 ¼ 0;

E3ðxÞ ¼ 2x3ðx1 � x3Þ2ðx2 � x3Þ2=ðx1 þ x2 � 2x3Þ � 6835 ¼ 0:

where x1, x2, and x3 are the height, width, and thickness of the sections, respectively. The physical constraints
on the system are:

g1ðxÞ ¼ x3. 0; g2ðxÞ ¼ x2 � x3. 0; g2ðxÞ ¼ x1 � x2 . 0:

4.6 Thin Wall Girder Section Problem (GS) [1,25]

E1ðxÞ ¼ x1 � 0:25428722� 0:18324757x4x3x9;

E2ðxÞ ¼ x2 � 0:37842197� 0:16275449x1x10x6;
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E3ðxÞ ¼ x3 � 0:27162577� 0:16955071x1x2x10;

E4ðxÞ ¼ x4 � 0:19807914� 0:15585316x7x1x6;

E5ðxÞ ¼ x5 � 0:44166728� 0:19950920x7x3x6;

E6ðxÞ ¼ x6 � 0:14654113� 0:18922793x8x5x10;

E7ðxÞ ¼ x7 � 0:42937168� 0:21180486x2x5x8;

E8ðxÞ ¼ x8 � 0:07056438� 0:17081208x1x7x6;

E9ðxÞ ¼ x9 � 0:34504906� 0:19612740x10x6x8;

E10ðxÞ ¼ x10 � 0:42651102� 0:21466544x4x8x1;

� 2 � xi � 2:

4.7 Economic Modeling Problem (EM) [21,49]

A 5-dimensional economic modeling problem can be described as under:

E1ðxÞ ¼ x1 þ x2 þ x3 þ x4 þ 1; E2ðxÞ ¼ x1x5 þ x1x2x5 þ x2x3x5 þ x3x4x5 � 1;

E3ðxÞ ¼ x2x5 þ x1x3x5 þ x2x4x5 � 1; E4ðxÞ ¼ x3x5 þ x1x4x5 � 1; E5ðxÞ ¼ x4x5 � 1:

5 Analyses of Results

According to the experimental framework, there were twelve variants of each of the proposed MS-ICAs
and the original ICAs whose performances were to be assessed by the generated empirical data. Tab. 1
presents the best (B), mean (M) and standard deviation (SD) results for the objective function values of
the MS-ICA for seven benchmarks after 50,000 function evaluations (FES) over 30 independent runs.
Similarly, the statistical results of the ICA variants are shown in Tab. 2.

Table 1: Statistical results of the MS-ICA variants on seven benchmarks

Pijk KS CE CP NP GS IA EM

P111 B 0 1.76e-33 1.53e-16 0 1.29e-26 1.62e-33 0

Mn 3.53e-123 5.98e-33 3.44e-15 5.39e-28 892.70 8.31e-28 1.92e-12

SD 1.93e-122 1.69e-32 2.62e-15 2.95e-27 4889.49 3.86e-27 9.09e-12

P112 B 5.90e-306 1.76e-33 4.85e-17 0 1.29e-26 2.18e-31 1.23e-32

Mn 8.91e-254 5.51e-33 1.54e-15 1.98e-35 3.10e-25 1.70e-24 7.07e-26

SD 0 1.72e-32 1.46e-15 9.72e-35 8.42e-25 6.66e-24 3.46e-25

P113 B 6.81e-291 1.76e-33 1.14e-17 0 1.29e-26 6.12e-30 0

Mn 1.52e-193 3.16e-32 1.87e-15 7.24e-34 1.21e-25 9.67e-22 1.84e-02

SD 0 1.50e-31 1.58e-15 3.56e-33 1.13e-25 3.04e-21 1.01e-01

P121 B 0 1.76e-33 1.80e-16 0 1.29e-26 3.50e-30 0

Mn 2.01e-285 6.10e-33 2.54e-15 2.66e-35 6.66e-25 1.09e-25 7.99e-02

SD 0 1.59e-32 2.69e-15 1.41e-34 1.03e-24 4.20e-25 3.04e-01
(Continued)
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It can be seen from Tabs. 1–2 that all the variants of the MS-ICA were able to find better optimal
solutions for every benchmark function. Regarding the KS benchmark, the variants P111; P121; P122 and
P211 of the MS-ICA found exact roots, whereas the rest of the variants found the root with negligible
error. The best optimum value found by any variant of the ICA was 8.05e-105 of P221; which was worse
than the worst value of the MS-ICA variants. The smallest mean function value among all the MS-ICA
variants was found by P121 and was better than the best value of any of the ICA variants.

For the CE benchmark, all the MS-ICA variants found the root with an accuracy of 1.76e-33 and P112

produced 5.51e-33 as the best mean value. In contrast, the best value of the ICA variants was 6.39e-13 as
found by P122 and it was inferior to the mean value of the MS-ICA variants. The best approximate root
of the combustion problem (CP) was found by the P213 variant of the MS-ICA, which also yielded
1.54e-15 as the smallest mean value. The respective best and smallest mean values of the associated
objective function determined by the ICA variants were 5.56e-07 and 6.71e-06, which were related to
P212 and P211 respectively. All the variants of the MS-ICA were able to find the exact root of the

Table 1 (continued)

Pijk KS CE CP NP GS IA EM

P122 B 0 1.76e-33 2.41e-16 0 1.29e-26 7.60e-29 0

Mn 6.38e-254 1.29e-32 2.22e-15 2.95e-35 3.80e-25 8.67e-23 2.66e-23

SD 0 3.77e-32 4.23e-15 1.51e-34 6.13e-25 3.87e-22 1.46e-22

P123 B 9.76e-283 1.76e-33 1.35e-16 0 1.29e-26 3.55e-26 0

Mn 9.41e-231 3.00e-32 1.64e-14 1.59e-32 4.60e-25 5.42e-22 1.84e-02

SD 0 8.60e-32 6.88e-14 8.32e-32 1.59e-24 1.52e-21 1.01e-01

P211 B 0 1.76e-33 6.72e-17 0 1.29e-26 1.62e-33 0

Mn 3.40e-281 1.73e-03 1.29e-13 3.75e-36 3.28e-25 7.14e-29 1.84 e-02

SD 0 9.47e-03 6.88e-13 2.05e-35 6.15e-25 2.77e-28 1.01e-01

P212 B 8.28e-295 1.76e-33 1.48e-17 0 1.29e-26 3.18e-33 0

Mn 5.55e-237 1.73e-03 2.60e-15 1.74e-36 3.70e-25 1.19e-26 1.24e-30

SD 0 9.45e-03 2.90e-15 9.21e-36 5.13e-25 3.68e-26 6.18e-30

P213 B 1.39e-274 1.76e-33 7.95e-18 0 1.29e-26 3.95e-31 1.24e-32

Mn 4.74e-237 7.65e-19 1.64e-15 1.66e-35 1.56e-09 2.63e-25 7.31e-20

SD 0 4.19e-18 1.83e-15 8.08e-35 8.53e-09 8.98e-25 4.00e-19

P221 B 0 1.76e-33 1.24e-16 0 1.29e-26 1.62e-33 0

Mn 5.46e-259 1.73e-03 2.53e-15 2.02e-32 4.73e-25 3.84e-28 3.73e-29

SD 0 9.47e-03 2.94e-15 1.10e-31 9.13e-25 8.95e-28 2.02e-28

P222 B 5.93e-293 1.76e-33 2.18e-16 0 1.292e-26 1.14e-32 0

Mn 6.54e-264 4.26e-12 2.49e-15 5.39e-38 9.36e-25 4.59e-25 2.98e-15

SD 0 2.33e-11 2.17e-15 2.47e-37 3.76e-24 1.52e-24 1.63e-14

P223 B 1.17e-283 1.76e-33 6.93e-17 0 1.29e-26 3.67e-28 0

Mn 8.15e-240 5.95e-10 4.80e-15 9.28e-35 3.19e-25 3.06e-23 1.50e-31

SD 0 3.26e-09 5.37e-15 2.98e-34 6.73e-25 1.44e-22 2.94e-31
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neurophysiology problem, and the smallest mean objective function value (5.39e-38) was returned by P222.
In contrast, no variant of the ICA was able to find the exact root of the problem. The best value (2.23e-58)
among all the ICA variants was returned by P212.

Table 2: Statistical results of the ICA variants on seven benchmarks

Pijk KS CE CP NP GS IA EM

P111 B 2.24e-60 1.61e-08 1.30e-05 3.76e-57 4.33 1.62e-33 4.64e-08

Mn 3.06e-22 1.50e-06 4.43e-05 1.62e-13 17471.10 8.03e-27 0.24

SD 1.67e-21 1.55e-06 2.82e-05 6.30e-13 45244.50 4.29e-26 0.35

P112 B 2.60e-54 1.10e-09 7.82e-06 4.38e-46 31.63 1.62e-33 2.16e-08

Mn 9.88e-30 1.09e-06 8.65e-05 8.53e-14 5935.57 1.69e-24 1.64e-01

SD 5.36e-29 9.93e-07 8.02e-05 4.67e-13 9316.39 7.05e-24 2.94e-01

P113 B 2.08e-49 2.44e-11 1.34e-06 1.62e-47 30.78 1.62e-33 5.92e-07

Mn 1.63e-21 8.22e-07 7.44e-05 1.38e-14 5626.15 7.10e-23 6.17e-02

SD 8.92e-21 8.47e-07 6.84e-05 7.58e-14 9251.22 3.09e-22 1.17e-01

P121 B 3.89e-102 1.92e-12 2.17e-06 1.98e-42 17.56 1.62e-33 5.93e-07

Mn 3.48e-18 8.23e-07 4.70e-05 7.70e-10 14836.60 4.21e-24 2.01e-01

SD 1.87e-17 1.04e-06 4.09e-05 4.19e-09 12987.91 2.07e-23 3.63e-01

P122 B 4.49e-93 6.39e-13 8.50e-07 3.00e-28 0.59 1.91e-29 5.80e-08

Mn 3.26e-29 4.03e-07 6.25e-05 9.31e-14 6572.15 1.38e-20 3.52e-02

SD 1.41e-28 4.48e-07 4.09e-05 4.45e-13 8777.94 4.85e-20 8.39e-02

P123 B 3.14e-85 8.04e-12 1.05e-06 3.84e-30 0.135 5.65e-33 1.20e-03

Mn 1.48e-29 3.39e-07 6.09e-05 1.01e-10 6763.27 2.60e-20 1.13e-01

SD 8.08e-29 3.50e-07 3.76e-05 4.46e-10 6953.30 8.80e-20 0.22254

P211 B 2.57e-77 6.87e-11 1.20e-06 1.86e-57 8.94 1.62e-33 2.75e-13

Mn 1.17e-42 0.0232835 6.71e-06 1.48e-18 11998.32 1.19e-30 1.53e-01

SD 6.35e-42 0.118106 7.50e-06 5.66e-18 16122.62 3.64e-30 0.239663

P212 B 2.90e-69 1.00e-08 5.56e-07 2.23e-58 0.02 1.62e-33 8.13e-12

Mn 1.82e-27 6.80e-07 1.44e-05 2.96e-13 9152.82 2.83e-26 2.93e-02

SD 9.95e-27 7.031e-07 1.68e-05 1.62e-12 15957.68 1.31e-25 8.91e-02

P213 B 2.16e-58 8.49e-11 7.80e-07 1.22e-51 0.23 1.62e-33 3.46e-09

Mn 1.97e-30 0.0232823 1.52e-05 7.02e-13 2635.93 6.82e-27 6.57e-02

SD 1.08e-29 0.118106 1.72e-05 3.84e-12 3629.23 2.22e-26 1.49e-01

P221 B 8.05e-105 8.52e-11 8.94e-07 2.13e-42 0.01 1.62e-33 2.14e-09

Mn 1.58e-42 0.00172 1.22e-05 3.63e-10 8546.58 1.02e-27 1.18e-01

Md 6.52e-57 9 2.91e-07 1.21e-05 1.601e-24 4710.97 6.44e-30 7.62e-04

SD 6.81e-42 0.0094674 7.96e-06 1.91e-09 11611.58 3.86e-27 2.08e-01
(Continued)
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The MS-ICAvariants found the root of the GS problem with the same accuracy of 1.29e-26, whereas the
best value among all the ICA variants was 0.01 found by P221. Clearly superior performances of the
proposed MS-ICA variants on the GS benchmark regarding the best, mean and standard deviation results
can be witnessed from Tabs. 1–2.

On the interval arithmetic benchmark, the variants P111, P211 and P221 of the MS-ICA found the
same best value (1.62e-33) of the problem, which was also found by seven variants of ICA, namely,
P111, P112, P113, P121, P211, P221 and P213. The overall performance of the ICA variants was better than
the modified approaches. On the last benchmark, all the variants of the MS-ICA (except P112 and P213)
found the exact root of the problem, whereas none of the ICA variants were able to find the exact root of
the problem.

The statistical results presented in Tabs. 1–2 show that a variant of the MS-ICA or ICA that outperforms
others on a specific problem may not show similar results on another problem. Therefore, to draw a clear
conclusion about the performance of the proposed solvers, a collective non-parametric analysis of all the
variants of MS-ICA and ICA was conducted.

Tab. 3 presents the Wilcoxon ranks of all the algorithms. It can be observed from Tab. 3 that the MS-ICA
variant P112 ranked first by outperforming the rest of the variants. Each of the variants of the proposed MS-
ICA acquired higher ranks as compared to those of the standard ICA. The mutual comparison of the variants
shows that the variants P211 and P222 of the ICA achieved similar top ranks among all of the ICA variants.

The subplots in Fig. 6 exhibit the convergence curves of the best and mean of 30 runs of the winner
variants of the MS-ICA and ICA on the first six benchmark models. The number of function evaluations
in hundreds is presented along the horizontal axis, whereas the logs of the best and mean fitness function
values are presented along the vertical axis. It can be observed from Fig. 6 that the MS-ICA variant
acquired average accuracies of 10−100 within 20,000 function evaluations on the KS problem, 10−20

within 30,000 function evaluations on the CE benchmark, 10−10 within 30,000 function evaluations on
the test case CP, 10−20 within 20,000 function evaluations on the neurophysiology problem 5.4, 10−15

within 30,000 function evaluations for the GS problem and 10−15 within 30,000 function evaluations on
test case IA. The respective mean function values of the ICA variant with similar function evaluations
were 10−10, 10−02, 10−04, 10−06, 1004 and 10−18 on the first six benchmark models.

Table 2 (continued)

Pijk KS CE CP NP GS IA EM

P222 B 2.80e-98 1.56e-11 1.07e-06 1.10e-35 1.90e-03 7.40e-33 1.85e-07

Mn 2.54e-38 6.19e-07 1.76e-05 2.21e-15 5557.10 3.93e-24 1.17e-01

SD 1.36e-37 6.95e-07 1.37e-05 7.99e-15 6010.52 1.75e-23 2.35e-01

P223 B 2.31e-86 1.84e-09 9.98e-07 3.31e-42 9.12 2.46e-30 7.52e-08

Mn 2.82e-36 0.0018002 2.08e-05 7.62e-15 2839.04 4.55e-22 1.07e-01

SD 1.13e-35 0.0098563 1.25e-05 2.78e-14 3412.35 2.20e-21 1.92e-01
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Fig. 7 presents the convergence curves of all the runs of the P112 variant of the MS-ICA and P222 variant
of the ICA on the EM benchmark model. It can be observed that each run of the P112 -MS-ICAwas able to
find a solution of the EM problem with accuracy higher than 10−20, whereas the best ICA variant could find
the best optimal value greater than 10−07. The best value found by the P222 -ICA variant was highly inferior
to the mean value found by the P112-MS-ICA.

Table 3: Wilcoxon ranks of all the variants based on mean values

Variants KS CE CP NP GS IA EM Mean Ranks

MS-ICA P111 12 2 9 12 12 4 8 8.428571

P112 6 1 1 5 2 14 4 4.714286

P113 11 6 3 9 1 22 9 8.714286

P121 1 3 7 6 9 10 16 7.428571

P122 5 4 4 7 6 19 5 7.142857

P123 10 5 11 10 7 21 11 10.71429

P211 2 20 12 3 4 2 10 7.571429

P212 9 18 8 2 5 8 2 7.428571

P213 8 7 2 4 11 11 6 7

P221 4 19 6 11 8 3 3 7.714286

P222 3 8 5 1 10 12 7 6.571429

P223 7 9 10 8 3 17 1 7.857143

ICA P111 22 17 19 19 24 7 24 18.85714

P112 18 16 24 17 17 13 22 18.14286

P113 23 14 23 16 16 18 14 17.71429

P121 24 15 20 24 23 16 23 20.71429

P122 20 11 22 18 18 23 13 17.85714

P123 19 10 21 22 19 24 18 19

P211 13 24 13 13 22 1 21 15.28571

P212 21 13 15 20 21 9 12 15.85714

P213 17 23 16 21 13 6 15 15.85714

P221 14 21 14 23 20 5 20 16.71429

P222 15 12 17 14 15 15 19 15.28571

P223 16 22 18 15 14 20 17 17.42857
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Figure 6: Best and mean curves for (a) KS; (b) CE; (c) CP; (d) NP; (e) GS; and (f) IA benchmarks
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6 Conclusion

In this work, a multi-simplex supported imperialist competitive algorithm has been proposed. Several
variants of the proposed method were designed and investigated to explore the impact of the addition of
simplex operations on the problem-solving ability of the imperialist system. An analysis of the empirical
results revealed that operations on the associated simplexes accelerated the exploitation process of the
imperialists. Through the Wilcoxon rankings, it was witnessed that the enhanced simplex operations used
in the ICA were able to produce fast convergence and consistent performance while solving real-world
physical models. The variants of the MS-ICA significantly outperformed those of the standard ICA. As
future work, it is intended that the proposed MS-ICA will be investigated for its application to continuous
as well as discrete engineering design problems.
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