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Abstract: The global Signalling System No. 7 (SS7) network protocol standard
has been developed and regulated based only on trusted partner networks. The
SS7 network protocol by design neither secures the communication channel nor
verifies the entire network peers. The SS7 network protocol used in telecommu-
nications has deficiencies that include verification of actual subscribers, precise
location, subscriber’s belonging to a network, absence of illegitimate message fil-
tering mechanism, and configuration deficiencies in home routing networks.
Attackers can take advantage of these deficiencies and exploit them to impose
threats such as subscriber or network data disclosure, intercept mobile traffic, per-
form account frauds, track subscriber location, and deny services. Existing meth-
ods are unable to identify suspicious hosts as they use a minimal number of
network parameters. So, there is a vital need to overcome these deficiencies to
detect the abnormal behaviour of users and hence mitigate security attacks in a
mobile network. This research proposes a model for anomaly detection in mobile
networks based on Rule-based filtering with stateful correlation. The performance
of the proposed method is evaluated using synthetic datasets. Results show that
the proposed anomaly detection model performs 0.37% better in terms of security
attack detection rate, 24.25% better in terms of false alarm rate, and 31.45% better
in terms of true positive rate when compared with the existing pattern recognition
Artificial Neural Network (ANN) algorithm.
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1 Introduction

Signalling System 7 (SS7) is a set of signalling protocols for setting up and terminating calls or
exchanging data between network devices in a telecommunication network. SS7 is used to monitor
mobility, control billing information, produce user safety information, help call delivery, control access
and service authorization [1]. SS7 was developed in 1975, and at that time, only the fixed-line operators,
which were state-owned, had access to the network. Therefore, security was not a priority and relied on
the mutual trust between operators [2,3].
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Currently, the SS7 network is not limited only to fixed-line operators but also used in mobile
networks. Deregulation of the telecommunication network across the world resulted in the liberalization
and privatization of the telecommunication network. It allowed commercial organizations to start
telecommunication networks, hence flooding the market. Moreover, it also created an opportunity for
intruders to effortlessly gain access to the network taking advantage of its vulnerabilities, i.e., lack of actual
subscriber location check, subscriber verification, and lack of illegitimate messages filtering mechanism that
cause threats such as SS7 exposure, breach of subscriber information and confidentiality theft [4].

Intruders can perform attacks, namely, location tracking, interception of calls and SMS, and Denial of
Service [5]. 4G and 5G networks employ diameter and 5G NR (5G New Radio) respectively as the signalling
system. However, the same security threats present in SS7 also exist in 4G and 5G networks as operators
need to support backward compatibility, enabling interaction with earlier generations [6].

The existing intrusion detection methods mainly use K-means clustering, decision trees, random forest,
ANN, and generic rule-based filtering algorithm. The feature sets used by these methods are; distance
travelled since the previous location, location update frequency, elapsed time since the previous location
update message request, network the message originates from, and message request size [7–9]. Although,
rule-based filtering algorithms outperform other machine learning algorithms mentioned above in terms of
better accuracy and detection rate with decreased false alarm rates.

However, these methods fail to consider vulnerabilities such as lack of actual subscriber location check
and verify subscriber’s belonging to a network and lack of illegitimate messages filtering mechanism. If we
do not consider these aforesaid SS7 network vulnerabilities, we will not check the legitimacy of message
requests, leading to threats and attacks such as interception of calls and SMS, location tracking, fraud,
and service denial. Based on the above methods, we can consider a rule-based filtering algorithm and
improvise it to enhance SS7 network security.

Another major issue that hinders secure signalling transport is that trusted network elements carry out
attacks on the signalling infrastructure. This happens because of the business model that allows selling
connectivity access to third parties. So, the network is not restricted to only trusted parties. Anyone
knowing the internal working of the SS7 network can get access and thus perform attacks.

Moreover, according to 3rd Generation Partnership Project (3GPP) Technical Specification
documentation, the existing network protocol uses a stateless firewall that is not good enough to solve
anomaly detection and mitigate security attacks. The current system does not check the subscriber’s
actual location and verifies the subscriber’s belonging to a network [10,11].

In existing researches, authors have suggested using stateful security checks between parameters of
protocol layers of the SS7 network, a correlation between time of message requests and distance between
last known location to the current location that can be used to check subscriber’s actual location and
verify subscriber’s belonging to a network while the subscriber is roaming [12].

Signalling Connection Control Part (SCCP), Transaction Capabilities Application Part (TCAP), and
GSM MAP (Global System for Mobile Communications-Mobile Application Part) layers are responsible
for connectivity between networks and subscribers. However, as illustrated in Tab. 3 in Section 4.1, the
parameters of these layers are not analyzed for anomalies. They are abrupt change in location, malformed
parameters, and inconsistencies in parameters between layers to hide or spoof a sender location. For
example, if an intruder sends a MAP updateLocation (UL) message request, the existing filtering
mechanism alone will not be enough. It only considers received parameters for verifying actual
subscribers and ignores intra-layer parameters checks for inconsistencies and malformed. Further checks
will be required to verify whether the subscriber is present at the location from where the message
originated. This shows that current traffic filtering and blocking mechanisms cannot compensate for
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architectural flaws in the SS7 network. Hence, a new strategy must mitigate the flaws mentioned above in the
current filtering mechanism [13].

The above findings motivated this research to propose a model based on Rule-based filtering with
stateful correlation to detect anomalies such as an abrupt change in location and hide or spoof a sender
by using malformed parameters hence mitigate security attacks in a mobile network. The previous
location of the subscriber is required to find a time distance correlation, essentially preserving the state of
the subscriber’s location to detect abrupt changes in location. This is analogous to stateful security checks
and firewalls in TCP/IP networks.

The performance of the proposed method is evaluated using synthetic datasets simulated using an open-
source attack simulator [7]. Results show that the proposed model has improved the anomaly detection
accuracy and reduces the high false alarm rate compared to the existing methods. The main contribution of
this research is a model to detect anomalous subscribers and anomalous location of originating message
requests in addition to verification of malformed parameters and intra-layer inconsistencies in parameters.

This paper is organized into the following sections. Section 2 highlights the review of security threats
and vulnerabilities in SS7 networks. Section 3 discusses the related work in terms of 3 use of machine
learning techniques to secure signalling network and their shortcoming, while Section 4 presents the
proposed anomaly detection model. The results and discussion are in Section 5, and Section 6 concludes
the paper with future directions.

2 Security Vulnerabilities, Threats, and Attacks in SS7 Networks

Researchers and media have reported SS7 network vulnerabilities [14–16]. Many attacks and network
entry points have been disclosed both by the network industry and academic researchers. The following
section describes the currently known attack types and how it works [17]. These SS7 vulnerabilities and
threats landscape for an intruder to perform attacks can be divided into the following categories:

� SS7 Exposure and Breach of user information or confidentiality theft

� Eavesdropping

� Financial thievery

� Misuse of service

� Denial of Service

� Location Tracking

2.1 SS7 Exposure and Breach

Signalling System No. 7 security issues had been given extensive consideration in recent years. It is
increasingly becoming clear that SS7 is strained with severe weakness and exposures that compromise
cellular customer’s privacy [17]. Jensen et al. [16] tried to utilize machine learning features to improve
the SS7 network and the subscribers’ identity. They have used simulators and produced artificial traffic in
a controlled environment. Virtual verification was used to articulate near close to actual network traffic
utilizing open-source SIGTRAN protocol stack software. However, the approaches described above
remain ineffective, owing to numerous inadequacies.

Furthermore, Denial of Service (DOS) and SMS have been launched to intercept attacks and detect
vulnerabilities using different classifiers. Its practicality needs to be seen in how it works. Sharma et al.
[18] have explored different types of attacks over the SS7 network, i.e., breaches like tracking location,
intercepting SMS and calls, eavesdropping, and finding entry point attacks, but no detection mechanism
was implemented. Similarly, Holtmann et al. [19] have articulated different attacks on interworking
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function (IWF) between diameter and SS7 networks for LTE. There is considerable existing research that has
proposed various approaches to protect the SS7 network from such vulnerabilities and proposed some
protection techniques, but no detection mechanism was implemented to provide proof-of-concept.

2.2 Eavesdropping

An attacker can eavesdrop on a subscriber’s data, wiretap, and send/modify text messages to a victim by
acting as a “man-in-the-middle (MiTM)” attack, the victim completely unaware of the attack [20]. The
intruder bridges himself between the two calling parties and directs all the calls to its monitoring system.
For this purpose, MAP messages and a call-forwarding function are used. The target user is not aware of
this attack. The attacker sends the victim calls to the monitoring system at the SS7 MAP Message level.
Consequently, the attacker establishes another call to the user to whom the call is being made. One cause
described in [20] is the lack of encryption across the network for these attacks.

2.3 Financial Thievery

The victim’s Mobile Switching Centre (MSC) is impersonated in the financial thievery attack. The aim is
to get text messages or to receive information about the victim’s bank account and other attacks. Unstructured
Supplementary Service Data (USSD) is used to achieve the bank’s secret information under such mentioned
attack category. The victim’s account can be misappropriated for monetary transactions [20]. Hall et al. [21]
explained the reasons and pointed out flaws in the current network that cause the stated attacks.

Moreover, Van Do et al. [22] and Yeboah et al. [23] presented grey SMS traffic detection, which cannot
be used in a real-time environment due to the high rate of false positives. Similarly, Sahin et al. [24]
systematically explored telephony frauds types and their benefits in fraudsters’ eyes and elaborate on root
causes, vulnerabilities, and exploitation techniques. It also mentioned a few billings process and
spamming frauds and their effects.

2.4 Misuse of Service

In the misuse of services attack, the subscriber’s billing is exploited, leading to significant financial
repercussions for the network operator. An increase in these attacks causes inaccessibility of services and
decreases gross income [20]. At the same time, Azad et al. [25] assessed the method’s enactment. They
performed a simulation of spammers and non-spammers social behaviour by articulating artificial data.
Their proposed Collaborative Spit Detection System (COSDS) approach yields better detecting accuracy
than traditional standalone detection systems. However, as the research was conducted in a controlled
setup, it cannot fully secure it.

2.5 Denial of Service (DOS)

The main motive of DOS is to decline the services for a specific subscriber. When a user is updated with
a new location and gets registered with the latest MSC (Mobile Switching Centre)/VLR (Visitor Location
Register), it first makes a MAP update request to (Home Location Register). After verifying the received
message, HLR issues MAP InsertSubscriberData (ISD) command to new MSC/VLR and MAP
DeleteSubscriberData (DSD) and MAP CancelLocation (CL) commands to old MSC/VLR [26]. By doing
this, the attacker can change the victim’s (subscriber) allowed services such as disallow the subscriber to
make a phone call, sending SMS, or even altogether remove him from the subscriber’s connected VLR.

2.6 Location Tracking

Location tracking can help find people in an emergency, but hackers can also track anyone
anytime, and then they can perform any criminal activity they want. An attacker can use either MAP
AnyTimeInterrogation (ATI) or MAP ProvideSubscriberInfo (PSI) message requests to track any
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subscriber. To identify these, we must collect information on user behaviour and check for anomalies from
user behaviour, subscribers, and network components. In Tab. 1, the causes behind these vulnerabilities,
threats and attack triggers, and research gaps in the existing research are summarized.

3 Machine Learning and Secure Signalling Network

Qasim et al. [8] and Ullah et al. [9] in their research have suggested using machine learning classifiers such
as decision trees, random forest, support vector machine, ANN, pattern recognition, and rule-based filtering on
a minimal number of feature sets such as distance travelled since previous location update, frequency of
location updates, and time since previous location update, message network origin, and byte length of
location update only. Jensen et al. [16] tried to utilize machine learning features to improve the
SS7 network and subscribers’ identity security. Researchers have proposed an “RC4 stream cypher for SMS
data confidentiality” as a solution to identify network vulnerabilities in SMS services. Their research has
also explained how SMS routing procedures can be exploited for attacks such as interception [27].

Researchers had also identified vulnerabilities in breach of user profile information, user location tracking,
eavesdropping, and misuse of user profile information for financial fraud. They have proposed decision trees,
SVM, and random forest algorithms for anomaly detection. Loay et al. [28], in their research, had discussed
calls/SMS interception and location tracking attacks. They have proposed a penetration testing tool for

Table 1: Causes behind vulnerabilities, threats, and attacks with existing solutions and research gaps

Causes
behind
vulnerabilities

Threats Attacks Existing solutions Research gaps &
possible solution

Lack of
subscriber
actual
location
check

PRIVACY Subscriber/
network
information
disclosure,
location privacy

Simulated prototype to
detect attacks through
different machine learning
techniques such as K-
means, random forest,
decision trees, SVM,
ANN, and rule-based
filtering [7–9].

Unable to verify actual
subscribers belonging to a
network and check actual
location using received
parameters alone.
Need of actual subscriber
check along with location
verification to solve this
issue. Using this, further
scrutiny is necessary to
identify suspicious hosts
by applying a mechanism
to filter illegitimate
messages.

Inability to
authenticate a
subscriber

SECRECY Communication
disclosure

SMS home
routing
configuration
flaws

INTEGRITY System integrity,
subscriber traffic
interception

Lack of
message
filtering

FRAUDS Direct under-
billing effects
operator.
directly over-
billing affects
subscribers.
Cheating through
indirect ways
encompasses
telephonic scams
or spam.
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detecting attacks in SS7 networks. Liu et al. [29] explained how any subscriber’s identity and location could be
compromised due to a lack of secure network channels and propose a defence model.

Similarly, Holtmann et al. [30] have articulated different attacks on interworking function (IWF)
between diameter and SS7 networks for LTE. Sharma et al. [18] and Holtmann et al. [30] have exposed
the susceptibilities of the SS7 network and proposed some protection techniques such as the use of closed
subscriber group in case of dealing with roaming scenarios or validate the authenticity of the incoming
message requests, as protection measures to be implemented by GSMA (Global System for Mobile
Communications) but no proof of concept is given.

However, the approaches described above remain ineffective, owing to numerous inadequacies such as
lack of detection mechanisms without maintaining user states and optimal accuracy and false-positive rates.
Moreover, these methods fail to address subscriber’s actual location checks and subscriber’s belongings
checks, leading to vulnerabilities such as interception of calls and SMS and location tracking. The recent
research to detect and mitigate security attacks on the SS7 network is summarized in Tab. 2.

Table 2: Summary of recent research to mitigate security attacks in SS7 networks

Ref Working Algorithm/Tools used Pro Cons Research gaps &
possible solution

Ullah
[5]

Overview of
possible attacks
on SS7

Suggests how critical
security controls

– Suggested
critical
security
controls

Unable to verify actual
subscriber's belonging and
check actual location using
received parameters alone.
Need of actual subscriber
check along with location
verification to solve this
issue. Further scrutiny is
necessary to identify
suspicious hosts by
applying a mechanism to
filter illegitimate
messages.

Jensen
et al.
[7,16]

A brief
overview of
SS7 attacks, and
SS7 core
network entry
points

Use of ML algorithms,
i.e., K-means and twitter
anomaly detection
algorithm

Simulated
prototype
to detect
attacks
using K-
means
algorithm

Limited
parameters

Qasim
et al.
[8]

Overview of
possible attacks
on SS7

Use of ML algorithms,
i.e., decision trees, SVM,
random forest

Simulated
prototype
to detect
attacks
using ML
techniques

Limited
parameters

Ullah
et al.
[9]

Overview of
possible attacks
on SS7

Use of generic
ML algorithms, i.e.,
ANN, pattern
recognition and rule base
filtering for already
presented parameters by
[7,16]

Simulated
prototype
to detect
attacks
using rule-
based
filtering

Limited
parameters

Rao
et al.
[31]

Gave an
overview of
SS7 location
tracking attacks
with methods

Recommends a generic
approach and suggests
better practices

Brief
report on
entry
points
of SS7

Suggested
generic
solution
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4 Proposed Anomaly Detection Model

The proposed anomaly detection model shown in Fig. 1 comprises four phases and is explained below.

4.1 Phase 1-Data Generation and Feature Selection

An open-source SS7 attack simulator defined by Jensen et al. [16] was used to simulate an SS7 network
that produces regular and abnormal traffic, detecting anomalies and generating alerts. Three network
operators are created using the SS7 attack simulator complex mode. The first network operator (A) has a
subscriber as a victim, the second network operator (B) is considered as a roaming network, and the third
network operator (C) has an adversary as a subscriber. These operators interact with each other using
thirteen standard messages, which do not involve an attack procedure reflecting the usual network traffic.
Along with the regular messages, location tracking and call/SMS intercept attacks are carried out using
MAP UpdateLocation (UL) and MAP ProvideSubscriberInfo (PSI) messages requests which target
operator A’s subscriber. The attacks are simulated by an attacker who is a subscriber from network
operator C.

A set of features as illustrated in Tab. 3 are selected to create a subscriber profile in network operator A.
This profile is used to detect an abrupt change in the location of the subscriber and malformed parameters
anomalies.

Figure 1: Proposed anomaly detection model

Table 3: Features selected to detect anomalies

Feature description Type

1. SCCP layer elements 1. SCCP layer elements

a. Calling party address (CgPA) a. Destination address

b. Called party address (CdPA) b. Source address

c. Calling & called GT digits c. Global title codes

d. e164.country_code d. Country code–numbering plan

e. Subsystem number (SSN) e. HLR/VLR/MSC number

2. TCAP layer elements 2. TCAP layer elements

a. Application context name (ACN) a. Object identifier

b. Local & global opcodes b. Operation codes

3. GSM MAP layer elements 3. GSM MAP layer elements

a. Local & global opcodes a. Operation code

b. IMSI, e.mcc, e.mnc b. User HLR database objects

c. MSC/VLR number, MSISDN c. User current connected location

d. e164.country_code d. Country code

e. Location area code e. Location area, paging area

4. Timestamps of message requests 4. Time of message requests received
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4.2 Phase 2-User Profile Building

We have proposed to build a user profile to capture the behaviour of subscribers. Because when an attack
occurs, it will introduce abnormalities in the subscriber’s behaviour contrary to its profile parameters. The
anomalies introduced in profile due to attacks can be detected by analyzing user profiles using our
proposed Rule-based filtering with stateful correlation. One would assume that a simple metric
comparison with a changed threshold would detect an attack, but this simple method will not always be
successful in attack detection due to the dynamic nature of subscriber actions as it may also assume the
rightful user as an attacker. Our proposed model avoids this scenario by building a user profile that is
compatible with stateful correlation algorithms. This serves as a key to detect anomalous behaviour.

We create a user profile using the algorithm shown in Fig. 2 with the help of the following attributes
derived from the synthetic data file from phase one:

� Message request type (UL, PSI)

� Previous location-old VLR LAC

� Time since previous location update

� Message network origin-new VLR LAC

� ACN

� CgPA, CdPA fields (global title, SSN)
� paging Area

� e212.mcc and e212.mnc

In the algorithm illustrated in Fig. 2, the dataset from the simulator is given as input to the User profile-
building algorithm. The algorithm builds a User Profile by retaining states using MAP UpdateLocation (UL)
message requests of all network subscribers. The last VLR address, current VLR address, and time between
the current and last location update message are the main features to build a user profile. The last known VLR
address is retrieved by the VLR address stored in HLR, based on successful location updates, and the current
VLR address will be retrieved from the new VLR database. The time difference is calculated by subtracting
the last UL message request timestamp from the current UL message request timestamp. Both VLR address
features are used to find the coordinates of the subscriber, and the time difference feature is used in the time
velocity check rule of the stateful correlation module from Section 4.3.

Figure 2: User profile building module
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4.3 Phase 3–Rules Generation Using Stateful Correlation

If an operator can maintain subscriber states, it would be possible to identify anomalies in how a single
subscriber moves geographically. For example, according to our simulation, the subscriber from operator A
would travel consistently daily. An anomaly occurs when an attacker uses the MAP UpdateLocation (UL)
message with a different location that is significantly far away from the subscriber’s current location. This
signals a journey between two far away locations in a brief period. The user profile is built to detect this
anomalous behaviour. We achieve this by correlating the time and distance travelled by the subscriber
from his last known VLR location to his current VLR location (updated by the attacker). Fig. 3 describes
the algorithm to detect anomalous updated location requests. Stateful security checks and time distance
correlation are performed with the help of the attributes derived from the user profile listed in Section
4.2 to generate rules. Below are the step-by-step details of rules generation.

4.3.1 Detect Anomalous Updated Location Request
The algorithm given in Fig. 3 is used to get the exact coordinates of the subscriber’s last known VLR

location and current VLR location addresses from the user profile. The Great Circle Distance Haversine
formula is used to find the distance between these two coordinates. After calculating distance, it is
required to calculate the minimum travel time between the same for which Google Map distance matrix
API has been used. This minimum travel time is used as a threshold of the time required for travelling
between the current and last known VLR location. If the time difference between the two updateLocation
(UL) message requests (using message timestamp) is less than this threshold time, an anomaly has been
detected. This anomaly detection rule has been labelled as a velocity check rule described in Fig. 4.

A. Find_Coordinates ()

In this function, we have used the OpenCellId API and the world cities database by simplemaps. The
APIs return the coordinates of the given addresses, and these coordinates are saved as the subscriber’s old
and new VLR address coordinates.

B. Find_Distance ()

Using this function, we find the distance between the old and new VLR addresses. This distance is then
correlated and used to identify irregularities since the last updateLocation (UL) message requests. To find the
distance, we have used the Great Circle Distance Haversine formula [32]. This function finds the distance

Figure 3: Time distance correlation algorithm
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between the old and new VLR address coordinates. The mathematical representation of the formula is shown
as follows.

a ¼ sin 2
D’

2

� �
þ cos’2 � sin 2

D�

2

� �

c ¼ 2 � a � tan2
� ffiffiffi

a
p

;
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p ��

d ¼ R � c
where φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371 km);

C. Shortest–TravelTime()

After finding the distance between old VLR and new VLR addresses, we have to find the minimum travel
time between two location coordinates, for which we have used Google Maps distance matrix API [33].

4.3.2 Using Velocity Check Rule
The algorithm given in Fig. 4 will be called on each updateLocation (UL) request. It utilizes the

algorithm illustrated in Fig. 3 to calculate the distance travelled and the minimum time required to travel
this distance. If the timestamp difference between two updateLocation (UL) message requests is less than
the minimum time threshold, a velocity check anomaly has been detected, showing that the subscriber
location has been abruptly changed.

4.3.3 Detect Malformed and Inconsistency in Parameters Between Layers
A. Using Malformed Parameters Check Rule

The MAP OpCodes are the key identifiers for MAP category messages 1 or 2 threats. Recommendations
and evidence to date show that using the MAP OpCode alone is sufficient to apply rules to such MAP
messages. However, it is anticipated that the ACN may provide the environment to carry out different
attacks by malformed it or even removing it from the message parameters [34]. Therefore, the ACN is
considered a valuable factor for anomaly detection from a rule’s definition perspective. Similar anomalies
may be distinguishable by the absence of the OpCode value and numbering plan alterations for attacking
subscribers [34]. From Fig. 5, we can see how these malformed parameters can be used to attack subscribers.

The following malformed parameters check rule algorithm in Fig. 6 will be called on each PSI
message request.

Figure 4: Velocity check rule
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B. Using Addressing Correlation & Inconsistent Message Format Check Rule

Attack messages may contain inconsistencies to hide or spoof a sender or the purpose of the packet. One
way to discover a potential attack is to perform consistency checks between the layers or messages
themselves. Another efficient check is to perform cross-layer checks on addressing information, for
example, to validate if the CgPA in the SCCP layer and the information available, e.g., GT(s), in the
MAP layer belong to the same operator.

Other inconsistencies may involve a comparison of expected parameters based on usage. For example, a
comparison of the TCAP Application Context used per packet type/operation code, i.e., using a MAP
InsertSubscriberData packet with a vcsgLocationUpdate application context name classed abnormal. In

Figure 5: Different ways of attack personifications using malformed parameters

Figure 6: Malformed parameters check rule
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this case, the check ensures that the context needs to be consistent with the usage. The parameters
inconsistency checking rules are described in Figs. 7 and 8, respectively.

In a nutshell, for UL message requests, time distance correlation is considered, and for PSI and SRI
messages requests, parameters pattern matching is performed.

4.4 Phase 4-Anomaly Detection and Anomaly Blocking Alert

The time velocity check rule, malformed parameters check rule, and inconsistency in parameters
between protocols layers check rules must be utilized to detect anomalies and generate blocking alerts.
One way is to apply all these checks on all message types; however, that would not provide an efficient
implementation. Hence, we propose to apply the velocity check rule only for updateLocation (UL)
message requests. Applying malformed parameters check rule and inconsistency in parameters between
protocol layers rules for Provider Subscriber Info message requests and Send Routing Info message
requests. The anomaly detection algorithm is given in Fig. 9.

The proposed model can detect multiple attacks happening at the same time from different regions. The
proposed model works in conjunction with the existing SS7 firewall at network borders and checks each
inbound packet whether it is malicious. Parallelization, known as load balancing firewalls, is an
architecture that allows packet inspection under high traffic loads and speeds. Parallel firewall designs are
used to cater to multiple attacks happening simultaneously [34].

Figure 7: Parameters inconsistency check rule 1

Figure 8: Parameters inconsistency check rule 2
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5 Results and Discussion

5.1 Results

The proposed model using the feature set proposed as illustrated in Tab. 3 was tested to detect the
anomalies and mitigate attacks. The results show an increased true positive rate (TPR) and a low false
alarm rate (FAR), respectively. This performance is compared with existing algorithms and methods, as
shown in Tab. 4, demonstrating the proposed model better.

We have used a dataset of 7,056 samples generated using the SS7 attack simulator. Out of these samples,
11 samples were detected as anomalies for a particular MAP updateLocation (UL) message request, and
100 MAP ProviderSubscriberInfo (PSI) message requests were detected as anomalies out of a total of
2145 anomalies. Based on the dataset for a particular MAP updateLocation (UL) message request, 9 of
these detected anomalies were actual attacks, i.e., true positives, leaving four false positives. Similarly, for
MAP ProviderSubscriberInfo (PSI) message request, 96 of these detected anomalies were actual attacks,
i.e., true positives, leaving only two false positives in case of MAP updateLocation (UL) message request
and four false positives for MAP ProviderSubscriberInfo (PSI) message request. The accuracy of the
detection of attacks was 99.95%.

Based on the results in Tab. 4, it can be concluded that rule-based filtering for all SS7 MAP messages can
be implemented for actual SS7 network data. From the results illustrated in Tab. 4, machine learning can be
applied successfully, and it can detect zero-day attacks. However, it can skip some legitimate attacks and
generate more false alarms than rule-based filtering. As opposed to machine learning techniques, rule-based
filtering can filter various types of messages with greater accuracy. It is supposed to produce fewer false
alarms than machine learning techniques. The limitation of rule-based filtering is that it requires a separate
rules template for all category types of SS7 messages for attack detection. Furthermore, more excellent
knowledge of the internal functioning of the SS7 network is required for the design of these templates.

Figure 9: Anomaly detection algorithm

Table 4: Evaluation of the proposed model with the existing algorithms

Evaluation matrix Detection rate % False alarm rate % True positive %
Algorithms

K-means clustering 100 49 75.25

SHESD algorithm 100 43 57

Rule-based filtering 98.8 33.2 66.8

Pattern recognition ANN 99.58 24 76

The proposed model 99.95 18.18 99.90
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5.2 Evaluation Matrix

The Anomaly detection model is evaluated using the following metrics:

� True Positive (TP), the number of instances correctly predicted as attacks.

� False Positive (FP), number of instances wrongly predicted as attacks.

� True Negative (TN), the number of instances correctly predicted as non-attacks.

� False Negative (FN), the number of cases wrongly predicted as non-attacks.

� Accuracy = TP + TN/(TP + FP + FN + TN)

� False Alarm Rate = FP/(FP + TN)

� Detection Rate = DR = TP/(TP + FN) It is the ratio between the total numbers of attacks detected by
the system to the total number of attacks present in the dataset

The results are validated by comparing with A-NADS [16] and Anomaly Detector [9].

5.3 Discussion

Defending and shielding mobile networks is a foremost concern for mobile network operators. The use
of internet protocol (IP) by the telecom industry and the deregulation and liberalization of mobile network
architecture makes the network easily accessible to an attacker. Along with the use of off-the-shelf hardware,
an attacker could efficiently perform imminent attacks. The persisting causes behind vulnerabilities and
attacks are the lack of checking a subscriber’s belonging to a network and their actual location, lack of
message filtering mechanisms, and SMS Home Routing configuration flaws in the current infrastructure.

Since the SS7 network standards remain in use for decades, only new network generations can make
structural or reverse incompatible changes. To eliminate insecure legacies, we could use 5G’s window of
opportunity to develop future mobile safety specifications. As the previous generation of network
technology will still be in use (backward compatibility), there is a need to solve these issues in legacy
networks. The persisting challenges where an attacker can perform location tracking attack via Global
Opcode by using PSI message request with Global Opcode tag and could do Voice call interception
(MiTM) with the help of ISD message request and double MAP messages requests to perform MiTM
attack are unable to be prevented by the present signalling firewalls. The existing signalling firewalls
could only inspect and forward message requests to the network for processing and do not bother about
the incorrectness of request and response back, leading to location tracking attacks [34].

While 3G and 4G mobile networks’ security properties have improved dramatically compared to 2G
(GSM), there are still substantial limitations in users’ privacy. Several potential changes to the 2G–4G
protocols have been proposed to ensure more excellent protection for users; however, they all entail
substantial alterations to currently deployed infrastructures, which are almost certainly not realistic to
achieve in practice [35]. Signalling networks attack risks are becoming very common, forcing the
industry to protect its infrastructure very severely. As the industry is trying to find preventing measures,
adversaries, at the same time, are trying to scale their attack vectors over different technologies from
2G/3G to 5G. Due to undermined mobile security, signalling infrastructure is continuously being
compromised somehow. Real-time intelligent defensive monitoring can understand, track, and respond to
these intimidations. The introduction of emerging technology and modernization has led to the realization
that the SS7 core network is no longer a stable network that has accelerated its weaknesses and defences.
Even after this acknowledgement, SS7 vulnerabilities and exploits were not widely documented or well-
known due to complicated cellular networks, complex protocols, and elusive network interfaces [36].
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6 Conclusion

In SS7, the networks’ backward compatibility, such as 4G to 3G, market deregulation, and exposure to
the IP technology, makes the attack vectors possible. The attacks are mainly caused by “unsecured pre-
authentication traffic” and “wireless channel openness.” While the modifications to the protocol and
current cryptographic techniques can solve unsafe pre-authentication, more substantial network
architecture improvements are needed for the wireless channel. Network architecture flaws can only be
mitigated by regular monitoring and analysis of real-time network traffic and message filtering
mechanism. As mentioned earlier, those can be accomplished by rigorous attack detection and response
systems to protect against the attacks described.

The existing methods are unable to identify suspicious hosts as they use a minimal number of
parameters. In this research, Rule-based filtering with stateful correlation is proposed to detect attacks
against the SS7 network. The proposed anomaly detection model performs better than the existing
methods in terms of attack detection rate, false alarm rate, and true positive rate. The proposed anomaly
detection model performs 0.37% better in terms of security attack Detection Rate, 24.25% better in terms
of False Alarm rate, and 31.45% better in terms of True Positive rate when compared with the existing
Pattern Recognition ANN algorithm that is the closest in terms of performance.
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