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Abstract: Automation of agricultural food production is growing in popularity in
scientific communities and industry. The main goal of automation is to identify
and detect weeds in the crop. Weed intervention for the duration of crop establish-
ment is a serious difficulty for wheat in North India. The soil nutrient is important
for crop production. Weeds usually compete for light, water and air of nutrients
and space from the target crop. This research paper assesses the growth rate of
weeds due to macronutrients (nitrogen, phosphorus and potassium) absorbed from
various soils (fertile, clay and loamy) in the rabi crop field. The weed image data
have been collected from three different places in Madhya Pradesh, India with
10 different rabi crops (Maize, Lucerne, Cumin, Coriander, Wheat, Fenugreek,
Gram, Onion, Mustard and Tomato) and 10 different weeds (Corchorus Capsu-
laris, Cynodondactylon, Chloris barbata, Amaranthaceae, Argemone mexicana,
Carthamus oxyacantha, Capsella bursa Pastoris, Chenopodium Album, Dactyloc-
tenium aegyptium and Convolvulus Ravens). Intel Real Sense LiDAR digital
camera L515 and Canon digital SLR DIGICAM EOS 850 D 18-55IS STM cam-
eras were mounted over the wheat crop in 10 × 10 square feet area of land and
3670 different weed images have been collected. The 2936 weed images were
used for training and 734 images for testing and validation. The Efficient Net-
B7 and Inception V4 architectures have been used to train the model that has pro-
vided accuracy of 97% and 94% respectively. The Image classification using
Inspection V4 was unsuccessful with less accurate results as compared to Effi-
cientNet-B7.

Keywords: Deep learning; rabi crop; weeds; weed identification; efficient Net-B7;
soil nutrients; inception V4

1 Introduction

Crop production is an important component of the agriculture system and responsible for global food
management. Therefore, it is important to invent new trends and scientific methods to properly plan and
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manage them. The Deep Learning Techniques and methods are best suited to properly plan and manage crop
production and also increase the income of farmers along with the productivity of crops. The growth of
weeds within the crop will affect the basic resources such as water, soil, minerals, fresh air, sunlight, etc.
In recent studies, it has been observed that 35% of crops are destroyed due to the growth of different
types of weeds in the agriculture field [1]. Weeds grow faster and affect the target crop growth by
absorbing the nutrients present in the soil. This research paper has taken three types of soil samples
(fertile, clay and loamy) in 10 × 10 square feet areas in the wheat crop field. The process of plant growth
is quite a continuous process, usually; soil nutrients are the basic source of plant growth. Targets inhibit
weed plant growth along with plant growth, hence the prediction of the morphological feature of weed
plant growth predicted by time-series data [2]. The impact of nutrient deficiencies on crop production is
identified in the leaves of the crop and weed plant, the symptoms like texture, the morphological, spectral
properties changes [3]. This section uses threshold algorithms for leaf coverage of soybean plant growth
using Amazon Mechanical Turk for image segmentation. The author has developed the labeled training
data set of 285 images of an early growth soybean plant. The training evaluation has been done using
three segmentation techniques as deep Convolutional Neural Network (CNN), threshold and random
forest classifiers. The final average crop growth accuracy is usually estimated as 87.52% [4]. Generally,
the weeds are identified manually and the herbicides are applied globally for weed removal to increase
the crop yield. The usage of herbicides also affect the soil nutrients level. Few common weeds are listed
below in Tab. 1.

Table 1: Common weeds of winter (rabi) season pulses

List of rabi crops and existing weeds

Sr.
No.

Common
name

Scientific name Common weed

1. Maize Zea mays Cyanodon dactylon, Cyperus rotundus, Cyperus rotundus,
Dactyloctenium aegyptium Setaria glauca.

2. Lucerne Medicago sativa Digitaria sanguinalis Poa annua, Phalaris minor, Parthenium
hysterophorus, Phyllanthus niruri, Euphorbia hirta

3. Cumin Cuminum
cyminum

Portulaca oleracea, Amaranthus viridus, Trianthema portulacastrum

4. Coriander Coriandrum
sativum

Commelina benghalensis, Anaggalis arvensis, Chenopodium album,

5. Wheat Triticum vulgare Medicago denticulate, Circium arvense, Euphorbia hirta, Celosea
argentea

6. Fenugreek Trigonella
foenumgraecum

Cyperus rotundus, Cyperus rotundus, Dactyloctenium aegyptium
Setaria glauca.

7. Gram Cicer Argentina Portulaca oleracea, Amaranthus viridus, Trianthema portulacastrum

8. Onion Allium cepa Digitaria sanguinalis Poa annua, Phalaris minor, Parthenium
hysterophorus, Phyllanthus niruri, Euphorbia hirta

9. Mustard Brassica juncea Portulaca oleracea, Amaranthus viridus, Cleome viscosa

10. Tomato Lycopersicum
esculentum

Trianthema portulacastrum, Euphorbia hirta, Celosea argentea
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This work is based on a transfer learning/domain adaptation image processing technique that produces
better results with machine learning algorithms. Six popular machine learning methods have already been
compared based on images taken from two different heights and 97.07% accuracy has been achieved
using the transfer learning technique [5]. The deep CNN predicts the plants expected growth, by
generating segmentation masks of root and shoot systems. Such an approach is highly adaptable,
trainable (transfer learning/domain adaptation) on different plant species and mutations [6]. Various
authors have also worked with deep learning techniques for improving weed density and absolute corners
for weed detection in crop row [7]. Usually, weed detection is done using ground-based machine vision
and image processing techniques. The four different processes such as pre-processing, segmentation,
feature extraction and classification are presented in detail for weed detection in followed sections. It’s
always difficult to detect weeds and discriminating between crops and weeds, which often have similar
properties. There are various challenges and solutions for weed detection in fields, including the inclusion
and overlapping of leaves, different light conditions, with different developmental stages [8].

Transgenic and Genetically Changed Organisms (GMOs) of rosette leaves have raised massive clinical
and public concern nowadays. Hence the need for opportunity processes using transgenic in preference to
direct trouble of counting rosette leaves from the RGB picture is a vital issue in plant phenotyping. The
weed growth rate estimation based on early growth, using the leaf counting challenge dataset is available
in the CVPPP-2017 dataset [9]. Weed image estimation is a specific task, so it’s necessary to remove the
background and foreground partitions or segmentation of weed images to implement the classification
steps. This work also uses canola field video images using VGG16 and ResNet-50 architectures with
82.88% and 98.68% accuracies respectively [10]. The accuracy of 76.1% and 89.7% for weed images
dataset have also been achieved using Deep Convolutional Neural Network (DCNN) using You Only
Look Once V3 (YOLO V3) and tiny YOLO architecture [11]. Few nutrients deficiency symptoms in
target crop because of weed plants are listed below in Tab. 2.

The implementation of CNN-based unsupervised segmentation on weed density distribution is
performed using two datasets, the first is weed field image dataset (CWFID) and the second is sugar beet
dataset. This work also uses a site-specific weed management system for weed density distribution with
penetrates area of your weed leaf where recall value is 99% and accuracy is 82.13% [12]. This work has
covered two effective powerful CNN architectures that are Inception V4 and Efficient Net B7 for plant
growth estimation across different weed plants in rabi crop. The need of efficient models with fewer
parameters that trained faster and without compromise on performance is inevitable. This study proposes
EfficientNet deep learning architecture for the classification of weed plant. The performance of the
proposed model is compared with state-of-the-art CNN architectures such as and Inception V4 and
EfficientNet B7. Among these Efficient Net B7 architecture has yielded better recognition rates over

Table 2: Nutrient deficiency symptoms in target crop

Type of
deficiencies

Key symptoms

Nitrogen The leaves turn light green or yellow as they are unable to make enough chlorophyll.

Potassium Potassium deficiency in plants includes brown scorching and leaf tips as well as
chlorosis (yellowing) between leaf veins.

Phosphorus Vegetable seeds and purple leaves on transplants.

Magnesium The plant contains an excessive amount of magnesium and its deficiency symptoms first
appear on the leaves.
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various datasets because of a large number of estimation parameters than Inception V4 [13]. The proposed
method Nutrient-Based Weed Growth Estimation (NWGE) is also based on detecting the plant’s type
through their leaf’s characteristics and also neural network has been used to identifying weed species.
The major contributions in this work are:

� The results are compared based on of two different CNN architectures such as Inception V4 and
Efficient Net B7 based on of morphological properties, visual texture and spectral properties of leaves.

� An efficient framework is proposed for weed identification, detection and growth estimation in rabi
crops. The proposed framework works efficiently and achieves the best accuracy as compared to
Inception V4 architecture.

� This work can be helpful for further research in the field of weed identification and detection for
different Annual and Perennial crops.

2 Related Work

The change in weed growth stages is a continuous process, that changes the morphological, visual
texture and spectral properties of leaves. This section has discussed various optimization approaches
proposed by various researchers in terms of the performance and operating costs of weed growth. Six
[14] have proposed plant growth with 17 essential micro and macronutrient elements. The main task for
improving nutrient efficiency in soil for crop development is by using supervised machine learning
techniques. Olsen et al. [15] have discussed Robotic weed management for automatic weed identification
and detection using Raspberry Pi microcontroller. According to them, effective data implementation can
be done with ResNet-50 with an accuracy of 89.94%. Mochida et al. [16] have suggested that frame filter
uses naive bays as RMO with a manually mounted 3D digital camera. They have used this for
experimental determination and selective weed removal techniques to identify the weed growth stage.
According to them the intersection of the unit value is 90.44% but initially, it may be 81.28%. Potena
et al. [17] have covered some techniques for the identification and detection of the seed location in the
field using image processing. CNN technology can be used to get accurate weed images efficiently using
semantic segmentation feature extraction and recognition. Xu et al. [18] have suggested a modern deep
learning approach using RootNav 2.0 that can remove the manual and semi-automatic feature extraction.
Using this technique they have found the location of seed with optimal path throughput image and extract
the accuracy of architecture. Atkinson et al. [19] have discussed the weed detection on dicot broadleaf
weed with different varieties of crops using multistage scattering transformation, also they have
implemented the SVM classifier and achieved maximum accuracy of 96.88%. Kuo et al. [20] have
identified and collected Amaranths Viridis, Bohrwia diffuse, Anagallis, Argomon Mexicana weed images
in different crops using the PU (Positive Unable) classic learning technique with leaf cloning. They have
also implemented the VGG-16 architecture for broadleaf detection and with a maximum accuracy of 95.5%.

Mishra et al. [21] have proposed the morphological feature of monocot and dicot weed leaf using the
Robo Mind Hurricane EV3 method. They have used weed image data that can directly be accessed by
computer vision for weed and crop identification. Son et al. [22] have proposed a class of the age and
gender of a human from face snapshots. The authors have taken Deep Neural Network (DNN) and
Convolutional Neural network (CNN) into consideration as one of the ultra-modern function extractors
and classifiers to represent an efficient way of reading the complex function areas with an accuracy of
97.98% for face recognition using Efficient Net B7. Song et al. [23] have proposed the uses of remedial
saline soils for salinity-tolerant crops for saltwater production. They have used the hyperspectral imaging
(HSI) technique applied to 13 okra plant productions with 7 days of treatment with saline soil using
computer vision technology. The authors have used RGB Kapler’s image on the HSV (Hue Saturation
Value) and have achieved a segmentation score with 94% accuracy.
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Mishra et al. [24] have suggested weed detection and identification technology using artificial
intelligence technology with different morphological features in different crops. This work also focused
on different classes of weeds that are grown on different crops. Rahaman et al. [25] have discussed deep
learning techniques for weed detection and identification with dataset prepared from different location in
the crop field. The authors have also covered supervised machine learning matrices that have been used
to implement the texture feature and morphological analysis of the sugar beet plant. Lopez Granados [26]
have proposed site-specific weed management (SSWM) technologies for scientific research. Their work
also contains weed mapping, treatment technique, application in treatment that is required to implement
weed identification, detection and removal in the field. Teimouri et al. [27] have discussed weed
identification, phenotyping and accurate weed mapping using IoT with different sensors. This work has
also summarized the effective weed identification and detection with a different spraying application on
carrot plant weed using DCNN Inception V4 architecture with an accuracy of 96.05%. Osorio et al. [28]
have proposed the work on lettuce crop, the implementation of weed estimation and identification using
deep learning with three different techniques with NDVI index for crop detection such as support vector
machines (SVM) using histograms, YOLO V3 base method and third is R-CNN, resulting in F1-score of
88%, 94% and 94% for each technique respectively. Khan et al. [29] have discussed that use of
chemicals/pesticides is essential for smart farming and good crop production. They have proposed a cost-
effective semi-supervised learning approach to provide training and labelling with RGB images captured
from different croplands for identification of crops and weeds with an accuracy of 90%.

Many studies have already worked with various CNN architectures but still more work is required to
improve the accuracy in weed detection and one of the better options for this can Efficient Net
B7 architecture. The motivation behind this work is to improve the accuracy of weed identification using
Efficient Net B7 under variable lighting conditions in different color space models and also to measure
the impact of weed on crops due to soil nutrients deficiency because of weed plants. Efficient Net B7 and
Inception V4 are used in comparison to other architectures like ResNet 152 V2, inception V3,VGG
19 etc. because of its efficiency and accuracy. This work has proposed the Nutrient-Based Weed Growth
Estimation (NWGE) algorithm for the approximate optimal solution for weed identification and detection.
The followed section describes the on-field camera settings and the data collection strategies used for the
proposed work.

3 Camera Settings and Data Collection

The weed image dataset provides information about different crops and weeds. The authentic multiclass
weed and crop datasets are not easily approachable. Thus, this work has been initiated to collect
comprehensive data for different crops and weeds. Before collecting the weed and crop image data, a
detailed survey has been done on the farm of a village in Rewa District (Madhya Pradesh). The data
relating to 10 different rabi crops (such as Maize, Lucerne, Cumin, Coriander, Wheat, Fenugreek, Gram,
Onion, Mustard and Tomato) and of 10 different weed families have been collected. The Intel Real Sense
canon digital SLR DIGICAM EOS 850 D 18-55IS STM camera was mounted on the wheat crop at a
ground sampling distance of 0.06 cm of image acquisition. Images have been acquired between 9:00 am
and 5:00 pm in the presence of daylight and different sunny situations, which include clear, partly cloudy,
or cloudy. Transplantation of wheat plants at two commercial farms was completed on November 25,
2020, in clay soil and on November 26, 2020, in infertile and in loamy soil. The first weed image
verification has been conducted on December 06 and 08, 2020 with a collection of 250, 320 and
280 images respectively. There were 438, 407 and 445 weed images were taken for second observation
from the wheat fields on December 24, 2020. Again the third and final weed growth estimation had been
conducted on January 12 and 14, 2021 collecting 510, 508 and 512 weed images were collected
respectively from crop fields. Complete observation has been done within 60 days. A total of
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3670 different weed images in a 10 × 10 square feet area of land were collected. Out of them, 2936 weed
images have been used for training and 734 image data have been used for testing and validation. The
images were converted to 1280 × 720 pixels (720p) dimensions for data equalization and abstraction.
Detail regarding the number of weeds images of the different families used for the survey is shown in Fig. 1.

Training and testing weed images have been collected more than one time between November 2020 and
December 2020. Two different convolutional architectures Inception V4 and Efficient Net B7 have been
applied for the training and testing of weed images. Usually, different weed species generate bounding
containers on different weed species developed amongst three different soils in the wheat crops. This
dataset had been generated via drawing bounding packing containers on tremendous images collected
from the fields.

4 Proposed Methodology

This work is related to weed identification, weed growth estimation, detection and finally to estimate the
weed impact on the rabi crop. This work includes two different convolutional architectures that are Inception
V4 and Efficient Net B7, these architectures can provide better performance for weed discrimination [30].
Further, the data preprocessing and system structure along with weed data classification strategies have
been discussed in followed sections.

4.1 Data Preprocessing and System Structure

The proposed work has used two CNNs architectures in comparison with digital images to discriminate
weed species. Weed/Crop image Acquisition (10 × 10 square feet area of land) is done in experiment field
with mounted camera in three different soil first is clay soil weeds image data (N = 50 Parts Per Million
(ppm), P = 5 ppm, K = 180 ppm), second is loamy soil weed image data (N = 45 ppm, P = 7 ppm
K = 170 ppm) in rabi crop and third is fertile soil weed image data (N = 60, P = 8 ppm, K = 190 ppm).
The CNN may be labeled as perception on primarily data image and can classify the different weed
classes using Inception V4 and Efficient Net B7 architecture. Weed growth estimation due to the nutrients
data model using CNN is depicted in Fig. 2. Image segmentation is implemented on a total of 3670 weed
data images from 10 weed data families. Its input is an RGB image (for example, 1024 � 768 � 3) and
output is a tensor with similar dimensions except that the last dimension is the number of stuff categories
(1024 � 768 � 4) for a 4-stuff category. In general, image segmentation consists of two stages. The first
segmentation stage consists of a labeled image and the second segmentation level is for object
identification in every frame (an object defined as non-stop pixels in a frame) with regards to the
elimination of the background.
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Figure 1: Number of weed images dataset on rabi crop
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4.2 Weed Data Classification and Flow Chart

Inception V4 and Efficient Net B7 have been used for weed growth estimation due to nutrient absorption
from the soil with collected 3670 field images and comparative analysis among both has been conducted for
the accuracy of results. The 2936 weed images have been used for training and 734 images have been used
for testing and validation on 15th January 2021. The architecture of Efficient Net B7 in perceptive of weed
image implementation is described in Fig. 3. Images are filtered 256, 120, 192 and 384 times to achieve
accuracy and then filtered images are concatenated for further analysis of segmented data as shown in
Fig. 4. Every input weed image is of dimensions 224 × 224 × 3, which consists of 224 × 224 input
matrices and each pixel in the matrix is a combination of Red, Green, Blue (RGB) colors and the value
of each color can range from 0 to 255. It is necessary to enhance the quality of the data. Constructing a
well-performing model requires close analysis of both the network architectures, the input data format
and also the division of images into different regions with a clear association with objects of interest that
have come under the segmentation part.

Finally, weed image data classification has carried out using different classifiers of deep learning
techniques. A few abbreviations are given in Tab. 3, which have been used for image Pre-processing,
Segmentation, Feature Extraction and Classification techniques.

The identification and detection of weeds based upon morphological property have been performed
using Efficient Net B7 architecture. Steps involved in the identification and detection of weeds are
explained in Tab. 4 and are also explained in the form NWGE algorithm

Efficient Net models achieve both higher accuracy and better efficiency over existing CNNs, reducing
parameter size and flops by an order of magnitude. The input will be weed images with 224 × 224 ×
3 dimensions, K number of filters and 3 colors space (Red, Green and Blue). In the context of weed
image data, ‘I’ is used as input layer size and ‘O’ as output layer size. The proposed framework performs
mapping of weed image output as compared to convolutional layer and pooling layer where n is an input
of the filter, P is padding and D is dilation (D = 1, by default), Efficient Net B7 use iteration using
FLOPs =M2(C2Kin+1)Kout. The third is the Fully Connected Layer that consists of weights and biases
which is used to connect neurons between two different layers [31]. Fourth is Dropout, in the case of
fitting few neurons are dropped from the neural network during the training dataset. Last is an Activation

Weed/Crop image 
Acquisition 
experiment field 
with mounted 
camera in three 
different soil

Clay soil weeds image 
data (N = 50 ppm (Parts 
per million) P = 5 ppm,
K = 180 ppm)

Fertile soil weed image 
data (N = 60 ppm, P=8 
ppm, K = 190 ppm)

Loamy soil weed 
image data (N = 45 
ppm, P = 7 ppm, K =
170 ppm) in rabi crop

Annotate 10 different 
weed image data, 
then labeled the image

Trained the CNN 
model with Convert 
Gray Scale and 
Binary Image data

Optimized image 
with 80-20% image 
data train-eval and 
Quantify Weed 
crop image

Weed identification and growth 
estimation due to nutrient absorption 
from soil

Compare with standard soil 
nutrient and impact on target 
crop 

Test data set Result using 
Efficient Net B7 architecture
got 97% accuracy

Figure 2: Weed growth estimation due to nutrients using CNN data model
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function that is the most important layer for forwarding the functionality to the next layer. The standard
parameters of linear activation function such as sigmoid, tanh, Re Lu½f ðxÞ ¼ maxð0; xÞ�, size of input
weed image (H ×H), filter size (F × F), stride (S) and the output size is (w ×w) have been implemented
on CNN. The complete description of the weed image dataflow using Efficient Net B7 is depicted below
in Fig. 4. This algorithm uses Efficient Net B7 architecture to calculate the correlation coefficient and
error rate for N numbers of weed images.

The iteration of weed image data based upon Floating-Point Operations per Second (FLOPS) measures
the weed image data accuracy. The genetic algorithm for the Efficient Net B7 description is given below in
the form of the proposed NWGE algorithm. NWGE algorithm describes the error rate (Err) and correlation
measurement (Corries), of N numbers of training weed images data. The training weed image contains
collected sample dataset (Ws), Validation of data (Wv), a morphological feature of an image as Pfm and
Pimage[j] as the correlation coefficient of weed image. The input of correlation coefficients initialized with
zero such as Corrres = 0, depth, width and resolution of images calculated using FLOPs =M2(C2Kin+1)
Kout which is turned up to N times. The parametric description of both Efficient Net B7 and Inception
V4 architectures is given in Tab. 5.

The scaling method (depth, width and resolution) of Efficient Net B7 improves the accuracy and
efficiency with the help of FLOPs. Finally, the weed error rate (Err) calculated as 4.167% based upon
Efficient Net B7 architecture. The accuracy of average weed growth at three different locations for these
species increased to 97% using Efficient Net B7 as shown in Fig. 7. than past CNN models such as
inception V4 with 94% accuracy as shown in Fig. 6. The multiclass object-detection training uses the
Intersection over Union (IoU) method where four conditions have been organized as True positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN). These four conditions are applied to
build a binary-class confusion matrix [32]. The scale of effectiveness is considered as two-parameter such
as leaf and the entire plant. The technique is being developed for the precision value that calculates the
plant-degree scale. The proposed algorithm NWGE ensures to target weed plants inside the wheat plants

Filter concat

1 × 7 (214)

1 × 7 (256)
1 × 7 (224)

7 × 1 (224)

1 × 7 (192)

1 × 1 (92)

1 × 1 (384)

7 × 1 (214)

Filter concat

1 × 1 (192)

Average pooling

1 × 1 (120)

Figure 3: The Architecture of efficient net B7 in perceptive of weed images
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using measures and effectiveness of neural network with precision, recall and F1-score. The steps of identical
optimization of the genetic algorithm based on Nutrient-Based Weed Growth Estimation (NWGE) algorithm
are given below:

Algorithm NWGE: Train the weed image dataset using single CNN with Efficient Net architecture

1. Input: Trained the weed image sample dataset (Ws), Validation of weed data (Wv), Pfm is feature
of weed image and Pimage[j] is correlation coefficient of weed image.

2. Output: Error rate (Err) and correlation coefficient (Corries)

3. Train the CNN model using Efficient Net architecture

4. Compute the error rate (Err) with validation (Wv)

5. Initialize the input correlation coefficient i.e., Corrres = 0

6. For i = 1 to Pfm iteration FLOPs =M2(C2Kin+1)Kout

7. Pick the image feature map Pfm at random for CNN

8. For j = 1 to N weed images

9. Use feature map Pfm and image Pimage[j]

10. Corries = Corrres+ Pimage[j]

11. Return Err and Corries

Select training weed image data set

Initialize CNN Model

Train Efficient Net B7 and calculate 
Error rate

De-convolution to visual feature

Find error rate with coefficient and 
short the CNN

Start Iteration

Weed images 
iteration<max

Stop and find best CNN architecture (Efficient Net)

No

Yes

Figure 4: Weed image data flow using CNN
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Table 5: Parametric description of efficient net B7 and inception V4 architracture

Model #Parameters (ratio) #FLOPS Speedup

Efficient net B7 66 million (1×) 37 billion 5.7×

Inception V4 41 million (8.4×) 16 billion 3.4×

Table 4: Steps taken for weed image processing

The weed image input as dimension 224 × 224 × 3 that consists of 224 × 224 input matrixes and each pixel
in the matrix is a combination of Red, Green, Blue (RGB) colors and the value of each color can range
from 0 to 255.

Steps 1: The weed image data input dimension C ×C ×D = 224 × 224 × 3 with K filter and 3 colors (Red,
Green and Blue) assume there is no parameter for nonlinear.
The parameter = KC2D +K is without any bias so, KC2D will get reduce.

Step 2: Then on linear activation function such as sigmoid, tanh and ReLu where, ReLu[f(x) =max(0, x)]
and size of input weed image (H ×H), filter size (F × F) stride (S) and output size is (w ×w)

W ¼ H � F

S

� �
þ 1 (1)

Step 3: There is no parameter on pooling layer where ‘I’ is input layer and ‘O’ is output layer size.
The parameter = IO + O no bias reduces the IO

Step 4: Final mapping output compare to convolution with pooling where n is input is the filter, padding is
P and stride is S and dilation D (D = 1, by default) so

M ¼ N � DðC � 1Þ � 1þ 2P

S

� �
(2)

Step 5: Iteration of FLOPs =M2(C2Kin+1)Kout

Where,M is output map size, c is kernel size, Kin is input channel and Kout is output channel. FLOPs,M
2,

(C2Kin), Kout have no bias.

Table 3: Abbreviations used in the algorithm (NWGE)

Notation Meaning

C, D Pixel input image, combination of Red Green Blue images

H, F, S Weed image, filter size, stride

I, O An input layer, output layer

P, D Padding, delimiter

T Image filter for reducing the weed image data

FLOPS Floating-point operations per second

Prei Precision value

Reci Recall value

F1 Scri F1 score
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5 Results and Discussion

This section briefly summarizes the experimental results for the performance evaluation and provides the
simulations.

5.1 Training and Testing

Weeds plants usually compet for light, water, air, nutrients and space from the target crop. This work
assesses the growth rate of weeds due to macronutrients (nitrogen, phosphorus and potassium) absorbed
from the soil (fertile, clay and loamy) in the rabi crop. A detailed description of the training dataset is
shown in Fig. 5.

This work identifies 10 different weed species from collected images of rabi crop for training and testing
to achieve higher accuracy of CNN. The images have been classifying using Inception V4 and Efficient Net
B7 architecture. Here, the CNN is skilled for the multi-class training dataset containing 2936 images and
734 images have been used for testing and validation. Here, Inception V4 is skilled to estimate the
growth and detecting different weed classes. This method has achieved maximum accuracy of 94% by
using 50 epochs. A detailed description of weed growth accuracy with Inception V4 is given in Fig. 6.
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In this context, TP represents the images that are successfully identified weed images; TN refers to the
alternatives that include weeds without efficiently determining target weeds; the FP represents the target
images without weeds that may be incorrectly recognized as targeted weeds and the FN represents the
target weeds those aren’t incorrectly determined as weeds. The precision value (Eq. (3)), F1-Score
(Eq. (4)) are evaluated for the performance score [33]. The training stopped after epoch 37 to reap the
highest comprehensive accuracy without fitting, epoch 38 to 47 achieves the best accuracy using Efficient
Net B7 without fitting from 1 to 35 approximately. Eventually, the common accuracy of the 10 different
weed classes using Inception V4 turned into 94% and with Efficient Net B7 models turned into 97%.

The distribution of predictions proves that the accuracy of plants having >8 leaves, achieved the best
accuracy. Images of few plants having 3, 5, or 7 leaves are the most misclassified images in the training
dataset, where the final accuracy is 74%, 55% and 25%. As a result, the number of samples for training
classes still has a higher accuracy inside the verification section with Efficient Net B7 architecture as
shown in Fig. 7.

5.2 Performance Rating

In a study, the results of all approaches were performed in a highly entangled matrix with appropriate
parameters, that measures of different neural network architecture virtue were used: Accuracy, Recall and
F1 scores [34]. Accuracy is a degree of the way correct the neural community changed into positive
detection and it becomes calculated as:

Prei ¼ MiiP
j Mij

ðMii ¼ True Positive and
X

j
Mij ¼ True Positive þ False PositiveÞ (3)

It is a degree of the way effectively a neural network identifies a goal is calculated as:

Reci ¼ MiiP
j Mij

ðMii ¼ True Positive and
X

j
Mij ¼ True Positive þ False NegativeÞ (4)
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Figure 7: Weed detection using efficient net B7 agronomic images accuracy in 50 epochs
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The harmonic mean of F1-Score calculated by the way of:

F1 � Scri ¼ 2 � Recall þ Precession

Recall þ Precession
(5)

In the confusion matrix, True Positive represents well-grown weeds, True Negative represents those
weeds that are efficaciously recognized as plants; False Positive represents plant leaves which can be
shown false weed image identification; weeds are incorrectly classified as plants in a False Negative. To
assess the fulfillment of the most extensively used measures had been calculated as Accuracy and F1-
score. Accuracy is the ratio of True prediction (both True Positives and True Negatives) to the total
number of weed images is investigated. F1 score evaluates the binary classification systems, which
classify based upon ‘positive’ or ‘negative’. The two different CNN networks first image classification
(IC) and the second is object detection (OD) and the confusion matrix is given in Fig. 8. Confusion
matrix of weed analysis for weed growing competition with Rabi crop and parametric data of the
prediction of F1-Score, harmonic mean of precision and recall is presented in Tab. 6. Based upon
effective results, it could be concluded that the improved version can be applied for weed identification
and detection, with 97% accuracy using Efficient Net; Due to the fact in these structures, detection
produced the largest F1 Score for any CNN with absolute accuracy. The authors no longer isolated any
unique weed species using the CNN model but analyze the growth of the weed. Since the 20 epoch had
been not identical, the distribution of estimation within the confusion matrix is shown in Figs. 8a and 8b,
where the confusion matrix shows that there are exclusive locations of weed growth for accuracy.

Figure 8: (a) Distribution of predicted weed growth (b) Normalized confusion matrix stages
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6 Conclusion and Future Scope

This observation presents a neural network-based technique for improving the evaluation of weed
growth due to nutrient observation from the soil. Images with specific soil types (fertile, clay and loamy)
are taken with various digital instrument cameras and light conditions are collected inside the fields. The
images are presented under field conditions where weeds leaf rotten each other, a neural network that
would normally be able to distinguish between them. The illustrations include the common rabi session
weed species, which include both monocots and dicot weeds within the rabi season crop. The Efficient
Net B7 and InceptionV4 architecture of CNN are used as decision machines. The digital camera-based
weed image appears to be a feasible alternative for weed control inside the rabi vegetation in Madhya
Pradesh (India). Inception V4 and Efficient Net B7 have achieved an accuracy of 94% and 97%
respectively for weed growth identification in Rabi crop for 10 different species. The accuracy of average
weed growth at three different locations for these species increased to 97% using Efficient Net B7, which
is higher than the Inception V4 architecture of the CNN model. The more density of weed and
overlapped weed leaves is an important factor that is affecting crop production. Future studies can
discover a more accurate approach with a combined detection technique based on time series data.
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Table 6: (a) Confusion matrix of weed analysis for weed growing competition with rabi crop in 2020
(b) Parametric data of the prediction of F1-score, harmonic mean of precision and recall

(a)

Predicted value

Particulars Default
weed image

Actual selected
weed image

Total

Actual value Default weed image 1500 1125 2625

Actual selected weed image 750 420 1170

Total 3670

(b)

CNN N/W model Specific trained
weed data

CNN N/W type Weed precision
value (Max.)

Recall F1-score

Inception V4 Entire image IC 0.95 0.21 0.94

Inception V4 Trimmed IC 0.95 0.20 0.94

Efficient net B7 Canopy OD 0.97 1.00 0.96

Efficient net B7 Leaf OD 0.98 0.99 0.97
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