
Machine Learning Empowered Software Defect Prediction System

Mohammad Sh. Daoud1, Shabib Aftab2,3, Munir Ahmad2, Muhammad Adnan Khan4,5,*,
Ahmed Iqbal3, Sagheer Abbas2, Muhammad Iqbal2 and Baha Ihnaini6,7

1College of Engineering, Al Ain University, Abu Dhabi, 112612, UAE
2School of Computer Science, National College of Business Administration & Economics, Lahore, 54000, Pakistan

3Department of Computer Science, Virtual University of Pakistan, Lahore, 54000, Pakistan
4Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore,

54000, Pakistan
5Pattern Recognition and Machine Learning Lab, Department of Software, Gachon University, Seongnam, 13557, Korea

6School of Computer Science, Kean University, Union, NJ 07083, USA
7Department of Computer Science, College of Science and Technology, Wenzhou Kean University, 325060, China

*Corresponding Author: Muhammad Adnan Khan. Email: adnan@gachon.ac.kr
Received: 20 May 2021; Accepted: 21 June 2021

Abstract: Production of high-quality software at lower cost has always been the
main concern of developers. However, due to exponential increases in size and
complexity, the development of qualitative software with lower costs is almost
impossible. This issue can be resolved by identifying defects at the early stages
of the development lifecycle. As a significant amount of resources are consumed
in testing activities, if only those software modules are shortlisted for testing that
is identified as defective, then the overall cost of development can be reduced with
the assurance of high quality. An artificial neural network is considered as one of
the extensively used machine-learning techniques for predicting defect-prone soft-
ware modules. In this paper, a cloud-based framework for real-time software-
defect prediction is presented. In the proposed framework, empirical analysis is
performed to compare the performance of four training algorithms of the back-
propagation technique on software-defect prediction: Bayesian regularization
(BR), Scaled Conjugate Gradient, Broyden–Fletcher–Goldfarb–Shanno Quasi-
Newton, and Levenberg-Marquardt algorithms. The proposed framework also
includes a fuzzy layer to identify the best training function based on performance.
Publicly available cleaned versions of NASA datasets are used in this study. Var-
ious measures are used for performance evaluation including specificity, preci-
sion, recall, F-measure, an area under the receiver operating characteristic
curve, accuracy, R2, and mean-square error. Two graphical user interface tools
are developed in MatLab software to implement the proposed framework. The
first tool is developed for comparing training functions as well as for extracting
the results; the second tool is developed for the selection of the best training func-
tion using fuzzy logic. A BR training algorithm is selected by the fuzzy layer as it

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2022.020362

Article

echT PressScience

mailto:adnan@gachon.ac.kr
http://dx.doi.org/10.32604/iasc.2022.020362


outperformed the others in most of the performance measures. The accuracy of
the BR training function is also compared with other widely used machine-learn-
ing techniques, from which it was found that the BR performed better among all
training functions.

Keywords: Software defect prediction; machine learning; artificial neural network

1 Introduction

The development of high-quality software has always been the main concern of developers. In the
modern era, it is almost impossible to provide qualitative software within a limited time and at a lower
cost. This is due to the exponential increase in the size and complexity of required software [1–3]. To
achieve bug-free software, a thorough and well-managed quality-assurance process is needed. To ensure
the high quality of software, each module should be properly tested before integration. Thus, if the
development team could know which software modules were defective in advance, then a significant
amount of time would be saved by focusing on those modules in which defects were most likely to occur
[4,5]. With this approach, the development of high-quality software within a limited time and at a lower
cost can be possible [6]. The task of identifying the defective modules before testing is known as a
software-defect prediction. The detection of defective modules by using machine-learning techniques has
been the object of wide focus by researchers in the past two decades [7]. Artificial neural networks
(ANNs) are among the most widely used supervised machine-learning techniques to detect defective
modules at the early stages of software development [8]. The techniques that are among supervised
machine-learning approaches use pre-labeled data (also known as training data) to train the classification
model. During the training process, the particular model makes the classification rules that are further
used to classify the test data (unseen data) during the classification process [9–15]. In this paper, a cloud-
based framework is proposed to predict defect-prone software modules in real-time environments. The
proposed framework contributes by analyzing and comparing the performance of four variants of back-
propagation training techniques during the detection of defective modules. The training techniques
include Bayesian regularization (BR), scaled conjugate gradient (SCG), BFGS quasi-Newton (QN), and
Levenberg-Marquardt (LM) techniques. A fuzzy layer is also included in the framework for the selection
of the best training function by analyzing the results of all four training algorithms based on fuzzy rules.
Cleaned versions of NASA datasets were used in the experiments, including KC1, KC3, JM1, CM1,
MW1, PC1, PC2, PC3, PC4, PC5, MC1, and MC2. Various measures were used for performance
evaluation, including specificity, recall, precision, F-measure, accuracy, an area under the curve (AUC),
R2, and mean-square error (MSE). The fuzzy logic is implemented to select the best training function.
The BR training function is selected by fuzzy layer as it performed well in most of the performance
measures compared to other training algorithms. The accuracy of the BR training function in each dataset
was also compared with other widely used machine-learning algorithms, and it was observed that BR
outperformed all other techniques.

2 Related Work

Various studies have contributed to achieving high accuracy in software-defect prediction as well as in
other classification problems by using machine-learning techniques, several of which are discussed here. In
[16], the researchers developed a GUI tool in MatLab and used a BR training algorithm to predict software
defects. The software cost is reduced by limiting the error rate. The accuracy of BR was analyzed compared
to the LM technique. The results reflected that BR outperformed the LM technique. Researchers in [17]
performed an empirical comparison of a support vector machine (SVM) and an ANN on software-defect

1288 IASC, 2022, vol.31, no.2



predictive capability. Seven datasets were selected from the NASA PROMISE repository for the
experiments. The performance was measured and analyzed by using specificity, accuracy, and recall.
Results showed that the SVM outperformed the ANN in recall score. Researchers in [18] presented a
Matlab-based GUI tool that used the object-oriented metrics from Chidamber and Kemerer (CK) for
software-defect prediction. The aforementioned datasets from the NASA PROMISE repository were used
for the experiments. The accuracy of the LM training technique was compared with the ANN-based on a
polynomial function, and the results indicated that the proposed model showed higher accuracy. In [19],
researchers presented a framework by using a modified and new artificial bee colony technique and an
ANN to extract the best weights. Five datasets from the publicly available library were used for the
experiments, and the results of the proposed framework reflected higher performance compared with
other techniques. In [20], researchers presented a Matlab-based GUI tool for the classification of diabetic
patients. The proposed tool can detect the disease without the presence of a doctor and also can help
doctors obtain records of diabetic patients within seconds so that the disease can be diagnosed in real-
time. Researchers in [21] introduced a hybrid genetic algorithm- (HGA-) based approach to reduce the
number of features. For the classification of software defects, they used a deep neural network and the
PROMISE dataset repository for experiments. Results showed that the proposed approach delivered good
results when compared with other software-defect-prediction techniques. In [22], researchers proposed a
hybrid ANN (HANN) with a quantum particle swarm optimization (QPSO) technique for software-defect
prediction. An ANN was used for predicting the defective and non-defective modules, whereas QPSO
was used for dimensionality reduction. The experimental results reflected that the proposed approach
outperformed many conventional and modern techniques. The researchers in [23] used three cost-
sensitive boosting techniques to improve the performance of ANNs on software-defect prediction. The
first technique is based on a threshold moving strategy, and the other two techniques work by updating
the weights. The performance of the techniques used was evaluated on four NASA datasets. Results
reflected that the technique that used a threshold moving average is better among the three techniques
used. In [24], researchers proposed a defect-prediction framework by using a convolutional neural
network (CNN). The proposed framework leveraged deep learning to extract features based on program
abstract syntax trees (ASTs). The extracted token vectors are encoded into numeric vectors and then
given as input to the CNN for learning, and finally, the learned features and traditional hand-crafted
features are combined. The proposed technique was evaluated on seven open-source projects by using F-
measure as the accuracy measure. Results showed that the proposed technique outperformed other
modern methods. The researchers in [25] proposed a conventional radial basis function-based technique
integrated with a novel adaptive dimensional biogeography-based optimization model for software-defect
predication. Five NASA datasets from the PROMISE repository were used for experimental analysis, the
results of which showed that the proposed technique is effective compared to earlier proposed models.

3 Materials and Methods

In this paper, an intelligent real-time, cloud-based software-defect-prediction system is proposed. The
performance of four variants of a back-propagation training algorithm on the prediction of defect-prone
software modules, followed by the selection of a highly effective training algorithm by using a fuzzy
layer, is analyzed and compared using the proposed framework.

The proposed framework consists of two phases: training and testing as shown in Fig. 1. The training phase
is initiated with the selection of datasets. Twelve cleaned NASA datasets were used for the comparison: KC1,
KC3, JM1, CM1, MW1, PC1, PC2, PC3, PC4, PC5, MC1, and MC2 (see Tab. 1). Two versions of NASA's
clean datasets, i.e., DS′ and DS″, were provided by [26]. DS′ includes inconsistent and duplicate values,
whereas DS″ does not include any such instances. These datasets were initially available from the site
referenced in [27] but were removed. In the present work, DS″ datasets that are currently available from the

IASC, 2022, vol.31, no.2 1289



site referenced in [28] were used. DS″ datasets were already discussed and used in [29–31]. Each dataset
contains many independent features and only one dependent feature, which is also called the target class.
The dependent feature is predicted based on independent features. The attribute “target class” contains a
nominal value of Boolean type, either “Y” or “N.” The Boolean value of Y reflects that the particular
module is defective, whereas the value of N means that the module is non-defective. The used datasets
include various independent features, such as cyclomatic density, cyclomatic complexity, effort, line of
code, decision density, decision count, and design density, etc. All these measures collectively help to
predict the target class. During the experiments, the values of the target class are included in the datasets so
that the output results of the ANN models can be compared with the values of the target class for
performance analysis. After the selection of an appropriate dataset, the first layer of the training phase deals
with pre-processing activities. First, the missing values are removed, followed by the normalization process,
in which outliers are removed by keeping the values of all the attributes within a certain limit (0–1). The
third activity in this layer deals with the process of splitting the dataset into training and test data. In this
research, 70% of the data were used for training and 30% for testing. The second layer deals with the
classification process by using four variants of a back-propagation technique: BR, SCG, BFGS-QN, and
LM techniques. Performance was analyzed in testing using various measures, including precision,
specificity, F-measure, recall, AUC, MSE, accuracy, and R2. For simulation and performance comparison, a
GUI tool was developed in MatLab (version r2018) [32]. A fuzzy layer was also included in the proposed
framework to select the best training algorithm based on performance in all of the accuracy measures used.
The fuzzy layer receives the results of four training algorithms and stores the classification model in a cloud
with the one training algorithm that outperformed the others. A development team can use the model from
the cloud to classify the datasets as a real-time project and thereby reduce the testing cost.

Figure 1: Cloud based software defect prediction framework

1290 IASC, 2022, vol.31, no.2



An ANN is an interconnected set of units called neurons. It processes the information by following a
computational model. The structure of a basic ANN is shown in Fig. 2.

The first layer of an ANN is called the input layer, in which the number of neurons is equal to the number
of input values, followed by the computation methodology, and finally, the output layer, in which the number
of neurons is reflected by the number of output classes. An ANN can learn rapidly from the experiences of
complex nonlinear problems [33]. An ANNmodel has been reported to be an effective classifier for detecting
software defects at the early stages of the software development life cycle. During the feed-forward process
in an ANN, the layers receive the inputs only from the previous layer. Each unit in one layer relates to all the
units in the next layer. All these connections contain different weights and strengths. The weights of the
connections reflect the potential knowledge of the network. When a feed-forward neural network (FFNN)
acts as a classifier, then usually there is no feedback between the layers. The information processing of
the network includes data entry from the input units, passing through the hidden layers until reaching the
output layer towards one direction (forward); this is why it is called an FFNN [34]. A BP algorithm is
one of the highly adopted learning methods for an ANN and belongs to the supervised class of training
algorithms that attempt to gradually reduce the error of a NN [35]. The training data are estimated
iteratively through the input layer to predict the correct output.

Table 1: Cleaned NASA software datasets [26]

Dataset Modules/Instances Features Non-defective modules Defective modules

CM1 327 38 285 42

JM1 7,720 22 6,108 1,612

KC1 1,162 22 868 294

KC3 194 40 158 36

MC1 1952 39 1916 36

MC2 124 40 80 44

MW1 250 38 225 25

PC1 679 38 624 55

PC2 722 37 706 16

PC3 1,053 38 923 130

PC4 1,270 38 1094 176

PC5 1694 39 1236 458

Figure 2: Neural network architecture

IASC, 2022, vol.31, no.2 1291



A multi-layer perceptron uses at least one hidden layer in addition to input and output layers. Various
steps are involved in a BP algorithm, including initialization of weight, a FF process, and a back-
propagation process based on errors and updating weights and biases.

Each of the neurons in the hidden layer has an activation function like f(a)=Sigmoid(a). The sigmoid
function for input and the hidden layer of the ANN used can be written as

�b ¼ c1 þ
Xq
a¼1

ðxab � raÞ (1)

’b ¼ 1

1þ e��b
where b ¼ 1; 2; 3 . . . i: (2)

The input derived from the output layer is

�t ¼ c2 þ
Xq
a¼1

ðtat�’aÞ: (3)

The activation function of the output layer is expressed as

’t ¼ 1

1þ e��t
where t ¼ 1; 2; 3 . . . i (4)

E ¼ 1

2

X
t

ðst � ’tÞ2: (5)

The BP error is represented by Eq. (5), where τt and φt represent the desired output and estimated output,
respectively. In the following equation, the rate of change in weight for the output and that in the layer are
written as

DW / � @E

@W
and Dtq;r ¼ � e

@E

@mq;r
; (6)

respectively. After applying the chain rule method, Eq. (6) can be re-stated as

Dtq;r ¼ � e
@E

@’r
� @’r

@�r
� @�r

@mq;r
: (7)

By substituting for the values in Eq. (7), the value of the weight change can be obtained as follows:

Dtq;r ¼ eðst � ’tÞ � ’tð1� ’tÞ � ð’qÞ
Dtq;r ¼ enr’q; (8)

where

nt ¼ ðst � ’tÞ � ’tð1� ’tÞ:
Applying the chain rule for updating the weights between input and hidden layers gives

Dxq;r / �
X
t

@E

@’t
� @’t

@�t
� @�t

@’r

" #
� @’r

@�r
� @�r

@xq;r

1292 IASC, 2022, vol.31, no.2



Dxq;r ¼ � e
X
t

@E

@’t
� @’t

@�t
� @�t

@’r

" #
� @’r

@�r
� @�r

@xq;r
:

where ε represents a constant,

Dxq;r ¼ e
X
t

ðst � ’tÞ � ’tð1� ’tÞ � ðmr;tÞ
" #

� ’tð1� ’tÞ � aq

Dxq;r ¼ e
X
t

ðst � ’tÞ � ’tð1� ’tÞ � ðmr;tÞ
" #

� ’rð1� ’rÞ � aq

Dxq;r ¼ e
X
t

ntðmr;tÞ
" #

� ’rð1� ’rÞ � aq:

After simplification, the above equations can be re-stated as

Dxq;r ¼ enr aq; (9)

where

nq ¼
X
k

nkðmq;kÞ
" #

� ’qð1� ’qÞ

mþq;r ¼ mq;r þ �FDtq;r: (10)

Eq. (10) is used for updating the weights between hidden layers and output:

xþ
q;r ¼ xq;r þ �FDxq;r: (11)

The weights between the hidden and input layers are updated using Eq. (11).

The BP process consists of two stages: forward and backward [35]. In this study, the performance of four
learning functions of the BP technique is compared, namely the BR, SCG, BFGS QN, and LM techniques.
The LM technique works based on a Hessian-based technique. The Hessian-based techniques are mostly
used with NNs to make them learn with more appropriate features during complicated mapping. The LM
method is also known as curve fitting because it combines gradient descent and Gauss-Newton (GN)
techniques. It works as follows: If the parameter is far from its optimal value, this technique then acts as
a gradient descent algorithm; if the parameter is close to its best value, then this technique acts like a GN
algorithm [36]. BR is also known as one of the widely used learning techniques in BP processes. The
optimization process in a BR learning technique is similar to the learning technique of the LM method as
it tunes the weights, minimizes errors, and finally extracts the best combination so that the ANN can
perform better [37,38]. The SCG technique uses a mechanism called step-size scaling that decreases the
time used inline searching in each learning iteration [39]. The BFGS QN method uses the QN technique
to decrease the sequence of error functions associated with a growing network [40]. A GUI was
developed using MatLab r2018a for comparison and simulation. This tool facilitates the development and
optimization of the ANN. Parameters available in the GUI tool include the selection of a dataset from a
dropdown list as well as the selection of percentages of training, testing, and validation data, along with
epoch size and the number of neurons. Moreover, the option to select the training function is also

IASC, 2022, vol.31, no.2 1293



available for quick simulation instead of writing code. After extracting the results using four variants of the
BP technique, fuzzy logic is used to select the best training function. Results from four training functions
comprise the input of the fuzzy layer, and the output is the single best training function. The trained
classification model using the particular training function is stored in the cloud and is extracted further to
focus on the real-time software-defect dataset for bug prediction.

4 Results and Discussion

The results of empirical comparisons are presented here. Results of all datasets are extracted by each of
the following training functions: LM, BR, BFG, and CG. An FFNN with a single hidden layer is used in the
experiments. The hidden layer consisted of 10 neurons. To avoid random results, the model was executed
20 times, and the highest results were recorded. The performance of NN models is generally evaluated
using statistical measures like R2 and MSE as well as measures computed from a confusion matrix, e.g.,
specificity, precision, recall, F-measure, accuracy, and AUC [39–41].

Performance measures extracted from the confusion matrix are listed below.

Specificity ¼ TN

TN þ FP
(12)

Precision ¼ TP

TN þ FP
(13)

Recall ¼ TP

TN þ FN
(14)

F�measure ¼ Precision � Recall � 2
Precisionþ Recall

(15)

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(16)

AUC ¼ 1þ TPr � FPr

2
(17)

Results on different datasets are presented in Tabs. 2–13.

Tab. 2 shows the results of the CM1 dataset. It can be seen that the proposed fused-ANN-BR
outperformed other training algorithms in Accuracy with a score of 97.4006.

Tab. 3 shows the results for the JM1 dataset. The proposed fused-ANN-BR technique outperformed all
other techniques in Accuracy with a score of 81.8459.

Table 2: CM1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9113 0.9113 0.9113 0.9113 91.1315 0.9426 0.7986 0.0911

Proposed-fused-ANN-BR 0.9694 0.9697 0.9786 0.9741 97.4006 0.9813 0.7476 0.2128

BFG 0.8838 0.8831 0.8777 0.8804 88.0734 0.9370 0.7823 0.0970

CG 0.8563 0.8634 0.9083 0.8852 88.2263 0.9378 0.7796 0.0982

1294 IASC, 2022, vol.31, no.2



Table 3: JM1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.7983 0.7998 0.8056 0.8027 80.1943 0.8620 0.6422 0.1469

Proposed-fused-ANN-BR 0.8170 0.8175 0.8199 0.8187 81.8459 0.8741 0.6611 0.1408

BFG 0.7848 0.7908 0.8132 0.8018 79.9028 0.8572 0.6338 0.1496

CG 0.8045 0.8022 0.7929 0.7975 79.8705 0.8550 0.6321 0.1501

Table 4: KC1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.8046 0.8043 0.8029 0.8036 80.3787 0.8667 0.6411 0.1473

Proposed-fused-ANN-BR 0.8546 0.8549 0.8571 0.8560 85.5852 0.9096 0.6849 0.1350

BFG 0.7771 0.7801 0.7909 0.7855 78.3993 0.8440 0.6047 0.1586

CG 0.7900 0.7873 0.7771 0.7822 78.3563 0.8359 0.5925 0.1623

Table 5: KC3 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9433 0.9433 0.9433 0.9433 94.3299 0.9674 0.8496 0.0723

Proposed-fused-ANN-BR 0.9639 0.9641 0.9691 0.9666 96.6495 0.9681 0.8861 0.0605

BFG 0.8608 0.8670 0.9072 0.8866 88.4021 0.9304 0.7751 0.0998

CG 0.8299 0.8281 0.8196 0.8238 82.4742 0.8817 0.6761 0.1374

Table 6: MC1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9862 0.9862 0.9862 0.9862 98.6168 0.9964 0.9725 0.0136

Proposed-fused-ANN-BR 0.9964 0.9964 0.9964 0.9964 99.6414 0.9966 0.9738 0.0134

BFG 0.9826 0.9826 0.9836 0.9831 98.3094 0.9923 0.9664 0.0166

CG 0.9821 0.9821 0.9831 0.9826 98.2582 0.9917 0.9657 0.0169

Table 7: MC2 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.8387 0.8400 0.8468 0.8434 84.2742 0.8993 0.6735 0.1605

Proposed-fused-ANN-BR 0.9677 0.9677 0.9677 0.9677 96.7742 0.9822 0.9146 0.0446

BFG 0.8306 0.8235 0.7903 0.8066 81.0484 0.8658 0.6314 0.1509

CG 0.7984 0.8016 0.8145 0.8080 80.6452 0.8424 0.5762 0.1680

IASC, 2022, vol.31, no.2 1295



Table 8: MW1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9480 0.9476 0.9400 0.9438 94.4000 0.9711 0.8807 0.0571

Proposed-fused-ANN-BR 0.9600 0.9603 0.9680 0.9641 96.4000 0.9380 0.6543 0.2728

BFG 0.9360 0.9355 0.9280 0.9317 93.2000 0.9600 0.8683 0.0615

CG 0.9360 0.9360 0.9360 0.9360 93.6000 0.9642 0.8732 0.0595

Table 9: PC1 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9381 0.9381 0.9381 0.9381 93.8144 0.9781 0.8896 0.0544

Proposed-fused-ANN-BR 0.9809 0.9810 0.9867 0.9838 98.3800 0.9768 0.5041 0.8441

BFG 0.9323 0.9323 0.9323 0.9323 93.2253 0.9704 0.8755 0.0584

CG 0.9323 0.9323 0.9323 0.9323 93.2253 0.9723 0.8760 0.0582

Table 10: PC2 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9903 0.9903 0.9848 0.9875 98.7535 0.9969 0.9733 0.0132

Proposed-fused-ANN-BR 0.9945 0.9945 0.9945 0.9945 99.4460 0.9891 0.8443 0.1041

BFG 0.9778 0.9779 0.9792 0.9785 97.8532 0.9917 0.9582 0.0204

CG 0.9778 0.9779 0.9792 0.9785 97.8532 0.9869 0.9567 0.0212

Table 11: PC3 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9193 0.9172 0.8946 0.9058 90.6933 0.9630 0.8371 0.0753

Proposed-fused-ANN-BR 0.9677 0.9677 0.9687 0.9682 96.8186 0.9664 0.7803 0.1385

BFG 0.8879 0.8862 0.8727 0.8794 88.0342 0.9413 0.7914 0.0934

CG 0.8822 0.8825 0.8841 0.8833 88.3191 0.9456 0.7978 0.0909

Table 12: PC4 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.9047 0.9053 0.9110 0.9082 90.7874 0.9664 0.8362 0.0755

Proposed-fused-ANN-BR 0.9795 0.9796 0.9811 0.9803 98.0315 0.9829 0.8921 0.0611

BFG 0.9142 0.9137 0.9087 0.9112 91.1417 0.9682 0.8537 0.0679

CG 0.9197 0.9175 0.8929 0.9050 90.6299 0.9661 0.8440 0.0719

1296 IASC, 2022, vol.31, no.2



Tab. 4 shows the results for the KC1 dataset. The proposed Fused-ANN-BR technique outperformed all
other techniques in Accuracy with a score of 85.5852.

Tab. 5 shows the results for the KC3 dataset. It can be seen that the proposed fused-ANN-BR technique
performed better in Accuracy with a score of 96.6495.

Tab. 6 shows the results for the MC1 dataset. The proposed fused-ANN-BR technique outperformed all
other techniques in Accuracy with a score of 99.6414.

Tab. 7 shows the results for the MC2 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy and achieved a score of 96.7742.

Tab. 8 shows the results for the MW1 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 96.4000.

Tab. 9 shows the results for the PC1 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 98.3800.

Tab. 10 shows the results for the PC2 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 99.4460.

Tab. 11 shows the results for the PC3 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 96.8186.

Tab. 12 shows the results for the PC4 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 98.0315.

Tab. 13 shows the results for the PC5 dataset. The proposed fused-ANN-BR technique performed better
than all other techniques in Accuracy with a score of 85.4486.

It can be seen from Tab. 14 the overall results that the fused-ANN-BR performed better with FFNN, but
a lower MSE was achieved in several of the datasets used with the LM algorithm. The proposed fused-ANN-
BR performed better on the CM1 and PC3 datasets in specificity, precision, recall, F-measure, accuracy, and
AUC, but the LM technique performed better in R2 and MSE. Results on the JM1, KC1, KC3, MC1, MC2,
PC4 and PC5 datasets reflect the higher performance of the proposed fused-ANN-BR algorithm in all
measures. On the MW1, PC1, and PC2 datasets, BR outperformed the others in specificity, precision,
recall, F-measure, and accuracy, but the LM technique outperformed the others in AUC, R2, and MSE. It
has also been noted that BFG and CG could not perform better in any of the performance measures used.
The fuzzy layer used in the model after comparison selected BR due to its high performance in most of
the performance measures. A comparative analysis of the results obtained from the proposed fused-ANN-
BR was also performed with those obtained by other widely used classification techniques from [41] that
also used the same cleaned versions of the aforementioned datasets.

Table 13: PC5 dataset

T Function Specificity Precision Recall F-measure Accuracy AUC R2 MSE

LM 0.8152 0.8105 0.7904 0.8004 80.2834 0.8811 0.6578 0.1419

Proposed-fused-ANN-BR 0.8400 0.8445 0.8689 0.8566 85.4486 0.9265 0.6941 0.1337

BFG 0.7190 0.7412 0.8046 0.7716 76.1806 0.8419 0.5902 0.1631

CG 0.7639 0.7636 0.7627 0.7631 76.3282 0.8476 0.5970 0.1609

IASC, 2022, vol.31, no.2 1297



5 Conclusions

Four variants of back-propagation training algorithms used in software-defect prediction were compared
on five publicly available cleaned NASA datasets, followed by a selection of the best algorithm by use of a
fuzzy layer. The training algorithms compared were LM, BR, SCG, and BFGS-QN. To facilitate
experiments, a GUI tool was developed in the MatLab environment to construct and tune the ANN
models. Performance was evaluated by using the following measures: specificity, precision, recall, F-
measure, accuracy, AUC, R2, and MSE. The fuzzy layer selected the BR algorithm as best performing as
it performed better in most of the accuracy measures. However, a lower MSE value was achieved in
some datasets using the LM technique. It is also noted that the BFG and SCG techniques did not show
any significantly high performance in any of the accuracy measures used. Finally, the accuracy of the
proposed fused-ANN-BR technique on each dataset was compared with other well-known machine-
learning techniques, and it was found that BR performed better than all other techniques.

Acknowledgement: We thank our families and colleagues who provided us with moral support.

Funding Statement: No funding was received for this research.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Huda, S. Alyahya, M. Mohsin Ali, S. Ahmad, J. Abawajy et al., “A framework for software defect prediction

and metric selection,” IEEE Access, vol. 6, pp. 2844–2858, 2017.

[2] E. Erturk and E. A. Sezer, “A comparison of some soft computing methods for software fault prediction,” Expert
Systems with Applications, vol. 42, no. 4, pp. 1872–1879, 2015.

[3] R. Malhotra, “Comparative analysis of statistical and machine learning methods for predicting faulty modules,”
Applied Soft Computing Journal, vol. 21, pp. 286–297, 2014.

[4] I. H. Laradji, M. Alshayeb and L. Ghouti, “Software defect prediction using ensemble learning on selected
features,” Information and Software Technology, vol. 58, pp. 388–402, 2015.

Table 14: Accuracy comparison of proposed fused ANN-BR with published classification techniques [41]

Dataset MLP NB SVM RBF kStar kNN PART OneR RF DT Proposed-
fused-
ANN-BR

CM1 86.7347 82.6531 90.8163 90.8163 77.551 77.551 90.8163 85.7143 89.7959 77.551 97.4006

JM1 80.3541 79.8359 79.1883 80.3972 75.9931 73.9637 79.4905 77.1589 80.1813 79.1019 81.8459

KC1 77.3639 74.212 75.3582 78.7966 72.2063 69.341 76.5043 73.3524 77.937 75.6447 85.5852

KC3 82.7586 81.0345 82.7586 77.5862 75.8621 75.8621 79.3103 82.7586 77.5862 75.8621 96.6495

MC1 97.6109 93.8567 97.6109 97.6109 96.9283 97.2696 97.2696 97.2696 97.4403 97.6109 99.6414

MC2 64.8649 75.6757 62.1622 72.973 59.4595 72.973 78.3784 64.8649 64.8649 64.8649 96.7742

MW1 90.6667 82.6667 89.3333 89.3333 82.6667 86.6667 86.6667 89.3333 88.000 86.6667 96.4000

PC1 96.5686 89.7059 95.098 94.6078 86.2745 92.6471 93.1373 94.6078 96.0784 93.1373 98.3800

PC2 96.7742 94.47 97.6959 97.6959 95.3917 96.7742 96.7742 97.235 97.6959 97.6959 99.4460

PC3 83.8608 28.7975 86.3924 86.3924 82.5949 86.0759 86.3924 87.0253 87.0253 86.3924 98.0315

PC4 89.7638 86.0892 88.189 87.4016 81.8898 85.8268 85.3018 87.9265 90.2887 86.8766 98.0315

PC5 74.2126 75.3937 74.2126 75.5906 69.8819 73.0315 75.7874 71.2598 75.9843 75.000 85.4486

1298 IASC, 2022, vol.31, no.2



[5] D. Tomar and S. Agarwal, “Prediction of defective software modules using class imbalance learning,” Applied
Computational Intelligence and Soft Computing, vol. 2016, pp. 1–12, 2016.

[6] D. Rodríguez, R. Ruiz, J. C. Riquelme and J. S. A. Ruiz, “Searching for rules to detect defective modules: A
subgroup discovery approach,” Information Sciences, vol. 191, pp. 14–30, 2012.

[7] H. A. Al-Jamimi and L. Ghouti, “Efficient prediction of software fault proneness modules using support vector
machines and probabilistic neural networks,” in Malaysian Conference in Software Engineering, Johor Bahru,
Malaysia, pp. 251–256, 2011.

[8] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed et al., “State-of-the-art in artificial neural
network applications: A survey,” Heliyon, vol. 4, no. 11, pp. 938–945, 2018.

[9] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali et al., “Svm optimization for sentiment analysis,”
International Journal of Advanced Computer Science and Applications, vol. 9, no. 4, pp. 393–398, 2018.

[10] M. Ahmad, S. Aftab, M. S. Bashir and N. Hameed, “Sentiment analysis using svm: A systematic literature
review,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 182–188, 2018.

[11] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali et al., “Rainfall prediction using data mining techniques: A
systematic literature review,” International Journal of Advanced Computer Science and Applications, vol. 9,
no. 5, pp. 143–150, 2018.

[12] M. Ahmad, S. Aftab, S. Muhammad and S. Ahmad, “Machine learning techniques for sentiment analysis: A
review,” International Journal of Multidisciplinary Sciences and Engineering, vol. 8, no. 3, pp. 27–32, 2017.

[13] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali et al., “Rainfall prediction in lahore city using data mining
techniques,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 4, pp. 254–260,
2018.

[14] M. Ahmad and S. Aftab, “Analyzing the performance of svm for polarity detection with different datasets,”
International Journal of Modern Education and Computer Science, vol. 9, no. 10, pp. 29–36, 2017.

[15] M. Ahmad, S. Aftab and I. Ali, “Sentiment analysis of tweets using svm,” International Journal of Computer
Applications, vol. 177, no. 5, pp. 25–29, 2017.

[16] R. Mahajan, S. K. Gupta and R. K. Bedi, “Design of software fault prediction model using br technique,”
Procedia Computer Science, vol. 46, no. Icict 2014, pp. 849–858, 2015.

[17] I. Arora and A. Saha, “Software defect prediction: A comparison between artificial neural network and support
vector machine,” Advances in Intelligent Systems and Computing, vol. 562, pp. 51–61, 2018.

[18] M. Singh and D. Singh Salaria, “Software defect prediction tool based on neural network,” International Journal
of Computer Applications, vol. 70, no. 22, pp. 22–28, 2013.

[19] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive neural network,” Applied Soft
Computing, vol. 33, pp. 263–277, 2015.

[20] S. Joshi and M. Borse, “Detection and prediction of diabetes mellitus using back-propagation neural network,” in
Proc. Int. Conf. on Micro-Electronics and Telecommunication Engineering, Ghaziabad, India, pp. 110–113, 2016.

[21] C. Manjula and L. Florence, “Deep neural network based hybrid approach for software defect prediction using
software metrics,” Cluster Computing, vol. 22, pp. 9847–9863, 2019.

[22] C. Jin and S. W. Jin, “Prediction approach of software fault-proneness based on hybrid artificial neural network
and quantum particle swarm optimization,” Applied Soft Computing, vol. 35, pp. 717–725, 2015.

[23] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction,” Expert Systems with
Applications, vol. 37, no. 6, pp. 4537–4543, 2010.

[24] J. Li, P. He, J. Zhu and M. R. Lyu, “Software defect prediction via convolutional neural network,” in IEEE Int.
Conf. on Software Quality, Reliability and Security, Prague, Czech Republic, pp. 318–328, 2017.

[25] P. Kumudha and R. Venkatesan, “Cost-sensitive radial basis function neural network classifier for software defect
prediction,” Scientific World Journal, vol. 2016, pp. 1–20. 2016.

[26] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data quality: Some comments on the nasa software defect datasets,”
IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

IASC, 2022, vol.31, no.2 1299



[27] “NASA – software defect datasets” Online. Available: https://nasa softwaredefectdatasets.wikispaces.com.
Accessed: 01-April- 2019.

[28] “NASA defect dataset.” Online. Available: https://github.com/klainfo/NASADefectDataset. Accessed: 01-April-
2019.

[29] B. Ghotra, S. McIntosh and A. E. Hassan, “Revisiting the impact of classification techniques on the performance
of defect prediction models,” in 37th IEEE Int. Conf. on Software Engineering, Florence, Italy, pp. 789–800,
2015.

[30] G. Czibula, Z. Marian and I. G. Czibula, “Software defect prediction using relational association rule mining,”
Information Sciences, vol. 264, pp. 260–278, 2014.

[31] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado and J. C. Riquelme, “Preliminary comparison of techniques for
dealing with imbalance in software defect prediction,” Information Sciences, vol. 264, pp. 220–231, 2014.

[32] “MATLAB - mathWorks.” Online. Available: https://uk.mathworks.com/products/matlab.html. Accessed: 18-
Feb- 2019.” https://uk.mathworks.com/products/matlab.html (accessed Feb. 18, 2019).

[33] A. M. Rajbhandari, N. Anwar and F. Najam, “The use of artificial neural networks (ann) for preliminary design of
high-rise buildings,” in Proc. 6th Int. Conf. on Computational Methods in Structural Dynamics and Earthquake
Engineering, Rhodes Island, Greece pp. 3949–3962, 2017.

[34] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed et al., “State-of-the-art in artificial neural
network applications: A survey,” Heliyon, vol. 4, no. 11, pp. 938–945, 2018.

[35] A. A. Hameed, B. Karlik and M. S. Salman, “Back-propagation algorithm with variable adaptive momentum,”
Knowledge-Based Systems, vol. 114, pp. 79–87, 2016.

[36] H. P. Gavin, “The Levenberg-Marquardt Algorithm for Nonlinear Least Squares Curve-Fitting Problems,”
Department of Civil and Environmental Engineering, Durham, North Carolina: Duke University, pp. 1–19, 2019.

[37] F. Khan, M. A. Khan, S. Abbas, A. Athar, S. Y. Siddiqui et al., “Cloud-based breast cancer prediction empowered
with soft computing approaches,” Journal of Healthcare Engineering, vol. 2020, pp. 1–11, 2020.

[38] I. Arora and A. Saha, “Comparison of back propagation training algorithms for software defect prediction,” in 2nd
Int. Conf. on Contemporary Computing and Informatics, Noida, India, pp. 51–58,. 2016.

[39] M. A. Khan, S. Abbas, A. Atta, A. Ditta, H. Alquhayz et al., “Intelligent cloud-based heart disease prediction
system empowered with supervised machine learning,” Computers, Materials & Continua, vol. 65, no. 1, pp.
139–151, 2020.

[40] A. Rehman, A. Athar, M. A. Khan, S. Abbas, A. Saeed et al., “Modelling, simulation, and optimization of diabetes
type ii prediction using deep extreme learning machine,” Journal of Ambient Intelligence and Smart
Environments, vol. 12, no. 2, pp. 125–138, 2020.

[41] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana et al., “Performance analysis of machine learning techniques on
software defect prediction using nasa datasets,” International Journal of Advanced Computer Science and
Applications, vol. 10, no. 5, pp. 300–308, 2019.

1300 IASC, 2022, vol.31, no.2

https://nasasoftwaredefectdatasets.wikispaces.com
https://github.com/klainfo/NASADefectDataset
https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/matlab.html

	Machine Learning Empowered Software Defect Prediction System
	Introduction
	Related Work
	Materials and Methods
	Results and Discussion
	Conclusions
	flink6
	References


