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Abstract: COVID-19 constitutes one of the devastating pandemics plaguing
humanity throughout the centuries; within about 18 months since its appearing,
the cumulative confirmed cases hit 173 million, whereas the death toll approaches
3.72 million. Although several vaccines became available for the public world-
wide, the speed with which COVID-19 is spread, and its different mutant strains
hinder stopping its outbreak. This, in turn, prompting the desperate need for
devising fast, cheap and accurate tools via which the disease can be diagnosed
in its early stage. Reverse Transcription Polymerase Chain Reaction (RTPCR) test
is the mainstay tool used to detect the COVID-19 symptoms. However, due to the
high false-negative rate of this test, physicians usually use chest radiographs as an
adjunct or alternative tool. Although radiographs screening is wide-available,
low-cost, and its results are timely, relying on radiologists to interpret them manu-
ally stands against using radiographs as a diagnostic tool. Motivated by the need
to speed up the radiographic diagnosis of COVID-19 and to improve its reliability,
this paper proposes a novel deep-learning framework dubbed Parallel Deep Neur-
al Networks for COVID-19 Diagnosis (PCN2). PCN2 treats the radiographs and
their metadata simultaneously by running two CNNs in parallel. Firstly: a 2-
dimensional CNN (2DCNN) to capture the spatial information from the radio-
graphs due to its super competency in this domain. Secondly, a 1-dimensional
CNN (1DCNN) to extract the medical knowledge presented in the metadata.
By this integration, PCN2 can make perfect classifications even for those cases
in which the infection signs in radiographs are unclear due to being the disease
in early-stage, confounded by other markers or overlapped by other diseases.
Extensive assessments of PCN2 carried out using several datasets demonstrate
average diagnostic accuracy of 99.9 and 0.99 F1-score.
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1 Introduction

At the end of 2019, a new generation of Coronavirus named COVID-19 caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) surprised the world with its rapid spread and
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catastrophic impact. The severity of the disease and its serious outbreak steered the World Health Organization
(WHO) to declare it as a pandemic. The number of confirmed cases is currently closed to 173 million while the
death toll approaches 3.72 million [1]. Recently, several pharmaceutical corporations and research institutions
have developed vaccines, and many countries commence vaccination; however, the hope that this pandemic
could be finally defeated has been jeopardised by the appearance of several mutants of higher transmissible.
This backs the pandemic’s fighting to square one; indeed, some nations face the second or third waves of
COVID-19 while others reinforced curfew and lockdown.

The absence of a holistic treatment promotes the desperate needs for fast, cheap, and accurate tools to
diagnose the disease in its early stage. However, the key challenge facing rapid diagnoses of COVID-19 is
the vast and diverse symptoms presented on patients [2]; while the majority of patients suffer from minor
symptoms (e.g., fever, cough, or tiredness), others might have more severe signs (e.g., loss of movement
or shortness of breath) or even no symptoms at all. Consequently, diagnosis of COVID19 is typically
carried out using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) that can confide or dispel
presence of the antigens of this virus in the respiratory of the suspected cases [3]. RT-PCR requires
collecting samples from the nose or throat and then treats them chemically to isolate and identify all
known viral genetic variations of the disease. Besides the long-time required by the RT-PCR test to
produce the results and the limited availability of its kits in some states, it also suffers from a high false-
negative ratio (i.e., the situations in which the tests show that the suspected cases are healthy whereas
they are infected). Specifically, several research groups estimate this rate as high as 61% [4–6]; other
references show that the maximum accuracy of RT-PCR does not exceed 0.8 and can only be obtained on
or after the 8th day of symptom onset [4–6].

With the aim to overcome the critical limitations found in the RT-PCP test, chest radiographs are used as
an adjunct or alternative diagnostic tool [7]. The invaluable information encoded in these images allows the
physicians to monitor disease progression rather than just determine the infectious status at a single time
point, as in RT-PCR. This makes them suitable to diagnose disease and assess its severity [7]. Some
medical studies show that chest images of COVID-19 patients share some common signs, such as lesions
with ground-glass opacities (GGO), lung consolidation, bilateral patchy shadowing, pulmonary fibrosis,
multiple lesions and crazy-paving pattern. Interestingly, other works were able to infer the severity-degree
of the disease from the medical images. For instance, Cozzi et al. [8] shows that during the early stage,
the peripheral zone of lungs has multiple small patchy shadows and interstitial changes; while during the
progression of diseases, multiple Ground-Glass Opacities (GGO) and infiltration start to appear in both
lungs and pulmonary consolidation is considered as a sign for a severe case. Nevertheless, one of the key
obstructions that stands against adopting radiographs as a diagnostic test is the need to examine each
image by a radiologist to decide whether the case is infected or not. Estimations for the time and
accuracy of the manual examination show that a cardiothoracic fellowship-trained radiologist takes
around a minute on average to examine an X-ray image and that the average diagnostic accuracy is about
78% [9]. This is not negligible time, especially when considering that about 35000 confirmed cases on
average are reported daily worldwide.

Inspired by the ability of deep learning to automate the diagnosis of several diseases from their medical
images, e.g., arrhythmia, pneumonia, and fundus image segmentation [10–12]. Numerous models were
developed to detect COVID-19 cases, e.g., [13–21]. Most of these models employ the Convolution
Neuron Networks (CNN) architecture [22] to extract the common visual hallmarks appearing on the
radiograph of patients during the training phase; thereafter, the model utilises its gained knowledge to
judge new unseen cases. Although these models exhibit high diagnostic reliability, one of the common
sources of their performance leakage is inattention of the radiographs’ metadata resources. Annotation,
epidemiological history, ages, the clinical manifestation of patients or underlying comorbidities are some
attributes that need to be considered when interpreting the radiographs. Several medical studies confirm
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that the images of patients with different attributes might have different radiographs’ signs; for instance, Chen
et al. [23] shows that the image of pediatric COVID-19s’ patients has lower pulmonary lobes with higher
bronchial wall thickening than adult patients. Whereas Luo et al. [24] reported that the image features of
COVID-19 could not easily be distinguished in the presence of viral pneumonia, Severe acute respiratory
syndrome (SARS) and/or Middle East Respiratory Syndrome (MERS) diseases. Furthermore, other works
report that some contextual factors (e.g., acquisition parameters, projection-type or even presence of
tubes, catheters [25]) might confound the deep learning algorithms.

This paper aims to fill this gap by introducing a novel deep learning model dubbed Parallel Convolution
Neuron Networks (PCN2). The underlying approach of PCN2 is to treat the radiographs and their metadata
simultaneously by running two CNNs in parallel. Firstly: a 2-dimensional CNN (2DCNN) to capture the
spatial information from the radiographs due to its super competency in this domain. Secondly, a 1-
dimensional CNN (1DCNN) to extract the medical knowledge presented in the metadata. The key reason
for using the 1DCNN instead of recurrent neural networks [22] is the invariance translation property of
the convolution operator that enables 1DCNN to interpret the semantic structure regardless of the level of
noise usually permeating metadata. Another compelling reason for adopting 1DCNN is being these
networks are not confined to fixed-length inputs or outputs; thus, data of variable length can be treated
concurrently. The parallel architecture of PCN2 boosts its learning capacity without overwhelming it with
excessive learnable parameters; particularly, the parameters space of PCN2 is about a quarter compared to
other model which in turn expedites the learning pace and improves its quality. Another key advantage of
the parallel architecture is that it allows each CNN to exploit the findings of the other in a
complementarity manner to rectify their learning trajectories. This, in turn, allows PCN2 to achieve
outstanding results even if some parts of radiographs or their metadata is missing.

According to the best of our knowledge, this is the first work considering using the radiographs’
contextual resources to improve the detection capabilities of the COVID-19. In particular, the key
contributions of this work can be summarised as:

1. Develop a novel class of deep learning architecture in which medical reports in conjunction with
spatial information (encoded in radiographs) are processed in parallel to enhance detection
capabilities of COVID-19. Besides the advantages of this model in rolling out differential
diagnoses of this disease, the proposed model paves the path towards building more sophisticated
models that can be evolved over time to accommodate updates, e.g., different mutant strains or
new diagnosis findings.

2. Reduce the time and computing resources required to train the deep learning model by incorporating
the gradually incremental dropout probabilities mechanism for the CNN networks. Specifically, this
mechanism achieves this goal by two means; firstly, expedites approaching the most informative
partition of a case that is significant to make a clear diagnosis. Secondly, facilitates treating
radiographs at their highest possible resolutions by avoiding the use of an image preprocessing
technique; hence fine details can be captured accurately.

3. Present comprehensive assessments of the proposed model from different perspectives using several
radiographs’ datasets, the results of this assessment demonstrate the high capabilities of PCN2 in
diagnosing COVID-19 from radiographs with 99.9 accuracies, 0.99 F1-score.

The remaining of this paper is organised as follows in Section 2 explores the related works and
highlights their key contributions. Section 3 discusses the methodology of this work, including a
description for the datasets and an overview of the fundamental concepts of the CNN networks. Section
4 presents the proposed models, PCN2, and Section 5 provides the results and discussion. Finally,
Section 6 concludes this work.
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2 Related Works

Scientists and researchers from all disciplines have unified to curb spreading of COVID19 pandemic in
all possible ways since its appearance, Artificial intelligence technologists is not an exception; actually, sheer
numbers of deep learning models were developed to diagnose the disease from radiographs. Here we review
some of these works with the aim to highlight their main contributions and limitations and to point out the
merits of our model.

COVIDX-Net [13] is amongst the earliest models introduced to provide fast diagnoses for
COVID19 from X-ray images by combining several pre-trained CNN networks with a binary classifier.
COVIDX-Net consists of seven models that are: VGG19, DenseNet201, InceptionV3, ResNetV2,
InceptionResNetV2, Xception, and MobileNetV2, each of which is trained and tested individually.
Evaluation of the model’s performance was conducted over a small dataset consisting of preprocessed
50 X-Ray cases, half of them suffering from COVID-19 using 80:20 training to the testing ratio. The key
findings of this study demonstrate the capability of pre-trained models to extract the discriminative
features of COVID-19 even over a smaller dataset. Furthermore, it is also shown that VGG19 and
DenseNet201 have the highest accuracy of 90%, whereas the lowest achieved accuracy was 50% due to
InceptionV3.

Stimulated by the need to improve the diagnosis accuracy using small radiographic datasets, some
models employ transfer learning to exploit the knowledge gained from examining individual cases in
building a more sensitive classifier. The work in Abbas et al. [14] proposed a three layers framework
dubbed Decompose, Transfer, and Compose (DeTraC). DeTraC employs two common pre-trained CNN
models: ImageNet and ResNet, to extract the local features appearing in each image individually
thereafter passed them to the decompose layer. The underlying approach of this layer is to amplify the
irregularities of class boundaries by initiating a sub-class for each distinguished feature found previously.
The transfer layer, with the aid of a sophisticated gradient descent optimisation method devised by the
authors, retrains the CNN model using these new sub-classes. Finally, the compose layer is used to
assemble subclasses into a single binary class stating whether or not the inspected case is infected with
COVID-19. DeTraC is evaluated using several datasets comprising 105 COVID-19, 11 severe acute
respiratory syndromes and 80 normal samples using 70:30 training to the testing ratio. This evaluation
demonstrates that DeTraC can attend up to 95.12% overall accuracy. COVID-ResNet [15] is another
example of models aiming to improve the performance of pre-trained CNN architectures by introducing
so-called 3-step fine-tune techniques. The underlying concept of this technique is to resize the input
radiographs progressively to different sizes and then adjust the learning parameters accordingly.
According to the results reported in the original work, COVID-ResNet can achieve 96.23% overall
accuracy by employing ResNet-50 as a base network over an unbalanced dataset consisting of
45 COVID-19, 1203 normal, 931 bacterial pneumonia and 660 viral pneumonia patients’ cases. The work
proposed in Latif et al. [16] employs 11 pre-trained CNNs including AlexNet, GoogLeNet, DenseNet,
Inception, ResNet, VGG, XceptionNet, and InceptionResNet to extract the key features of the X-Ray
images, thereafter passing them to a Support Vector Machine (SVM) model which is used to generate the
suitable class. The overall accuracy of 95.33% was achieved over a balanced dataset consists of
127 COVID-19, 127 pneumonia and 127 normal images using 60:20:20 training, validation and testing ratio.

Generative Adversarial Networks (GAN) is a contemporary deep learning approach in which new
samples can be generated from the ground truth dataset. A GAN architecture comprises two models: a
generator that is trained to generate new samples and discriminator that attempts to classify a sample as
either a ground truth or a fake (produced by the generator network). Both models compete in a zero-sum
game in which the generator endeavours to delude the discriminator about the originality of the sample.
The key benefit of GAN in domain of COVID-19 is to generate new samples from a small dataset;
hence, the detectability of the model can be improved. The work presented in Khalifa et al. [17] employs
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the GAN approach alongside transfer learning and augmentation processes to formulate a three-phase
diagnosis architecture. In the first phase, both augmentation and GAN are used to generate new samples
that are passed to the second phase in which 4 pre-trained models (i.e., AlexNet, GoogLeNet, Squeeznet,
and Resnet18) are used train the model, and finally, the third phase is used to test the model. The dataset
used in this work consists of -624 X-ray images of two classes, 10% of them are used for training and
testing the model, whereas the remaining 90% are generated from the GAN. This work reports that
Resnet19 has the highest accuracy of 99% compared to GoogLeNet, AlexNet, and Squeezed.

Waheed et al. [18] demonstrate GAN’s ability to improve the CNN model’s accuracy by more than 10%
when they are integrated together, this work firstly introduces a simple CNN constructed from several
convolutional layers based on VGG16 architecture followed by the max-pooling and fully connected
layers; the model is trained using a small dataset of 331 COVID-19 and 601 normal cases and achieve
85% accuracy. The authors then incorporate this CNN with GAN architecture and allow it to generate
403 of COVID-19 and 721 normal X-ray images; the assessment shows that 95% accuracy can be
achieved due to this integration. Another work presented in Loey et al. [19] employs a GAN with three
pre-trained models: Alexnet, GoogLenet, and Restnet18 which are trained using two scenarios of 4 and
3 classes of 307 image, including normal pneumonia bacterial, and pneumonia in additional to COVID-
19. The results reported in their works exhibit the outperformance of GoogLenet compared to other
architectures under 70:20;10 train:test:validation policy.

Building diagnostic models from scratch is another technique that has been introduced in many works;
COVID-Net [20] was amongst the pioneer models that adopt this approach. COVID-Net exploits the
Projection-Expansion-Projection-eXtension (PEPX) structure of conventional CNN to stack up a large
number of convolution layers that can capture meticulous details perfectly. Another crucial advantage of
PEPX is its long-range connectivity, which facilities treating large datasets without needing massive
computing resources. According to the results reported in this work, 93.3% accuracy level can be
achieved over unbalanced dataset comprises 183 COVID-19 cases out of 13,800 total images.
Additionally, these results show that the sensitivity of COVID-Net is higher than VGG-19 and ResNet-
50 by 32% and 8%, respectively. COVID-CAPS [21] is another bespoke model that exploits capsule
networks’ capability in recognising perturbations in the spatial relationships of images. In COVID-CAPS,
each layer comprises several capsules, each of which uses its own neurons to capture the common
features that are usually appeared in a specific partition of the image. COVID-CAPS employs so-called
protocol routing to determine whether or not the desired object is presented in the image. The results
shown in this work demonstrate the ability of COVID-CAPS to achieve an accuracy of 95.7% using a
simple model consists of 4 convolutional and 3 capsules layers and without using pre-trained model.
Tab. 1 summarises some of the key findings reported by the peer works.

Table 1: Comparison of some related works

Ref. Number of cases Pre-processing Structure Post processing Performance metrics

COVID-19 Other

[13] 25 25 Rescaling 7 pre-trained CNNs VGG19,
ResNetV2, DenseNet201,
InceptionV3, InceptionResNetV2,
Xception, and MobileNetV2

N/A Accuracy = 90
Precision = 83
F1-Score = 91

[14] 105 91 DA, Histogram,
Feature Extraction
using AlexNet,
PCA, K-means

2 pre-trained CNNs:
ImageNet and ResNet

Composition Phase Accuracy = 95.12
Sensitivity = 97.91
Specificity = 91.87

(Continued)
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3 Methodology

This section is devoted to providing the methodology and materials used in this work in two
Subsections: 3.1 introduces the dataset used to evaluate the proposed model and Subsection
3.2 overviews the deep learning approach, Convolution Neuron Network (CNN) that is used to develop
our proposal PCN2.

3.1 Datasets Description

The dataset used in this study are adopted from COVID-19 Image Data Collection [26] which includes
328 chest X-ray images of 205 cases whose age range from 12 to 88 years, out of them 253 images are
labelled as COVID-19 positive, 2 as healthy, 12 as COVID-19 with Acute Respiratory Distress Syndrome
(ARDS), and 61 images are labelled as patients with other diseases including klebsiella, legionella and
SARS. This dataset also provides several fields that characterise the cases themselves including
demographical data and the observations reported by physicians during their inspection for the
radiographs. Besides the finding field that contains the label of the image, the patient_id field contains the
unique identifier for the case of the image, the offset field is the number of days since the onset of
the symptoms, and the date field records the date on which the image was acquired. These three fields are
used jointly to track the progression of the disease of the same case. The age and survival fields store the
age of the case and whether they are still alive or not respectively; these two fields, in addition to view
field that describe projection type (different Posteroanterior (PA), Anteroposterior (AP), AP Supine
(APS), or Lateral (L)) are used as metadata of the image. Another important source of the metadata is the
clinical notes field that contains amongst other description for the symptoms and clinical manifestation of
the case (Tab. 2). Another dataset used to test the model is COVID-19 Radiography Database [27], which
contains many X-ray images collected from several resources and categorised into three classes:
COVID-19 positive, healthy, and viral pneumonia whose number of their entities are 1200, 1341 and
1345, respectively. This dataset does not provide any metadata (Tab. 3).

3.2 Convolution Neuron Network Overview

Convolution Neural Network (CNN) is a type of deep learning architecture that has been widely used in
those fields related to computer visions [22]; its success in these fields motivated researchers to apply it to

Table 1 (continued).

Ref. Number of cases Pre-processing Structure Post processing Performance metrics

COVID-19 Other

[15] 45 2794 DA and
Rescaling,
Normalizing

ResNet-50 N/A Accuracy = 96.23
Sensitivity = 100
Precision = 100
F1-Score = 100

[16] 127 254 N/A AlexNet, GoogleNet, DenseNet,
Inception, ResNet, VGG,
XceptionNet, and InceptionResNet

N/A Accuracy = 95.33
Sensitivity = 95.33
F1-Score = 95.34

[17] 183 800 Data Augmentation CNN Explainabiliy-Driven
Audit (GSInquire Method)

Accuracy = 93.3
Sensitivity = 91

[18] – – N/A Capsule Layer N/A Accuracy = 95.7
Sensitivity = 90
Specificity = 95.8

[19] 312 312 N/A AlexNet, GoogLeNet, Squeeznet,
and Resnet18+ GAN

N/A
N/A

Accuracy = 99
Precision = 98.97
F1-Score = 98.97
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other fields, e.g., time series predictions and natural language processing. This section is devoted to overview
the basic concepts of CNN using 2-dimensional images as example.

Table 2: Sample of the used dataset presented in [26]

Case1 Case2 Case3

Radiograph

Clinical
notes

“progressive diffuse
interstitial opacities and
consolidation in the
bilateral parahilar areas
and lower lung fields”

“Female, 61 years old,
smoker. In November
2019 fever cough and
asthenia treated with
Ceftriaxone, subsequently
with Amoxicillin and
cortisone therapy. For a
few days, the appearance of
cough and fever 37.8,
modest asthenia. 98%
pO2 saturation is detected
in ambient air. No pleuro-
parenchymal outbreaks in
progress. Heart and small
circle within limits.”

“ETT tip above the carina. NGT
in situ. Right jugular CVL tip
projected at the SVC/RA junction.
Diffuse bilateral and symmetric
coalescent air space opacities
which are less severe at the lung
apices with numerous small
rounded lucencies through out.
Heart is mildly enlarged (although
a supine projection).”

Findings Pneumonia/Viral/
COVID-19

No Finding (Healthy) ARDS

Table 3: Summary of the used datasets

Description Data sources

[26] [27]

Radiographs Total Number of radiographs 328 4186

COVID-19 positive 253 1200

Healthy 2 1341

Other diseases 61 –

COVID-19 with ARDS 12 1345

Metadata Number of days since the onset of the symptoms √ ×

Survival √ ×

Projection type √ ×

Clinical notes √ ×

Demographics √ ×
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A CNN consists of a set of artificial neurons that are devised to imitate the Biological neurons found in
the mammals’ nervous system [22]. Each artificial neuron comprises an activation function that maps inputs
to their corresponding output by adjusting two learnable parameters: weights and bias. Typically, these
neurons are arranged in layers that are further cascaded to form a deep network. The CNN architecture
presented in this work consists of four types of layers: convolutional, nonlinearity, pooling and fully
connected that will be reviewed shortly. During this review, we assume that the CNN network consists of
L layers, xl denotes the input of the lth layer where 1 � l � L, wl is the weight of this layer, bl is its bias
and yl is the corresponding output. Hence for an arbitrary layer l, yl can be written in terms of its
activation function f l as xlþ1 ¼ yl ¼ f l xl; wl; bl

� �
. The dimension of the lth layer’s input is denoted by its

height (xlH ), width (xlD), number of channel (xlC) and number of batches (xlN Þ which yields a tensor of
size xlH � xlD � xlC � xlN ; i.e., x

l 2 RxlH�xlD�xlC�xlN . Similar notations will be used to refer to the dimensions
of the weight and output of the layers.

Recalling that the main contribution of this work is to automate the diagnosing of COVID-19 from
radiographs by assigning a class to each case, here C is used to denote to a vector containing all possible
classes within which a radiograph can be allocated. This implies that the dimension of the last layer of
the CNN network, yL is a vector of length kCk whose elements represents the posterior probabilities of
being the input image x1 belongs to different classes, where kCk is the cardinality of C:
yL ¼ Prðcijx1

� ��i¼1
i¼kCk ; y

L 2 RkCk; (1)

Training CNN is accomplished using the backpropagation algorithm [22] which consists of two phases:
forward and backwards. In the forward pass, each neuron initialises its weights and biases randomly, then
feeds them along with an instance of the training dataset to the activation function that computes the
output. The output of a layer is then passed downstream toward the next layer until the final layer is
reached and the class of the input is predicated. Thereafter, the error (ϵ) between the predicted values and
their corresponding ground truth, denoted here by t, is computed based on the given loss function,
denoted by L. This work adopts the cross-entropy loss function due to its wide usability in this domain
[13–21], thus E can be written as E ¼ L yL; M tð Þð Þ; where M �ð Þ is a mathematical function that maps the
textual data describing the class of the ground truth into the numerical format, i.e., one-hot encoding. The
key role of the backwards phase is to optimist the values of the layers’ weights and biases in such a way
that minimises the error between the ground truth and predicted values. Amongst the wide variety of the
optimisation algorithms reported in the literature, the gradient descent [22] has been widely used due to
its ability to deal with the multivariate composition functions which resulting from cascading activations
functions over different layers. The performance of backpropagation depends to a great extent on several
parameters, including (i) the number of epochs which specifies the number of back- backpropagation’s
runs; (ii) the batch size, which defines the number of samples that are treated before an update to the
weights and biases is undertaken; and (iii) the learning strategy that defines the optimisation trajectories.
The extensive research efforts conducted to derive the ideal values for these parameters results in vast
and diverse ranges of structure. Interested readers are referred to Aggarwal [22] for further details;
nevertheless, Tab. 4 summarises the values of parameters used in this study.

The first building block of a CNN is the convolutional layer whose basic concept is that the adjacent
pixels of an image are spatially correlated; hence, applying a smoothing operator over neighbouring
pixels, e.g., convolution or correlation facilitates recognising the visual structure of objects within images.
The input of this layer is a 2-dimensional matrix representing the numerical values of the image’ pixels
whereas the weight is several 2-dimensional matrices, each of which is known as a kernel. Convolution is
performed between the input matrix and each kernel by placing the top-leftmost cell of the kernel and
image over each other, perform a dot product of the overlapped cells and sums up the results, then sliding
the kernel row-by-row till its edge arrives at the edge of the image’s bottom-rightmost edge. To illustrate
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this operational formally, let us assume that we have the lth convolutional layer whose input is divided over C

channel and N batch, then we use xl;n;ch;d to refer to the numerical value of the pixel located at the hth row, dth

column of that input; whereas wl;K
h;d to numerical value of the pixel located at the hth row and dth column of the

K th kernels, the resultant of this convolution is dubbed receptive field is written as:

yl;n;C;K
h;d ¼

Xwl;k
H

g¼1

Xwl;k
D

d¼1

xl;n;chþg;dþd

� �
wl;k
g;d

� �
; 1 � h � wl

H þ xlH � 1; 1 � d � wl
D þ xlD � 1 (2)

The aggregated output of this layer, dubbed feature map, can be computed by sum values of yl;n;C;K
h;d over

the input channels

yl;n;Kh;d ¼
XC
c¼1

yl;n;c;K
h;d (3)

Fig. 1 provides a high-level abstraction of the CNN; it is worth noting that the number of the feature
maps resulted from a convolutional layer equals the number of its kernels. Moreover, the dimensions of a
feature maps are smaller than the dimensions of the original inputs fed into the layer. This characteristic
is a direct consequence of applying valid-padding convolution, i.e., passing images as they are to the
convolutional layers without expanding their dimension. One of the well-known flaws of valid-padding
convolution is the border effect that obstructs resampling the pixels at the edges of the input by the kernel
as many as other pixels. Thus, some information at the edges might be lost or under-represented in the
outputs of the convolutional layer. One possible remediation of the broader effect is zero-padding [22]
that adds new pixels of zero values around inputs’ borders. Two schemes of zero-padding are usually
used: half-padding and full-padding; in the former, the number of pixels added into each side of the input
equals half of the dimensions of the applied kernel, whereas, in the latter, the full-dimension is used
instead. Interestingly, the spatial footprint of input is maintained in the half-padding while increased in
the full-padding scheme. The advantage of this enlargement is that it facilitates constructing deeper CNN
networks by preventing the rapid collapsing of feature maps resulting from valid padding. Stimulated by
this advantage half-padding schemes is employed in this study.

Table 4: Key simulation parameters

Parameter Value

Programming language Python 3.8 with Tensorflow library.

Environment Ubuntu machine with Intel(R) Core i9-9900X CPU@ 3.50 GHz, 62 GB
memory and a GeForce RTX 2060 GPU.

Optimiser Adam optimiser

Adaptive moment estimation b1 = 0.995 and b2 = 0.99

Epoch 50

Batch size 32

Training/test ratio 80% used for training the model and the remaining 20%

Validations policy 10-fold cross-validations

Learning rate 0.0001
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The nonlinearity layer is the second important layer that is used to amplify the differences found in the
feature maps generated from the convolutional layer by passing them into a non-linear activation function,
such as hyperbolic tangent (tanh), rectified linear unit or Sigmoid. Most of the activation functions have
comparable characteristics; nevertheless, their key difference lies in their ranges; for instance, the range of
tanh is �1; 1½ �, whereas the range of ReLU is 0;1½ �. Justified by the salutary effects of larger range on
accelerating convergence of grant descent by avoiding vanishing gradient problem, this work uses ReLU
as the activation function in nonlinearity layer.

The third main layer of a CNN is the pooling layer, whose key responsibility is to render the features of a
feature map over a smaller dimension; thus, treatment of subsequent layers can be more computationally
efficient. The pooling layer divides the original feature map into several smaller grids of size S � S where
S denoted the pooling size. Each of these grids run through a selected summary statistic function, e.g.,
maximum, minimum or average. In this study, we employ the maxim pooling layer due to its ability to
exaggerate the differences between the findings reported in the radiographs and their background.

4 The Proposal Parallel CNN to Diagnose COVID-19 from Radiographs and Metadata

PCN2 comprising two types of CNNs: 2-dimensional CNN (2D-CNN) and 1-dimensional CNN (1D-
CNN), where the former is used to deal with images and the latter is used to treat the textual data. The
numbers of layers in the 2D-CNN and 1D-CNN are 22 and 23 respectively as shown in Fig. 2 which
illustrates the block diagram of PCN2. The dimensions of the output of each layer explaining in terms of
Width (W), Depth (D) and the number of Channels (C), are given in Tab. 5.

Figure 1: High-level abstraction of the CNN's layers
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Figure 2: Block diagram of the proposed model, PCN2

Table 5: Dimensions of the PCN2 layers

Layer identification Output
dimension

Layer identification Output
dimension

W D C W D C

Input layer 255 255 1 Nonlinearity (ReLU) 4000 512 –

2D Convolutional-1 (3� 3�32) 255 255 32 Dropout (0.1) 4000 512 –

Nonlinearity (ReLU) 255 255 32 Max pool S ¼ 2ð Þ 2000 512 –

Dropout (0.1) 255 255 32 1D Convolutional-2 (9� 512) 2000 512 –

Max pool S ¼ 2ð Þ 127 127 32 Nonlinearity (ReLU) 2000 512 –

2D Convolutional-2 (3� 3� 64) 127 127 64 Dropout (0.2) 2000 512 –

Nonlinearity (ReLU) 127 127 64 Max pool S ¼ 2ð Þ 1000 265 –

Dropout (0.2) 127 127 64 1D Convolutional-3 (17� 512) 1000 512 –

Max pool S ¼ 2ð Þ 63 63 64 Nonlinearity (ReLU) 1000 512 –

2D Convolutional-3
(3� 3� 128)

63 63 128 Dropout (0.3 1000 512 –

Nonlinearity (ReLU) 63 63 128 Max pool S ¼ 2ð Þ 500 265 –

Dropout (0.3) 63 63 128 1D Convolutional-4 (33� 512) 500 512 –

Max pool S ¼ 2ð Þ 31 31 128 Nonlinearity (ReLU) 500 512 –

2D Convolutional-4
(3� 3� 265)

31 31 265 Dropout (0.4) 500 512 –

Nonlinearity (ReLU) 31 31 265 Max pool S ¼ 2ð Þ 250 265 –

Dropout (0.4) 31 31 265 1D Convolutional-5 (65� 512) 250 512 –

Max pool S ¼ 2ð Þ 16 16 265 Nonlinearity (ReLU) 250 512 –

2D Convolutional-5
(3� 3� 512)

16 16 512 Dropout (0.5) 250 512 –

(Continued)

IASC, 2022, vol.31, no.2 1061



As it can be seen in Fig. 2 that PCN2 consists of a 2DCNN and a 1DCNN that are running in parallel to
process images and textual resources simultaneously. The main aim of this is to construe visual signs spotted
in radiographs in the context of their medical descriptions reported in the associated metadata. Thus, the
model can acquire the latent correlations between visual signs and their metadata, which constitutes the
medical knowledge required to conduct the classification. The 2DCNN comprises five tuples of
“2Dconvolutional-nonlinearity-Droupout-max pooling”. The convolutional layer of the first tuple (2D
convolutional-1) comprises 32 kernels of 3 × 3 with ReLU activation function in nonlinearity layer,
dropout and max-pooling with the pooling size of 2. The same configurations are used for the subsequent
layers except that the number of the convolutional layer’s kernels are doubled after the tuple and the
dropout probability is arranged in ascending orders

Moreover, the half-padding convolution strategy has been adopted in this configuration; this can be seen
from Tab. 5 as the width and heights of the input and output of each convolutional layer are equal. The key
reason for doubling the number of kernels and using the half-padding is to facilitate building throughout deep
networks by compensating for the reduction of feature maps generated by the pooling layers. The dropout
layer is used to reduce the generalisation error (overfitting error) of a neural network by training multiple
instances of the same network, each of which is formulated by removing some nodes randomly. This
layer takes a single argument defining the probability of which each node and its connections might be
removed from the networks. At test time, this probability is multiplied by the learnable parameters, both
weights and bias. Although in a highly dense network with several millions of parameters, it is customary
to use a fixed probability across the network; here, we propose a more robust approach in which the
value of dropout probability is arranged in ascending orders. As can be seen from Tab. 5, the value of the
dropout probability of the first layer is much lower than its peers of other layers; i.e., the dropout
probabilities are increased progressively towards the output layer. This approach is defined to quicken the
learning pace at the early stage by allowing all nodes to participate in learning and leaving regularisations
for further layers with abundant nodes. The flatten layer is used here to reduce the multiple dimensional
vectors resulting from processing the images’ spatial features to a sequence of data that suit the
dimensionality requirement of the subsequent layers.

The first layer of the 1DCNN is the input layer that reads the metadata of the radiographs to make it
available for the one-hot encoded layers. The dimension of the input layer is set at 4000 based on the
maximum numbers of characters that a single clinical note field has. The key responsibility of the one-hot

Table 5 (continued).

Layer identification Output
dimension

Layer identification Output
dimension

W D C W D C

Nonlinearity (ReLU) 16 16 512 Max pool S ¼ 2ð Þ 125 265 –

Dropout (0.5) 16 16 512 Flatten 390 – –

Max pool S ¼ 2ð Þ 7 7 512 Concatenate 916 – –

Flatten 526 – –

Input 4000 1 – Dropout (0.4) 916 – –

One hot encoding (265) 4000 265 – Full Connected-1 (SoftMax
(10000))

10000 – –

1D Convolutional-1 (5� 512) 4000 512 – Full Connected-2 (SoftMax kCkð Þ) kCk – –
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encoding layer is to transform each character provided in the input layer into a binary vector of dummy
features; thus, the network can work on it mathematically. The length of this variable is adjusted in such
a way that allows representing each character uniquely. It is noteworthy that this network is designed
based on the approach presented by Zhang et al. [28] in which the learning activities are undertaken at
character level rather than at words or sentence. The key advantage of this approach is that it eliminates
the need to conduct complicated preprocessing operations (e.g., converted words to lowercase, stemming
the words and text enrichment) that are required by other approaches. This, in turn, reduces the
computational complexity and memory footprint of the proposed model. The interleaving for the
“convolutional, nonlinearity, drop out, and max-pooling” layers is carried out in a similar order that is
used to develop 2D CNN. However, the number of kernels in the 1D Convolutional layers are kept fixed,
whereas their sizes are doubled after each convolutional layer. A justification for this can be acquired by
considering that the textual data, does not like radiographs, differs substantially amongst rows due to
using different writing style; vocabularies, and terminologies by different clinicians. This, in turn, requires
varying the length of the kernel to extracting the information at different levels of granularity. The
concatenate layer is used to connect the outcomes of the upstreaming layers together so that they can be
processed jointly by fully connected layers despite their initial different lengths. The inputs to the
concatenate layer are the visual and textual features extracted from the radiographs and their metadata by
the 2DCNN and 1DCNN, respectively, whereas the output of the concatenate layer is a single dimension
tensor of their features. Finally, the fully connected layer is a simple network in which each neuron is
connected to all neurons in the next layer; this topology allows each neuron to consider the information
gathered in each neuron of the previous layer, which in turn consolidates the learning required to reach a
sound conclusion, i.e., provides the posterior probabilities of being an input image belongs to different
classes. Here two fully connected layers are used with the aim to deepen the relationships between the
spatial and textual findings showing in the data and their corresponding classes. These layers use
SoftMax as activation function due to its ability to map a vector of input into a vector real positive
number that are required to represent the posterior probabilities.

In this study, PCN2 is deployed on a single machine whose hardware specifications and software
environments are given in Tab. 5. Thereafter the weights and biases of all layers in both 2DCNN and
1DCNN are initialised to random numbers that are distributed according to a normal distribution whose
parameters are set in accordance with the number of inputs of each layer as proposed in He et al. [29].
Although the ReLU activation function utilised in nonlinearly layers can ameliorate the vanishing and
exploding gradients problems, the advantage of using the aforementioned approach is two folds. Firstly, it
expedites the convergence of the model to the optimal or near-optimal values by beaking the weights
symmetry that might be caused by using the same probability distribution to initialise all the weights of
all layers. Secondly, it facilitates deepen the networks without increase the computational loads
demanding by the model since the initial values of a layer’s weights are kept consistent with its fans-in.
Besides using a robust weight initialising scheme, PCN2 adopts the mini-batch gradient descent scheme;
as shown in Tab. 5, the batch size is set to 32. The mini batch differs from other schemes, e.g., batch or
stochastic gradient descent schemes, in that the weights of the model are updated in corresponding to the
average of gradients of the outcomes of the loss function computed at a portion of the training dataset.
This, in turn, allows PCN2 to enhance its features-extraction ability without overburdening it with
gigantic inputs at once, as the case in batch gradient descent and to avoid the noisy fluctuations
associated with stochastic gradient descent. Another important aspect that is considered when designing
and training the PCN2 is to use a simple yet effective strategy to update the learning rate of the gradient
descent. Amongst the wide variety of these strategies, the Adaptive Moment Estimation (Adam) due to its
ability to improve the learning capacity over sparse gradients, which is the fundamental characteristics of
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CNN architectures. The next section assessed the effects of these settings on the performance of PCN2 from
different perspectives.

5 Results and Discussion

Assessment for the accuracy of the proposed model is carried out here by comparing its outcomes to the
ground truth data obtained from the dataset. This assessment uses the following statistical measurements:
accuracy, precision, recall and F1-score. The definitions of these metrics are given with the aid of the
following terms: True Positive (TP), False Positive (FP), True Negative (TN) and finally False Negative
(FN). The TP counts the cases classified by both our proposed model and clinicians as patients and TN
are the numbers of cases classified by both the model and clinically as healthy. Conversely, FN (FT)
signifies the number of cases that our model classifies as patients (healthy), whereas clinicians diagnosed
them as (healthy) infected. Based on the above, the accuracy is defined as the ratio of the cases that both
the models’ predictions and clinician’s diagnoses are agreed with respect to the total cases seen by the
model, which can be expressed mathematically as:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(4)

The accuracy metric quantifies the overall effectiveness of a classified as a function of its ability to make
true predictions, whether they are positive or negative cases. In the domain of COVID-19, it is highly desired
to assess the ability of the model in identifying positive cases so that patients can be isolated early to limit
further spreading. Thus, precision and recall are used; the precision is defined as a ratio of those cases
classified by the model as true in agreement with physician diagnoses to the sum of the positive class
predicted by the model either in agreement or disagreement with physicians. The recall has the same
numerator of precision, whereas its denominator comprises the false-negative instead of false-positive as
the precision. Expressions for precision and recall are given in Eqs. (2) and (3):

precision ¼ TP

TP þ FP
(5)

recall ¼ TP

TP þ FN
(6)

F1-score is a composed metric that is defined as the harmonic mean of precision and recall, i.e.,

F1� score ¼ 2TP

2TP þ FP þ FN
(7)

The first assessment for the integrity of the proposed model is carried out by quantifying to what extent
the proposed approaches used to develop PCN2 affect its learning performance. Two variant models of
PCN2 are constructed for the purpose of this assessment. Firstly, SCN2, in which the proposed parallel
architecture comprises the 1D and 2D CNNs, is replaced by a single 2DCNN network; hence the input of
SCN2 is restricted to the radiographs input without a contextual data in a similar manner that other
models reported in the open literature work. Secondly, PCN2v1, in which our approach to gradually
increase the dropout probabilities across the layers, is replaced by the scheme that all probabilities are
identical, i.e., substituting all dropout layers with dropout (0.5). Finally, a further assessment scenario for
the performance of the PCN2 model is conducted by training the model using both radiographs and their
metadata and testing it using the radiographs only, i.e., supplying an empty dataset to the 1DCNN during
the test phase; this case is referred to PCN2. Both the accuracy as defined in Eq. (4) and the outputs of
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the loss function (i.e., cross-entropy) of all the above cases are obtained from the simulation sessions at the
end of each epoch during the training and test phases and depicted in Fig. 3.

In general, it can be seen that the loss curves of all models decay as more epochs are elapsed, which
demonstrate their capability to acquire more knowledge with time. However, the rates at which these
curves are decayed, their fluctuations and stopping points differ substantially amongst them. For example,
Fig. 3 shows that the rate with which the PCN2 decays are much higher than other curves, i.e., within
about 50 epochs, the loss of the model approaches zero. This characteristic can be attributed to being
accompanying the radiographs with their metadata empowers the PCN2 with the ability to recognise the
cases from different perspectives without using unnecessary learnable parameters which in turn expedites
the learning pace and improves its quality. Specifically, the number of the PCN2’s learnable parameters is
in order of tenth part compared other modes, e.g., 138 M parameters in VGG [22], 68.1 M in ResNeXt
and 60 M in ZfNet. Another notably characteristic of PCN2 shown in Fig. 3 is the narrow generalisation
gap, i.e., tiny differences between the loss and accuracy curvesat the training phase and test phase. An
explanation for this characteristic can be acquired by considering that the parallel architecture allows each
CNN to exploit the findings of the other in a complementarity manner to rectify their learning
trajectories. Hence PCNv2 can quickly suit different dataset without consuming lots of time, even if some
parts of these data are missing or underrepresented. This claim can be validated further by comparing the
curves of PCN2 and PCN2v2, this comparison shows that although the test dataset of PCN2v2 has no
metadata, PCN2v2 can get comparable results to PCN2. i.e., PCN2v2 takes about 1.5 times more than the
number of epochs required by PCN2 to reach the same loss level.

Figure 3: Normalised loss/accuracy of PCN2 and its variants (a) PCN2, (b) PCN2v1, (c) PCN2v2, (d) SCN2
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The benefits of varying dropout probabilities across the layers of both 1D and 2D CNN networks (as in
PCN2) over keeping them constant (as in PCN2v1) can be observed by comparing Figs. 3a with 3b. As it can
be seen, the loss curve of 3(b) is much noisy than of 3(a); this behaviour can be interpreted by considering the
fact that the design philosophy of a deep CNN network is to increase the number of neurons progressively
with the depth of the network. Hence the earlier layers of a CNN can capture the primitive features of the
image, whereas the latter layers can recognise more detailed features. Hence dropping the neurons of the
earlier layers at the same rate as the letter can limit the ability of the model to start learning, which in
turn results in fluctuations between different states.

Assessment for the ability of the PCN2 model to make an accurate prediction under different conditions
is conducted here by feeding the PCN2 model with three datasets, each of which has a different number of
classes. The first dataset [26] comprises four classes (COVID-19, healthy, ARDS and others), the second data
have three classes [27] (COVID-19, healthy and other), detailed description for these datasets is given in
Subsection 3.1. Finally, the third database is constructed by merging these two datasets randomly and
then divided into two mutually exclusive groups, confirmed and COVID-19 negative. The latter group
comprises images of those who do not suffer from COVID-19 even if they have other lung diseases,
whereas the former group contains all cases diagnosed as COVID-19 patients. These three datasets are
passed to the PCN2 and the confusion matrix, i.e., the matrix that shows that TP, TN, FP and FN are
given in Fig. 4.

It is obvious from Fig. 4 the proposed model, PCN2, has a high level of prediction accuracy regardless of
the number of classes; it can be seen that the lowest readings that our model can achieve is 0.97, whereas the
highest is 1. The explanation for this can be acquired by considering that PCN2 employs the concatenate
layer to integrate the knowledge gained from the two CNNs together before passing it to fully connected

Figure 4: Confusion Matrix of some scenarios (a) Train phase, (b) Train phase, (c) Train phase, (d) Test
phase, (e) Test phase, and (f) Test phase
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layers that work on them to produce the suitable class for each input. The integration then consolidation
architecture of PCN2 allows it to produce high-level quality outcomes without being restricted to the
specific number of classes or structure. Fig. 4 also demonstrates that the performance of the proposed
model is not affected negatively by the size of the data provided to it. Comparing the readings of the
confusion matrix during the training and testing phases shows some neglectable differences amongst
them but without any degradations. This characteristic highlight one of the strongest aspects of the
proposed model that is its ability to approach the near-optimal situation without a need for lots of
samples to practice its knowledge. Our observations in this assessment is of close matching with the
learning curves provided in the previous assessment, which shows a small generalisation gap between the
train and test sets.

A further assessment for the behaviour of the proposed model is conducted by measuring its
performance under a different number of folds using the metrics defined above. Tab. 6 summarises the
results of this assessment; the first column of this table is the number of fold and the remaining columns
give the average readings recorded from each fold.

As can be seen from the assessment results that the proposed model, PCN2, exhibits outstanding
performance over all cases. This is attributed mainly to the capability of the parallel architecture to
exploit the knowledge gained from both radiographs and contextual resources to improve the diagnosis of
COVID-19. Another compelling reason for this outperformance is the gradually increasing dropout
probabilities across the layer. This approach eliminates a need to employ an image-processing technique
which in turn enables PCN2 to extract fine details accurately. Interestingly the outstanding readings of
PCN2 demonstrate that it can make accurate classifications even for cases where the infection signs are
unclear due to being the disease in early-stage, confounded by other markers or overlapped by other
diseases. Hence, 2DCNN can extract the more relevant features to the case, and 1DCNN can find out the
pieces of information that are similar to the case under investigation despite the size of the sample fed
into the model.

6 Conclusion

This paper proposed a novel deep learning model dubbed Parallel Deep Neural works for COVID-
19 Diagnosis (PCN2) as a tool to aid the diagnosis, prognosis and triage of COVID-19 patients. The

Table 6: Performance metrics of PCN2

Folds. Accuracy Precision Recall F1� score

1 0:98� 1:0e� 4 0:93� 3:6e� 3 0:93� 3:6e� 3 0:96� 4:7e� 4

2 0:95� 1:4e� 5 0:95� 5:4e� 5 0:99� 3:5e� 5 0:96� 1:4e� 5

3 0:97� 1:5e� 6 0:97� 2:3e� 5 0:99� 1:4e� 5 0:93� 3:6e� 5

4 0:93� 1:9e� 5 0:99� 3:5e� 5 0:95� 5:4e� 5 0:95� 5:4e� 5

5 0:96� 1:3e� 5 0:94� 2:7e� 5 0:99� 3:5e� 5 0:97� 1:7e� 5

6 0:96� 1:4e� 5 0:96� 4:7e� 5 0:96� 4:7e� 5 0:93� 3:6e� 5

7 0:97� 1:5e� 5 0:94� 4:6e� 5 0:93� 3:6e� 5 0:99� 1:3e� 5

8 0:99� 1:3e� 5 0:97� 1:7e� 5 0:99� 3:5e� 5 0:95� 5:4e� 5

9 0:96� 1:2e� 5 0:95� 7:1e� 5 0:98� 1:4e� 5 0:93� 3:6e� 5

10 0:95� 1:2e� 5 0:99� 2:6e� 5 0:95� 5:4e� 5 0:97� 1:7e� 5
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underlying approach is to simultaneously treat the images and their metadata by running two CNNs networks
of different dimensions in parallel. PCN2 is a flexible architecture in which each CNN network works on a
different type of data, but their knowledge is consolidated via the concatenate layer before passing it to fully
connected layers that work on them to produce the suitable class. The key advantage of this architecture is
that it does not require using a pre-trained model as the case in some related works, e.g., COVIDX-Net or
COVIDResNet, which makes its deployment and development incredibly easy. Another main advantage of
the PCN2 architecture is that it utilises off-the-shelf frameworks and algorithms; hence its operations do not
depend on some bespoke functions that are built especially for it as the case with some pertinent models, e.g.,
DeTraC or COVID-CAPS. Assessment for the performance of PCN2 from different perspectives
demonstrates its ability to find the class of the radiographs with a high level of accuracy and without a
need for long training epochs. It is worth noting that this assessment is conducted using a real dataset
obtained from medical repositories and not generated using any GAN architecture as the case in some
related works, e.g., [15–17]. This is important for combating COVID-19 as it means that PCN2 can be
applied directly it can be used directly to triage suspected cases without imposing an overhead. Another
important advantage of PCN2 in this regard is that it does not require any preprocessing or
postprocessing treatments as the case in some models proposed in the open literature, e.g., [12–13,15]
this cannot only leverage the usability of PCN2 but also saves the overhead imposed by these treatments.
Besides the above, incorporating the metadata of radiographs in designing PCN2 can pave the path
towards building more sophisticated models that can be evolved over time to accommodate updates, e.g.,
different mutant strains or new diagnosis findings.
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