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Abstract: In agriculture, plant diseases are mainly accountable for reduction in
productivity and leads to huge economic loss. Rice is the essential food crop in
Asian countries and it gets easily affected by different kinds of diseases. Because
of the advent of computer vision and deep learning (DL) techniques, the rice plant
diseases can be detected and reduce the burden of the farmers to save the crops.
To achieve this, a new DL based rice plant disease diagnosis is developed using
Densely Convolution Neural Network (DenseNet) with multilayer perceptron
(MLP), called DenseNet169-MLP. The proposed model aims to classify the rice
plant disease into three classes namely Bacterial Leaf Blight, Brown Spot, and
Leaf Smut. Initially, preprocessing takes place in three levels namely channel
separation, grayscale conversion, and noise removal using median filtering
(MF). Then, the fuzzy c-means (FCM) based segmentation process identifies
the diseased portion in the rice plant image. The pretrained DenseNet169 techni-
que is used as a feature extractor and the final layer is replaced by the MLP to
perform rice plant disease classification. The effectiveness of the proposed model
has been validated against benchmark dataset and the simulation outcome is
examined under diverse measures. The obtained results defined the superior
results of the DenseNet169-MLP model over the recently presented methods with
the maximum accuracy of 97.68%.

Keywords: Rice plant disease; segmentation; fuzzy c means; DenseNet model;
feature extraction

1 Introduction

Agriculture acts as a vital part to obtain food security, alleviate poverty, and strengthen the development.
Since the global population is anticipated to be 9.7 billion in 2050 and 11.2 billion at the end of this
century [1] the crop productivity should be increased inspite of different crop yield affecting factors such
as pest, weed, sunlight, pathogen, nutrient, water, soil deprivation, environment impact, and sparse arable
land. The recent developments in technologies find helpful to attain high food productivity. Computer
vision (CV) based techniques can automate the crop inspection using in-situ and ex-situ imaging
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techniques for improvising the entire crop productivity. On the other hand, rice is considered as a major food
source provider of protein and energy to atleast 50% of the global population. Besides, the utilization of rice
and demand gets increased with a rise in population. For fulfilling the rising food requirements, rice
productivity should be raised to greater than 40% by 2030. However, rice plant diseases have resulted in
a significant loss in productivity. Presently, the utilization of pesticide and blast-resistant approaches are
the major ways available to combat the disease. The abundant utilization of pesticide not only increase
the production cost, but it also affects the environment in a significant way.

At present times, computer-aided diagnosis (CAD) models are available to monitor crop diseases and pests
using plant images. An automated rice disease diagnosis model can provide details to prevent and control the
rice diseases for reducing the financial loss, decrease the pesticide residue, and raise the quality and number of
crops. To attain such a model, researches are urged to develop effectual image processing approaches to detect
plant diseases. The image processing steps involved in rice disease detection are preprocessing, segmentation,
feature extraction, and classification processes. These processes are carried out only on the exterior appearance
of the affected plants [2]. Generally, leaves are considered as the major source for plant disease detection. The
plant diseases normally vary in size, shape, and color and each disease possesses some unique characteristics.
Few diseases appear in yellow or brown in color. At the same time, few diseases are identical in shapes however
vary in color, whereas a few others are identical in color and vary in the shapes. Next to the segmentation of
affected and healthy portions, the features relevant to the diseases could be extracted.

To detect the leaf diseases, human vision based models are commonly employed in a traditional way. It
requires more time and highly expensive. The accurateness of the human vision model is based on the
perception of the persons or experts. Machine learning (ML) and deep learning (DL) approaches allow
identification of different kinds of diseases, formulate proper decisions, and choose effective treatment. Only
a few works have concentrated on the recognition of rice plant diseases using ML and DL models.
Presently, owing to the capability of extracting optimal features, CNN models have been employed
comprehensively in ML and pattern recognition researches. Reference [3] reported that the multilayer neural
network (NN) offers better learning capability and it denotes the actual data appropriate for classification.

CNN offers dedicated learning solutions and extract related high level features straightaway from the
input images. The CNN architectural models are based on the visual cortex of cats in Hubel's and
Wiesel's earlier works. Particularly, [4] performs the object detection task by the use of deep CNN. It has
tracked by the appearance of numerous enhanced approaches and application areas of CNN. In general,
the human recognition of plant diseases is naked eye examination of expert that seems to be time-
consuming and costly in real-time. It is hard to process and also occasionally it generates an error in the
identification of the diseases [5]. Owing to the ignorance of appropriate management for rectifying the
rice plant leaves diseases, rice productivity is being decreased recently. For resolving this, an appropriate
and accurate rice plant detection model is required. Therefore, this paper develops a novel methodology
to detect and categorize the diseases present in rice plant images.

This study proposes effective deep learning (DL) based detection and classificationmodel for rice plant diseases
using the DenseNet model and multilayer perceptron (MLP), called the DenseNet169-MLP model. In this work,
DenseNet model is chosen due to the following advantages: alleviate the vanishing-gradient problem, strengthen
feature propagation, encourage feature reuse, and substantially reduce the number of parameters. The proposed
model comprises set of processes such as preprocessing, fuzzy c-means based segmentation, DenseNet169 based
feature extractor, and MLP classifier. The MLP model is integrated with the deep features extracted from the
DenseNet169 model for investigating and verifying the efficiency of the deep features of the DenseNet169 model.

The remaining sections of the study are arranged here. Section 2 briefs the works related to the proposed
model. Section 3 introduces the rice plant detection and classification model. Section 4 validates the work
and Section 5 draws the conclusion.
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2 Literature Survey

This section reviews the plant disease detection models exist in the literature. In [6], a DL based CNN
model is applied to detect the three rice plant diseases in an automated way. In the proposed method, the
healthy and infected leaf images are differentiated from a total of 1500 rice images. In [7], a new rice
plant disease detection and classification model has been presented. Initially, the rice plant images are
acquired by a digital camera and then centroid feeding based K-means clustering is applied for
segmenting the images. Then, color, shape, and texture features are extracted. Lastly, Support Vector
Machines (SVM) is applied for multiclass classification. The presented model has attained 93.3% and
73.3% accuracy on the training and test data correspondingly.

In [8], a method of recognizing and classifying paddy leaves diseases by the use of Deep Neural
Network with Jaya Optimization Algorithm (DNN-JOA) is presented. At the preprocessing stage, the
background is removed and the RGB image is transformed into the HSV image. Next, the clustering
process is performed to segment the affected and healthy portions of the rice plant images. The
classification of diseases takes by the use of DNN-JOA. In [9], an ML-based rice plant disease diagnosis
model to identify blast disease in South India has been presented. The presented model can identify blast
diseases and minimize crop losses effectively. Reference [10] designed a model using DCNN to
automatically recognize and categorize biotic and abiotic paddy crop diseases by the use of images
captured from the field. The presented model makes use of a pretrained VGG-16 CNN approach to
automatically classify the diseased paddy crop images which are gathered at the time of the booting
growth stage. In [11], a rice blast detection model using CNN has been presented and it yields better
detection rate.

Reference [12] devised a deep machine vision based model to detect, classify and quantify 8 soybean
plant stresses, from a total of 25,000 images of stressed and healthy leaves. This method has achieved a
detection rate of 94.13% by the presented deep CNN approach. Reference [13] applied 5 distinct CNN
approaches to identify plant diseases by the use of leaf images. Reference [14] designed an automated
wheat disease identification model utilizing the supervised DL model. It is tested using a wheat image
dataset comprising of 50k labeled leaf images. The proposed model includes four diverse CNN models for
recognizing the seven wheat disease classes. The results stated that the VGG-16 model has attained a higher
detection rate of 97.95%. Reference [15] developed a rice plant disease recognition model by the use of DL
approaches. It is tested using 500 leaf and stem images of rice plants. It makes use of LeNet-5 and AlexNet
CNN models. This study revealed that the stochastic pooling improvises the generalization capability of the
CNN approach and avoids overfitting.

Based on CNN, an effective rice plant identification model has been designed. It is also tested a dataset
comprising 500 images of affected and unaffected leaf and stem of rice plants. The proposed method has
classified a set of 10 rice diseases and has obtained better accuracy over the traditional ML models. For
evaluating the region of interest (RoI), neutrosophic logic technique is employed [16] to determine the
presence of infected regions in the image. Different classification models are applied and the random
forest (RF) model has attained better detection performance on the applied set of 400 leaf images.

Reference [17] introduced a disease detection model for rice plants. This method determines the diseased
area and then calculates the severity level of the disease. Depending upon the severity level, the pesticides are
applied for rice plant diseases. In [18], a new rice plant disease detection method has been developed using
the Naive Bayes (NB) classification model. This method has detected and categorized three major kinds
of rice plant disease and it has less computation time. Reference [19] developed a recent technique for
automatic recognition of rice plant diseases. Once the features are extracted, the classification process is
carried out using SVM, NB, back propagation neural network (BPNN) and K nearest neighbors (KNN).
Reference [20] examined the performance of the diverse transfer learning methods for DNN based plant

IASC, 2022, vol.31, no.2 1259



classification. Reference [21] make use of CNN to detect weeds in soybeans and categorize the weed
between grass and broad leaves. A new image dataset is generated comprising 15000 images. The applied
CNN model has exhibited better performance on the detection process compared to existing methods.
Though several rice plant disease classification models are available in the literature, there is still a need
to improve the detection rate in the rice plant disease diagnosis.

3 The Proposed DenseNet169-MLP Model

The overall workflow involved in the DenseNet169-MLP technique is shown in Fig. 1. The
DenseNet169-MLP model undergoes preprocessing to improve the image quality, FCM based
segmentation to detect the infected portions, DenseNet169 model for the extraction of the features, and
MLP based classification to categorize the images into a different set of class labels. These processes are
clearly explained in the subsequent sections.

3.1 Preprocessing

Image pre-processing is the procedure employed to eliminate the existence of different noise and other
objects present in the image. In the earlier stage, the RGB color image of the rice plant undergoes a channel
separation process where the three channels R, G, and B are separated from one another. Next, grayscale
conversion process takes place where the RGB rice plant image is transformed into grayscale. Afterward,
MF is used to boost the quality of the rice plant image and it is a type of non-linear filtering approach
which is commonly applied to remove the noise that exists in the image. The MF technique generally
replaces every pixel exists in the input image by the median of the grayscale value of nearby pixels. It is
also termed as smoothing spatial filter. Once the filtration task gets done, image segmentation using the
FCM technique take place to identify the infected or healthy portions of the rice plant image.

3.2 FCM Based Segmentation

Segmentation is considered as an essential process in pattern recognition and image processing based
applications. In rice plants, the segmentation process can effectively identify the diseased portions in an
automated way. The proposed model make use of FCM based segmention technique and effectively
detect the diseased portions from the rice plant leaf images. FCM is commonly employed for soft
clustering [22]. It is intended to segment the image X = {x1, x2…xn}, with n pixels, into c segments (two
segments namely diseased and healthy portion), such that each pixel falls into a class with a particular
membership degree. The fuzzy set (DFÞ is mathematically represented by:

DF ¼ ½ðxij; mDðxijÞÞjxij 2 X� (1)

where μD(xij)→ [0, 1] defines membership of pixel xj to a certain cluster i in set D. The μD(xij) of every
individual pixel. The FCM can be represented by the following objective function as given in Eq. (2):

JFCM ¼
XC
i¼1

Xn
j¼1

mm
ij d

2
ij (2)

where c denotes the cluster count, n is the pixel count, μij is the degree of membership with the limitation

such that
PC
i¼1

mij ¼ 1, m defines the variable to manage the fuzziness of the clustering procedure and

dij ¼ kxj � #ik is the Euclidean distance among the pixels that exist in the image and cluster prototype.

FCM has begun by the initialization of the arbitrary values of membership matrix ranges from 0 to 1,
subject to membership constraint. The cluster prototype undergo arbitrary initialization. The minimization of
the FCM objective function of FCM takes place by the use of the Lagrange multiplier. The cluster prototype
(#iÞ and the memberships (μij) are defined using Eqs. (3)–(4) respectively.
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#i ¼
Pn

j¼1 m
m
ij xjPn

j¼1ðmm
ij Þ

(3)

mij ¼
1

Pc
k¼1

dij
dkj

� �2
=ðm� 1Þ

(4)

Figure 1: Overall process of proposed method
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3.3 Densenet169 Based Feature Extraction

In this study, the DenseNet169 model is applied to extract the valuable features from the segmented rice
plant image. Fig. 2 illustrates the architecture of DenseNet. DenseNet is a network architecture in which the
layers are straightaway linked to each other in the dense block in a feed forward way. The layers are defined
in a way that the activation map of every earlier layer is treated as individual input whereas its activation map
is fed as input to every subsequent layer. In DenseNet [23], the features are concatenated to one another
before fed into the layer.

Therefore, the lthe layer has l inputs, comprising the feature map of every preceding convolution block.
Then, the feature maps are fed to every L − 1 succeeding layer. It establishes LðLþ1Þ

2 links in an L-layer
network, as an alternative of just L, as in conventional architectural models. Owing to the dense
connectivity pattern, it is referred to as DenseNet. DenseNet comprises a convolution, dense block,
transition, and classifier layers after the global average pooling at the input end.

In this paper, DenseNet-169 is applied which comprises 4 dense blocks and total 169 layers (165- conv
+ 3-transition + 1-classification). The layered structure of the DenseNet 169 model is shown in Fig. 3.

Figure 2: Architecture of DenseNet model

Figure 3: Layered structure of DenseNet-169 model
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3.4 Transfer Learning

Transfer learning is performed on pretrained DenseNet-169 for rice plant disease classification. In
contrast to fine tuning process, in this study, feature extraction process is done by eliminating the last
fully connected layer (classifier layer) of the DenseNet model and considering the output data of the
second final layer as extracted features (termed as DenseNet codes), which are generally high dimension
vectors and denotes the features of the input images. Then, the MLP is placed as the final layer of the
DenseNet model to perform rice plant disease classification using the extracted features. In the entire
process, the DenseNet model is applied as the feature extraction technique and has shown effective
outcomes over the existing models [24].

MLP model comprises three components namely input, hidden and output layers. The MLP model
contains many diverse hidden layers allowing the network to have computation capabilities of generating
the network output. Fig. 4 depicts the architecture of MLP model with an individual hidden layer
containing some weights linking among the layers to classify the rice plant image into three classes. The
output values would be determined as follows. Initially, the sum of the weights is determined as given in
Eq. (5):

Sj ¼
Xn
i¼1

wijxi þ bi (5)

where xi is the input parameter, wij is the weight among the input parameter xi and neuron j, and βi is the input
parameter's bias term. Next, the output value of the neuron in the hidden layer is created from the received
value of weighted summation utilizing a sigmoid activation function as given below.

f jðxÞ ¼ 1

1þ e�Sj
(6)

where fj is the sigmoid function for neuron j and Sj is the sum of weight. At last, the outcome of the neuron j
can be determined by:

yj ¼
Xk
i¼1

wijf j þ bj; (7)

where yj is the outcome of neuron j, wij is the weight among the output parameter yi and neuron j, fj is the
activation function for neuron j, and βi is the bias term of the output parameter. The outcome of the MLP
represents the appropriate class labels of the applied rice plant images.

Figure 4: Layered architecture of MLP
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4 Performance Validation

4.1 Implementation Setup

In this section, the experimental validation of the DenseNet169-MLP technique has been examined
under diverse aspects. The experiments were carried out on a PC i5-8600k processor, GeForce 1050Ti
4GB graphics card, 16GBRAM, and 1TB HDD. The proposed model is simulated using Python
3.6.5 tool. The parameter setting is given as follows: mini batch size: 200, dropout: 0.5, number of
hidden layers:3, number of hidden units: 1024, and learning rate: 0.01. The measures used to analyze the
results of the DenseNet169-MLP model are Sensitivity, Specificity, Precision, Accuracy, F-score,
Negative Predicted Value (NPV), False Positive Rate (FPR), False Negative Rate (FNR) and False
Discovery Rate (FDR). For validation, a benchmark rice plant image dataset is used [25]. Some sample
test images under every class are provided in Fig. 5.

4.2 Results and Discussion

Fig. 6 shows the confusion matrix derived from the DenseNet169-MLP model at the time of execution.
The figure states that the DenseNet169-MLP model has correctly classified 40 images under Bacterial Leaf
Blight, 33 images under Brown Spot, and 38 images under Leaf Smut classes respectively.

For better understanding, the confusion matrix in the figure is transformed into a tabular form as given in
Tab. 1. Besides, the table values are manipulated and represented in TP, TN, FP, and FN values in Tab. 2. The
values in these tables are used to determine the classification results of the DenseNet169-MLP model.

Tab. 3, Figs. 7 and 8 demonstrates the classification performance of the DenseNet169-MLP model. The
table values indicated that the DenseNet169-MLP model has showcased effective classification performance
on the applied images. On the classification of Bacterial Leaf Blight disease, the DenseNet169-MLP model
has attained optimal results with the maximum sensitivity, specificity, precision, accuracy, F-score, and NPV
of 100. Besides, on the classification of brown spot disease, the DenseNet169-MLP model has obtained a
higher sensitivity of 89.19%, specificity of 100%, precision of 100%, accuracy of 96.52%, F-score of
94.29%, NPV of 95.12%, FPR of 0, FNR of 10.81% and FDR of 0.

Figure 5: Sample images a) bacterial leaf blight b) brown spot c) leaf smut
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Finally, the DenseNet169-MLP model has classified the leaf smut images with the sensitivity of 100%,
specificity of 94.80%, precision of 90.47%, accuracy of 96.52%, F-score of 95%, NPV of 100%, FPR of
5.19%, FNR of 0 and FDR of 9.52%. These values demonstrated the proficient characteristics of the
DenseNet169-MLP model on the classification of rice plant diseases.

Tab. 4 represents the analysis of the comparative results of the DenseNet169-MLP model with recently
proposed models [7–9] interms of different measures. Fig. 9 shows the sensitivity and specificity analysis of
the DenseNet169-MLP model with compared methods. The figure portrayed that the ANN model is found to

Figure 6: Confusion matrix of proposed DenseNet169-MLP (Execution time)

Table 1: Confusion matrix of proposed DenseNet169-MLP

Input labels Class labels Total images

Bacterial leaf blight Brown spot Leaf smut

Bacterial leaf blight 40 0 0 40

Brown spot 0 33 4 37

Leaf smut 0 0 38 38

Total images 40 33 42 115

Table 2: Manipulations from confusion matrix of proposed DenseNet169-MLP model

Different levels Bacterial leaf blight Brown spot Leaf smut

TP 40 33 38

TN 75 78 73

FP 0 0 4

FN 0 4 0
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be the worst performance which has attained a minimum sensitivity and specificity of 63.30% and 81.58%
respectively. On continuing, closer classification performance to the ANN model has been attained by the
KNN model with the sensitivity and specificity of 65% and 78% respectively. Followed by, the DAE
model has demonstrated slightly higher sensitivity and specificity of 68.02% and 87.18% respectively.
Besides, the DNN model has reached moderate classifier results with sensitivity and specificity of 73.46%
and 89.42% respectively.

Also, the DNN-JOA model has resulted in somewhat acceptable results with the sensitivity and
specificity of 83.70% and 94.04% respectively. Moreover, the SIFT-SVM and SIFT-KNN models have
exhibited competitive results with the maximum sensitivity values of 86.66% and 90% respectively.
However, the CNN model has a slightly higher result with sensitivity and specificity values of 94% and
94%. At last, the DenseNet169-MLP model has demonstrated superior performance by attaining
maximum sensitivity and specificity values of 96.40% and 98.27% respectively.

Table 3: Performance measures of test images on proposed DenseNet169-MLP

Measures Bacterial leaf blight Brown spot Leaf smut Average

Sensitivity/TPR 100 89.19 100 96.40

Specificity/TNR 100 100 94.80 98.27

Precision/PPV 100 100 90.47 96.82

Accuracy 100 96.52 96.52 97.68

F-score 100 94.29 95.00 96.43

NPV 100 95.12 100 98.37

FPR 0 0 5.19 1.73

FNR 0 10.81 0 3.60

FDR 0 0 9.52 3.17

Figure 7: Test image analysis of DenseNet169-MLP model with different measures
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Fig. 10 depicts the precision and F-score analysis of the DenseNet169-MLP method with previous ones.
From the figure, it is clear that the ANN approach is said to be an inferior performance that has reached lower
precision and F-score of 60.87% and 68.31% respectively. In line with this, the nearer classification function
to the ANN method is accomplished by the DAE approach with the precision and F-score of 67.58% and
77.03% correspondingly. Along with that, the KNN scheme has showcased better precision and F-score
of 72% and 65% respectively. On the other hand, the DNN technology has attained gradual classifier
results with precision and F-score of 74.91% and 81.51% respectively. Moreover, the DNN-JOA
technique has ended with considerable results with the precision and F-score of 81.24% and 88.74%
respectively. Also, the SIFT-SVM and SIFT-KNN methodologies have referred competing results with the
higher precision and F-score values of 86.66%, 86.66% and 90.60%, 90.14% correspondingly. Hence, the

Table 4: Performance measures of test images on proposed DenseNet169-MLP

Methods Sensitivity Specificity Precision Accuracy F-score

DenseNet169-MLP 96.40 98.27 96.82 97.68 96.43

VGG-16 CNN (2020) - - - 92.89 -

DNN_JOA (2019) 83.70 94.04 81.24 94.25 88.74

DNN (2019) 73.46 89.42 74.91 90.00 81.51

DAE (2019) 68.02 87.18 67.58 86.04 77.03

ANN (2019) 63.30 81.58 60.87 80.01 68.31

CNN (2019) 94.00 94.00 94.00 94.00 94.00

KNN (2019) 65.00 78.00 72.00 70.00 65.00

BPNN (2018) - - - 95.83 -

SVM (2017) - - - 93.33 -

SIFT-SVM (2016) 86.66 - 86.66 91.10 86.66

SIFT-KNN (2016) 90.00 - 90.60 93.33 90.14

PCA-SVM (2015) - - - 96.55

Figure 8: Test image analysis of DenseNet169-MLP model with different measures
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CNN approach implied the moderate result with precision an F-score values of 94% and 94% respectively.
Finally, the DenseNet169-MLP framework has illustrated qualified function by reaching higher precision and
F-score values of 96.82% and 96.43% correspondingly.

Fig. 11 depicts the accuracy analysis of the DenseNet169-MLP approach with previous ones. The figure
depicted that the KNN approach is referred to be the poor performance which has achieved the least accuracy
of 701%. Likewise, closer classification function to the KNN model is reached by the ANN model with an
accuracy of 80.01%. Then, the DAE and DNN frameworks have showcased manageable accuracy of 86.04%
and 90% correspondingly. On the other hand, the SIFT-SVM and VGG-16 CNN schemes have attained
considerable classifier results with the accuracy of 91.10% and 92.89% respectively. Similarly, the SVM
and SIFT-KNN methods have illustrated better and identical result accuracy of 93.33%. Also, the CNN
approach has demonstrated a reasonable outcome with an accuracy of 94%. Additionally, the DNN_JOA
and BPNN models have shown competing results with greater accuracy values of 94.25% and 95.83%
respectively. Therefore, the PCA-SVM models have showcased slightly equitable performance with the

Figure 9: Sensitivity and specificity analysis of DenseNet169-MLP model

Figure 10: Precision and F-score analysis of DenseNet169-MLP model
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accuracy of 96.55%. Consequently, the DenseNet169-MLP approach has implied a supreme function by
reaching a higher accuracy value of 97.68%. The above-mentioned experimental values verified the
effective detection and classification performance of the DenseNet169-MLP model for rice plant images.
The improved performance is due to the inherent advantages of the DenseNet and MLP models.
Therefore, the DenseNet169-MLP model can be employed as a proficient method for rice plant disease
diagnosis in a real-time environment to assist farmers and improve crop productivity.

5 Conclusion

This study has presented an effective DL based DenseNet169-MLP model to classify rice plant diseases.
The DenseNet169-MLP model initially had undergone preprocessing to improve image quality. Then, the
FCM based segmentation process takes place to detect the infected portions and the DenseNet169 model
is applied to extract the features. Finally, MLP is placed at the last layer of the DenseNet169 model to
perform final rice plant classification. The experimental validation of the DenseNet169-MLP model takes
place on benchmark rice plant dataset. The experimental values verified that the DenseNet169-MLP
model has attained maximum sensitivity of 96.40%, specificity of 98.27%, precision of 96.82%, accuracy
of 97.68% and F-score of 96.43%. The proposed technique is applied as a proper tool to identify and
classify rice plant diseases. In the future, the detection performance can be increased by the use of
hyperparameter tuning techniques to fine-tune the DL models.
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