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Abstract: Localization is an essential task in Wireless Sensor Networks (WSN)
for various use cases such as target tracking and object monitoring. Anchor nodes
play a critical role in this task since they can find their location via GPS signals or
manual setup mechanisms and help other nodes in the network determine their
locations. Therefore, the optimal placement of anchor nodes in a WSN is of par-
ticular interest for reducing the energy consumption while yielding better accu-
racy at finding locations of the nodes. In this paper, we propose a novel
approach for finding the optimal number of anchor nodes and an optimal place-
ment strategy of them in a large-scale WSN, based on the output of Grey Wolf
Optimization (GWO) and Particle Swarm Optimization (PSO) methods. As an
initial step in this approach, the virtual localization process is executed over a vir-
tual coordinate system in order to optimize the efficiency of the localization pro-
cess. GWO and PSO methods are compared with a coverage-based analytical
method and machine learning approaches such as Support Vector Machine
(SVM) regression and Multiple Regression. The simulations we run with different
numbers of nodes in a WSN and different communication ranges of nodes demon-
strate that the proposed approaches are superior for minimizing the localization
errors while reducing the number of anchor nodes.

Keywords: Wireless sensor networks; localization; anchor node placement; grey
wolf optimization; particle swarm optimization

1 Introduction

A wireless sensor network (WSN) is composed of low cost, low power sensor nodes collecting useful
information from their neighbors to carry out a common task [1]. Large-Scale WSNs (LS-WSN) on the other
hand, are mostly used for collecting and processing massive amounts of data from various regions [2–4]. In
many WSN application areas such as military, rescue, and civil use cases, sensor nodes are required to know
their current coordinates in order to operate effectively. Furthermore, sensors inWSNs are deployed for target
tracking and object monitoring when the location information is available. Therefore, localization techniques
are of particular interest to WSNs as they are used to determine the current location of sensor nodes. In order
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to capture location information, one can attach a GPS module on every sensor node in a network, however,
this would not be a cost effective solution. Instead, the location of all sensors could be determined by
communicating with a limited number of anchor nodes that are capable of identifying their own locations
with high accuracy. Having a large number of anchor nodes would improve the precision significantly,
but communicating with many anchor nodes would impact the battery life time of the sensors
dramatically. Therefore, having an optimal placement strategy is vital to minimize the number of anchor
nodes. To tackle this problem, many approaches have been proposed for decreasing the number of anchor
nodes in small-scale WSNs [5–7]. However, these approaches are not applicable to large-scale WSNs
which is the main problem we target in this paper.

Many studies in the literature have been carried out on the subject of optimal anchor placement. Cheriet
et al. [8] performed anchor placement using local search anchor placement (LSAP) and brute force algorithm.
However, this study was not applicable on a large-scale WSN, as it was implemented in a mini-scale network
with 20 nodes. Anchor node numbers are set to 3, 4 or 5 and are not adapted to a mobile WSN. In another
work, while optimal anchor placement was implemented, anchor placement was performed with the
equilateral triangle method for each unlocalized node [9]. Thus, the study is far from providing the
minimum number of anchor nodes. It is also not suitable for changeable topologies. Another approach
has been proposed by Cui et al. in [10] where anchor nodes are selected from the existing nodes for each
node which is unlocalized. There is no search for the optimum location or minimum number of anchor
nodes. Unlike, the anchor placement in our study can provide the localization of all unlocalized nodes in
the relevant region. In this study, a smaller network with fewer nodes was used and it was not
implemented on a true large-scale WSN structure. As opposed to this work, the anchor placements in our
study are not calculated on a particular node path or route. Any point within the intersection of the
coverage areas of the nodes in the WSN can be an anchor placement candidate. According to the fitness
status in the optimization methods, many of the candidates are eliminated and anchor placement is
performed. Most of the studies in the literature leverage traditional parameters whereas the model we
propose about optimization takes into account new parameters suggested in the literature that are more
effective on localization to choose efficient temporary anchors.

In this paper, our goal is to find the optimal number of anchor nodes in a localization process of large-
scale WSN for periods. In order to achieve that we propose an anchor placement method that leverages
metaheuristic optimization techniques. Towards that goal, we first create a virtual coordinate system and
virtual localization system, considering the relations of neighbor nodes. Then, we determine the
intersection areas (IA) and their central points with the weighted centroid method. Those points are called
anchor candidates (AC). This approach leverages optimization methods such as Grey Wolf Optimization
(GWO) and Particle Swarm Optimization (PSO) as well as the fitness function developed for localization
task in order to find the most efficient placement of anchor nodes in a large-scale WSN. Iterative
localization is performed with those selected anchor nodes, and localization results are obtained.

Obtaining the right position of anchor nodes provides more accurate localization, constituting one of the
major objectives of the proposed method. The streaming data required in large-scale distributed WSN
localizations such as herd tracking, landslide and volcano monitoring in our study will be the only
information for localization. The location information in question becomes a useful type of data because
it serves the functions of saving human life or preventing the loss of herd animals in the above
applications. For example, in the landslide monitoring process, the positions of the nodes stuck in the
ground are monitored for a long period. If some change of position is observed in one or more of these
nodes, an early warning is generated for landslides and this information is transmitted to the necessary
units via the sink node. In the monitoring process of the cattle or sheep herds, the positions of the cattle
or sheep are monitored and whether there are any herd animals separated or lost from the herd.
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The main contribution of this paper is to propose a metaheuristic anchor placement approach for the
localization process using GWO and PSO algorithms. To the best of our knowledge, the GWO algorithm
has never been utilized as an anchor placement approach in the literature. This algorithm helps improving
the accuracy with the minimum number of anchor nodes in a large-scale WSN. As a swarm optimization
algorithm, GWO shortens the processing time and provides a balance between the localization accuracy
and the optimal number of anchor nodes. These methods take advantage of locations in intersection areas
to be points of ACs in the whole WSN. Finally, this anchor placement model is not for choosing efficient
and minimum number of anchor nodes among all nodes in WSN. Instead, our goal is to obtain the most
efficient positions for anchor nodes in a WSN.

The remaining paper organized as follows. We first review the prior work on metaheuristic algorithms
for localization as well as anchor selection and anchor placement algorithms. In Section 3, we describe the
basic principles and mathematical models of the GWO, PSO, and analytical method, respectively. Section
4 describes system assumptions, system architecture, and proposed algorithms for anchor placement
problems. Simulation results and performance analysis are presented in Section 5. Finally, Section
6 concludes the paper and provides future research directions.

2 Related Work

Localization in wireless sensor networks is a well-studied problem in the literature. Below we review
these studies in three categories: (1) Metaheuristics algorithms for localization; (2) Anchor selection; (3)
Anchor placement.

2.1 Metaheuristics Algorithms for Localization

Metaheuristics algorithms can overcome combinatorial problems by near-optimal methods and needs
less computational time. Moreover, they have simple rules while they were being run. Also, Swarm
Intelligence (SI) based optimization algorithms are used to solve multidimensional optimization problems
[11–13]. These kinds of algorithms are based on the collective behavior of populations for an agent.
Those methods generally remain undiscovered for WSN localization. Artificial Bee Colony (ABC),
Bacterial Foraging Algorithm (BFA), PSO, etc. are applied successfully in the localization area [14,15].
There may be differences among those algorithms in terms of accuracy and computation complexity.
Shuffled Frog-Leaping Algorithm (SFLA) is a method that is used in continuous and discrete
optimization. This kind of optimization is utilized with a distance-vector (DV) technique to improve
accuracy in localization. In another study, it is also used to deploy new nodes in WSN [16]. ABC
algorithm method utilized to improve localization accuracy and also optimal node deployment [17]. PSO
is a robust algorithm that obtains high accuracy and quick convergence. This technique is used in many
applications of localization. The original bounding box method based on the intersection of rectangular
estimation points. However, in a related study [18] a random initial position is determined in the
rectangular intersection area then optimized by the PSO method. Those values are compared with
traditional bounding box methods and provided more accurate results. The approach in this work based
on the PSO performing on the traditional DV-Hop algorithm. There are two steps in this method that are
two-dimensional (2D) hyperbolic location algorithm and the PSO. While the 2D hyperbolic location
algorithm improves the precision of the location estimation, PSO serves the purpose of correcting the
position estimation. Unlike those mentioned papers that leverage metaheuristics for localization process to
improve accuracy, our work utilizes metaheuristic optimization methods to determine the anchor nodes in
pre-localization stage for the same purpose.

IASC, 2022, vol.31, no.2 1199



2.2 Anchor Selection

There are numerous studies in the literature about anchor selection. Anchor Selection is an act of
selecting the most efficient nodes as anchors in the network or cluster for the best localization. Selecting
the best nodes is relevant to several factors, such as the distance between anchors and the required
number of anchors, and it works for finding optimal anchor placement to obtain minimum localization
error [19,20]. Moreover, it can achieve better localization accuracy as opposed to using all the available
anchors. However, in WSN localization, integrating GPS to all nodes is not a cost-effective option even
though it is the way of obtaining the most accurate information. Because this option may incur costs due
to more software and hardware mechanisms. The method proposed by Ahmadi et al. [21] is one of the
studies about anchor selection. In this work anchor selection process was realized with the k-nearest
neighbor (KNN) method, which selects the three nearest nodes as anchors.

Chen et al. [22] pretend to design an improved least square algorithm. Also, this algorithm provides less
cumulative relative distance error. In this study, there were two theorems to prove. Theorem 1: if the
euclidean distance is small between anchors and target, localization error will be low too. Theorem 2: If
the anchor node has minor localization error for itself, the localization error of the target will be smaller
again. Cho et al. [23] tried a different strategy and applied a different criterion for selecting anchor.
Robles et al. [24] used the Extended Kalman Filter with an adaptive method. According to this approach,
some error indicators arrange the number of anchor nodes owing to the localization errors in previous
periods. Namely, if the localization error is high in the earlier periods, the number of anchors can be
increased. As a heuristic method, Ant Colony Optimization (ACO) is performed in another paper [25] to
find the optimal anchor nodes for localization. ACO also aims to find efficient anchors to localize the
blind nodes. Fan et al. [26] argued the triangle, and its conditions that consisted of the three anchors to
choose the anchor nodes. This approach gives way to design a method to anchor selection that is based
on error analysis. It suggests building a triangle by the anchor nodes that is, as similar as possible to an
ideal or equilateral triangle. Although our paper is not directly related to anchor selection among the
nodes, there is a selection of the locations for the placement of anchor nodes.

2.3 Anchor Placement

Our work mostly relates to the anchor placement issue. Anchor placement is similar to anchor selection
but the different subject on WSN localization, and there are many studies in the literature proposed for this
issue. Zaidi et al. [27] used an approach for obtaining optimal anchor positions and claimed to acquire less
location estimation error (LEE). When they apply their anchor placement strategy, Normalized LEE (NLEE)
results reduced the grid, perimeter, and random procedures about 76.8, 61.62, and 50.64, respectively. In
another study [28] size of the WSN plays an essential role in determining the amount of anchors. Two
methods are applied in this study. The first technique has some stages, like minimizing the average area,
circle-based localization algorithms, and deterministic anchors deployment. The second approach is
different because of two-anchor coverage, and it has four-subdivisions analysis and optimal anchor
placement processes. Li et al. [29] perform a selective anchor placement algorithm. They use the Cramer-
Rao Lower Bound (CRLB) method to run the localization algorithm and bound on the accuracy
performance. There are impact factors for anchor placement in that study. Those are anchor mobility,
anchor density, and anchor position relative to the non-localized node. Monica and Ferrari considered a
different problem about anchor placement and an Automatic Guided Vehicle (AGV) moving on a line in
the building. Anchor nodes have fixed positions, and they use the Time Difference of Arrival (TDOA)
technique for localization. AGV selects the four closest anchor nodes for estimating its location [30].
Random distribution of noise and path-loss parameters are taken into consideration during the location
estimation of nodes in [31].
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Furthermore, anchor placement was implemented according to WLAN infrastructure principles.
According to this work [32] sample size of Received Signal Strengths (RSS) must be largely due to
outages on the distance errors. Chepuri et al. did not use CRLB, and anchor placement described as an
elegant convex optimization problem. Miao and Huang studied optimal anchor placement in single-hop
WSN localization [33]. The solution of the paper is related to the Fisher information matrix that applied
to TOA. In another work (Törös), the K-Means clustering method is used for the base station placement
issue. Transmitting power, antenna model, propagation model, and consequently, communication range of
nodes are determiner factors to choose the efficient anchor nodes in Törős et al. [34]. Naturally, node
placement issue is inspected with nature-inspired metaheuristic algorithms like the other methods. Harris
Hawk Optimization technique was applied to optimal sink node placement in another study [35].
However, this method is utilized to arrange a more efficient and high convergence large-scale WSN.
Unlike this work, we primarily utilize metaheuristics methods for the anchor node placement for the
localization process. Furthermore, GWO and Crow Search Optimization are used with the hybrid model
for Cluster Head selection in a WSN. The hybridization of those two algorithms realized by forming an
appropriate balance between the exploitation and exploration phases in algorithms [36].

3 Overview of the Optimization Techniques

In our study, metaheuristic and analytical optimization techniques were used to determine efficient
anchor node placements. In addition to metaheuristic methods such as Grey Wolf Optimization (GWO)
and Particle Swarm Optimization (PSO), the analytical method is also used for this purpose. On the other
hand, GWO is emerging as a relatively new technique that is specifically explained in more detail in the
study. These techniques are described in more detail below.

3.1 Grey Wolf Optimization (GWO)

Grey wolf optimization, developed by Mirjalili et al. [37], is inspired by the hunting strategies and
hierarchy of grey wolf packs. The group size of those top-level predators may vary from 5 to 12 on
average. Grey wolves are classified into four categories according to their roles and hunting strategies in
their groups. Leaders of the group are called alphas, which could be either male or female. Alphas are
dominant, and all other members of the group have to follow the instructions of them. They decide where
to sleep, when to wake-up and where to hunt, etc. Only they have the freedom of mating in the pack.
Beta wolves have a second-level role in the group. They help alphas during the decision-making process
as well as other tasks. Betas can be female or male too. Beta wolf has the potential of taking the new
alpha position or leadership role, in case the existing alpha dies or gets incompetent to pursue the
leadership role. They follow the instructions of alpha closely and provide feedback on these tasks.
Therefore, they are typically considered to be the senior advisors of the alphas in the pack. Delta wolves
have a third level role in the hierarchy of order within the group. They obey the rules of alphas or betas,
but they also manage the lowest level of the group, which is called as Omega. Finally, Omegas constitute
the lowest level of the group, following the orders of all dominant classes in the pack. They have the last
place to eat in a group. But they help to prevent fighting situations and provide an internal balance of the
group. According to Muro et al. [38] hunting process of grey wolves classified into three steps. These
steps are shown in Fig. 1 below.

Presenting mathematical models of the steps mentioned above is useful for a better understanding. Due
to the social hierarchy of wolves a is considered as the best solution. b and d are the second and third best
solutions, respectively. Other candidate solutions calledx. The hunting process, in other words, optimization
is typically performed by a, b; and d wolves. x wolves follow them during this process. The steps of the
hunting process are described below in each subsection.
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Encircling Prey : Grey wolf pack identifies the location of prey and encircle it. The location vector of
prey is defined in this step. Moreover, search agents set their positions according to the prey’s position in
order to obtain the best solution for attacking the prey. The encircling process of the prey is
mathematically modeled as follows:

~D ¼ ~C: Xp
�!

tð Þ � ~X tð Þ
��� ��� (1)

~X t þ 1ð Þ ¼ Xp
�!

tð Þ �~A:~D (2)

where tð Þ is the current iteration. Coefficient vectors are represented by~A and ~C. Xp
�!

represents the position
vector of prey and ~X is the position vector of a grey wolf. A and C vectors are defined as follows:

~A ¼ 2~a:r1
!�~a (3)

~C ¼ 2r2
! (4)

r1
! and r2

! are random vectors and~a is linearly decreased from 2 to 0. Grey wolf can adjust its position (X, Y)
according to the prey’s location (X*, Y*). Adjusting ~A and ~C provides different positions around the best
agent concerning the current location. For example, setting ~A ¼ 1; 0ð Þ and ~C ¼ 1; 1ð Þ produce
X � � X ;Y �ð Þ.

Search for Prey: Positions of alpha, beta, and delta wolves are essential since the other wolves determine
their positions with respect to these leader wolves. ~A indicates the tendency of a grey wolf to the prey. There
are two tendency motions in this step. Searching the prey or attacking. If Aj j > 1, grey wolves diverge from
the prey and try to find a different and fitter prey. C is another useful factor in the exploration process. It has
random values in 0; 2j j. It produces random weights for prey due to C value. If ðC > 1Þ, it emphasizes the

Figure 1: Typical hunting behavior of a wolf-pack [36]: (a) chasing, tracking, and approaching the prey, (b)
(c)(d) pursuing, harassing, and encircling the prey until it gets immobile, (e) attacking the prey
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effect of prey in defining the distance. On the contrary ðC < 1Þ provides deemphasizing. C value can be
considered as obstacles between the grey wolves and prey. They prevent quickly hunting of prey and
extend the distance between the grey wolf and prey. This parameter randomly changes the situation of
prey and also related to the position of a wolf. It gives a weight to prey, which defines the convenience of
the hunting process for a wolf.

Hunting: In general, alpha manages the hunting process, and beta can join it every once in a while.
According to mathematical simulations, alpha, beta, and delta have better knowledge about possible prey
position. So, those best solutions of the GWO are saved and oblige the other search agents to update their
locations according to those best search agents. Some equations are used for this purpose, as described
below:

Da
�! ¼ C1

�!
: Xa
�!� ~X

��� ���; Db
�! ¼ C2

�!
: Xb
�!� ~X

��� ���; Dd
�! ¼ C3

�!
: Xd
�!� ~X

��� ��� (5)

X1
�! ¼ Xa

�!� Da
�!� �

; X2
�! ¼ Xb

�!� Db
�!� �

; X3
�! ¼ X3

�!� Dd
�!� �

(6)

X tþ1ð Þ
���! ¼ X1

�!þ X2
�!þ X3

�!
3

(7)

The final position of prey is determined by the locations of the alpha, beta, and delta. Those three wolves
estimate the location of the prey, and other wolves of the pack update their positions accordingly.

Attacking Prey: When the prey stops, the grey wolves can attack it. Value of a is linearly decreased,
according to the mathematical model. So A has a random value in the interval �a; a½ �. If A has random
values in �a; a½ � and ð Aj j < 1Þ, method obliges the wolves to attack towards the prey.

3.2 Particle Swarm Optimization (PSO)

PSO algorithm has been suggested based on the behavior of birds and school of fish, so it is called a
swarm intelligence algorithm. The algorithm is quite effective on fast convergence, although it does not
have a complex implementation. The algorithm reveals a set of solutions, defined as particles. There are
some 3-D vectors to describe a particle [39]. Those are the current location (xikþ1), the previous location
(xik), current velocity (Vi

kþ1), and best fitness of ith particle (pbesti) values. Moreover, current global best
defined as gbest. Namely, the objective function determines the fitness of particles and provides more
accurate localization in a search space. Updated particle location set as,

Vi
kþ1 ¼ wVi

k þ c1r1 pbesti � xi
k

� �þ c2r2 gbest � xi
k

� �
(8)

xi
kþ1 ¼ xi

k þ Vi
kþ1 (9)

where r1 and r2 are uniformly distributed random numbers between 0 and 1, c1 and c2 are also acceleration
constants. w is the inertia weight which derived from the maximum weight (wmax), minimum weight (wmin)
and the number of maximum allowable iteration (tmaxÞ by the followed equation.

w ¼ wmax � wmax � wmin

tmax
t (10)

As it is understood, each particle in PSO needs connections with the other particles in the network,
which is called topology. Global-best and local-best are two kinds of those topologies. On the contrary to
Global-best, Local-best obtains access to the information of neighboring particles. Thus every particle
has a swarm with different properties. There is a similar update function for local-best that is symbolized
by lbest:
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Vi
kþ1 ¼ wVi

k þ c1r1 pbest � xi
k

� �þ c2r2 lbest � xi
k

� �
(11)

xi
kþ1 ¼ xi

k þ Vi
kþ1 (12)

3.3 Analytical Method

Lasla et al. [28] conducted a theoretical study on locating anchors for localization and minimizing the
cost via reducing anchor count. The research is about achieving full coverage in non-mobile sensor network
area (with a radius of R) with the fewest anchors. Triangular lattice has been taken as a model for an efficient
and fixed anchor placement pattern in that study. Triangular lattice has three sides that are equal to

ffiffiffi
3

p
R. The

neighborhood of anchor nodes to each other is not a requirement for area localization. Naturally, vertices of
the triangular lattice can be larger than R value. Thus, all nodes in the network will have one neighbor anchor
to obtain optimal anchor number by deploying the anchor nodes at the vertices of the triangular lattice. In
their work, the deployment area of WSN is considered as a rectangle, and that is equal to L�W . So,
according to this method, the least number of anchor nodes m is found with the following equation:

m ¼ 2Lffiffiffi
3

p
R
� 2W

3R

	 

¼ 2LW

3
ffiffiffi
3

p
R2

	 

(13)

Those triangular lattice patterns divide the IAs to equal regions of circular geometric forms that propose
the best accuracy with single anchor coverage. In our study, this method takes the most successful m IAs as
anchors enumerated according to fitness function results that explained in section 4.

4 The Proposed Optimal Anchor Placement Method with Location-Based Fitness Model

Various solutions were proposed in the literature for the problem of anchor placement in WSNs (See
Section 2). Nodes in these networks are classified as anchor nodes and non-localized nodes, depending
on their location awareness within a WSN. Anchor nodes are aware of their positions since they have an
integrated GPS module or compute their relative coordinates by leveraging the information received from
the stationary nodes. On the other hand, non-localized nodes may estimate their location via anchor nodes
using the mathematical methods. During this process, some factors, such as energy constraints should be
taken into account for efficiency purposes. The more anchor nodes are used, the more accuracy can be
obtained, especially in a large-scale WSN. Hence, we consider the trade-off between high accuracy and
energy consumption during the localization process. In other words, our goal is to achieve high accuracy
in localization with as low anchor nodes as possible via metaheuristic optimization methods as GWO and
PSO. In brief, this proposed model concludes those featured stages:

� A temporary virtual coordinate system and virtual localization to determine the parameters of
optimization,

� Aweighted centroid localization to find the locations of possible anchor deployments in intersection
areas (IA),

� Optimization algorithms to obtain the minimum anchor node number with efficient anchor node
coordinates for localization,

� A localization algorithm to estimate the locations of non-localized nodes.

The proposed system architecture has been depicted in Fig. 2. Furthermore, the proposed system is
designed to execute in the periods for a second of a large-scale mobile WSN. However, in this model,
there is a process about finding the most efficient positions to locate the anchors for the localization

1204 IASC, 2022, vol.31, no.2



process in a WSN. Now we present our anchor node placement method for localization. First of all, we need
to make the following assumptions on our system model:

� The observed wireless sensor network is an infrastructure-free network and has non-located nodes,
which are mobile devices,

� All the devices in WSN have the same technical features and the same communication range.

� Anchor node candidates may not have all non-localized nodes in its communication range,

� All non-localized nodes may not be in the communication range of at least three anchor node
candidates,

� All nodes have omnidirectional antennas and accelerometers,

� All wireless links in WSN are bidirectional,

� The maximum speed of the mobile nodes is limited to 15 m/s.

4.1 Formation of Virtual Coordinates for Nodes

In this subsection, we show how to build a temporary coordinate system of the wireless network due to
the necessity of defining nodes. These nodes have parameter values for determining possible anchor node
placement. The modified approach of Capkun et al. [40] is utilized to solve this problem. A randomly
chosen node (i) in WSN becomes the origin (0,0) of the temporary coordinate system. If a node (i) in
WSN can communicate directly with another node j, i is identified as a one-hop neighbor of j. The
following process is executed for every node in WSN:

� Nodes detect their one-hop neighbors (Ni),

� They measure the distances to mentioned one-hop neighbors (Di),

� They measure their battery level (Ei) and speed (Mi),

� They send Ni, Di, Ei, and Mi to all their one-hop neighbors.

They forward all past neighborhood, distance, and other information in the network to whole forward
nodes. So every node in WSN knows its one and two-hop neighbor nodes. They also know the distances
between the one-hop and two-hop neighbor nodes. Fig. 3 shows node i and its one-hop neighbors. In this

Determining the x axis 
and origin with two nodes

Flooding

Forwarding the 
neighbourhood number 

and distance datas 

Determining the virtual 
coordinates of the nodes

 Forming WSN with 
Virtual Coordinates 

Collecting the Parameters 
in Sink Node

Identifying the IAs

Determining the 
coordinates of ACs

 Optimization Phase 

PSO GWO
Anal. 

Method

Acquiring the efficient 
ACs for localization

Determining the distances 
of nodes to anchor nodes

Trilateration or 
Multilateration

Least Squares Method

 Localization Phase 

 

Figure 2: System architecture
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method, two nodes (j,k) are required. Also, i, j, and q must not be in the same line. If we think j node located
on the x-axis, k has a positive kx component. So coordinates of those nodes given as follows:

ix ¼ 0; iy ¼ 0; jx ¼ dij; jy ¼ 0; (14)

kx ¼ dikcosc; ky ¼ diksinc (15)

So c, a and b angles are obtained with the following equations:

c ¼ arccos
d2ik þ d2ij � d2jk

2dikdij
(16)

a ¼ arccos
d2il þ d2ij � d2jl

2dildik
(17)

b ¼ arccos
d2ik þ d2il � d2kl

2dikdil
(18)

The virtual local coordinate system is built, and all virtual coordinates with other data of those nodes are
accumulated in a final sink node thanks to flooding algorithm. After the virtual deployment of nodes with the
mentioned method, the system is ready to find optimal anchor placement in WSN.

4.2 Identification of the Anchor Node Candidates

Intersection areas (IA) are the best places for anchor node deployment in WSN. Because it may allow
communicating with many unlocalized nodes, namely, anchor nodes in IAs may have a decisive role in many
trilateration or multilateration, and they may change of states for more nodes from unlocalized to localized.
Sink nodes find the IAs of nodes. It also knows howmany nodes intersect for the same IA. It is needed to find
the convex closure of nodes. Vertices of the IA are the intersection of two circles. Fig. 4 shows a simple
example of the IA between nodes. Those IAs are determined by algorithms like Graham Scan [41].

There are two situations for the result. Any two nodes in WSN may never intersect or intersect at one
point. So, there is no IA for that kind of two nodes. However, the existence of a two-point intersection creates
an IA between two circles. Algorithm shows the pseudocode of the IA detection below.

Figure 3: Formation of a one-hop virtual coordinate system
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We explain this IA relation between the two nodes in the following equation:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xCCi � xCCj

� �2 þ yCCi � yCCj

� �2q
< 2R IA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xCCi � xCCj

� �2 þ yCCi � yCCj

� �2q
� 2R IA ¼ 0

8<
: (19)

In our system model, we defined 3 as a minimum threshold number of nodes for the same IA. For
instance, as shown in Fig. 5, if there are IAs between the nodes h and i, h and j and, i and j as pairs,
there is an IA of h, i, and j nodes due to 3 paired IA. Also, if there are IAs between the nodes a and b, a
and c, a and d, b and c, b and d, and c and d, as pairs, there is an IA of a, b, c and d nodes due to
6 paired IA. Namely, this situation is explained as given below, where t refers to the total node number
covers an IA, p is the number of paired or two-noded intersections that include the same IA. If we
neglect the negative solution for t:

C
t
2

� �
¼ p (20)

A

B
C

D

Figure 4: An example of IA for the nodes

Algorithm 1: IA Detection

Define the radius r and set S of boundary nodes on the convex of N.
Define C as the circle set which has the center point of node Si and i and j indexes of circles
Define M=[
For the two circles Ci, Cj, and CCi, CCj are the centers.
Find the existence of the intersection of those circles.

If the distance between CCi and CCj is no more than 2r
return 0/
else

There are two intersection points and intersection area between Ci and Cj

Add Mij in M.
Return the convex set of M
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t � 1ð Þt ¼ 2p (21)

t2 � t � 2p ¼ 0 (22)

D ¼ 1� 4 �2pð Þ (23)

D ¼ 1þ 8p (24)

t ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8p

p
2

(25)

As shown in Fig. 5 α, β, θ, φ, δ, ρ, and γ IAs are in the communication range of 4, 3, 4, 3, 3, 5, and
3 nodes respectively. So the increasing number of connected nodes, which are in the range of IAs,
positively affects the extension of iterative localization in WSN. Points in those IAs are candidates to be
the places of anchor nodes. We can evaluate those points (x; yÞ with two approaches. The first technique
is a simple centroid method. The coordinates of those points (x; yÞ are obtained as follows:

x; yð Þ ¼ x1 þ x2 þ x3 þ . . .þ xn
n

;
y1 þ y2 þ y3 þ . . .þ yn

n

� �
(26)

x1, x2 ….. xn and y1, y2,….., yn are the coordinates of nodes in x and y ordinates, respectively. In
addition, the weighted centroid (WC) method is another way to find the mentioned points. The result of
the simple centroid is the beginning point of this method. So, (x; yÞ is used to determine the weight (wijÞ
of each node for the weighted centroid method. dij is the measured distance between the node i and the
coordinates (x; yÞ determined by the simple centroid method. Then, locations of intersection area center
points that are found by the simple centroid method. wij can be expressed as:

A

r

a

b

c

d

e

f

h

g

i

j

k

l

m

n

o

p

α

β

θ

ϕ   δ
ρ 

γ

Real Node in WSN

Anchor Candidate Placement in WSN

rr

Sink Node

S

Figure 5: An example of WSN with nodes and anchor candidates. r is the origin, and S is the sink node
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wij ¼ 1

dij
(27)

Thus, WC algorithm estimates the position of intersection area center points as follows:

Piw x; yð Þ ¼
Pn

1 wijPi xð ÞPn
1 wij

;

Pn
1 wijPi yð ÞPn

1 wij
(28)

n is the total “neighbor node of intersection area center point i. The weight factor is inversely
proportional to distance (dij). So, the nearest anchor to the initial intersection area center point is found by
a simple centroid algorithm in Eq. (26), which will have the most impact in determining the final position
of the intersection area center point in Eq. (28). After the determination of intersection area center points
in the whole network, GWO and PSO are used to choose the efficient anchor points. While realizing this
aim, the fitness function of that optimization method plays a key role. Because fitness of each agent is
required, and the best, second, and third wolves or agents are listed in order to those fitness values in the
algorithm.

4.3 Generation of Fitness Function for Optimization Methods

The fitness function aims to make more efficient optimization for obtaining more accurate values in
localization. For GWO, every wolf in the pack is evaluated based on a fitness function. In this study, the
fitness function is established on localization. There are five elements of this fitness function, which can
be explained with Fig. 5 initially. All of those parameters are defined by forming a virtual and temporary
coordinate system for the whole WSN. Some of them are utilized for the first time in the literature, owing
to the absence of determining anchor node positions via metaheuristics methods. The ratio of the average
distance of neighbor nodes for the ith AC (dav(i)) to communication range (r) is the first determining
value of the function. If it is closer to 1, it contributes to provide an efficient trilateration or
multilateration for localization. Energy is another factor in the optimization process. V is the initial
voltage level of the battery, Vavi is the average consumed voltage level for the neighbor nodes of the
ACi. Less usage of a node is one of the reasons for the long lifetime of a node and also a network.
Mobility or speed of neighbor nodes is another variable of the fitness function. Naturally, the speed
increase of neighbor nodes may increase the localization error. Thus, if the difference between the
maximum speed of a node and the average speed of neighbors for an AC (Mavi) gets bigger, fitness
function, and the consequent determination of anchor nodes are affected positively. The number of
neighbor nodes for ACi is Degi, and its percentage to the whole number in wireless networks is
symbolized by Degall that is a sign of to achieve that process generate a useful fitness function for a more
efficient iterative localization with selected anchor candidates. As mentioned above, there are two new
parameters for the fitness function. Those values are formed to provide more efficient localization. One of
those is the number of trilateration which includes the ACi as an anchor. The ratio of that number to all
trilateration numbers in networks indicates the effectiveness of the mentioned ACi. After determining the
ACs that are in IAs of the nodes via the method in abovementioned pseudocode in and Eq. (19), the sink
node saves the lists of the ACs in the communication ranges of nodes. This kind of list can be formed for
the WSN in Fig. 5. like the following. a={α}, b={α}, c={α}, d={α,β}, e={β}, f={β,θ}, g={θ}, h={θ,φ},
i={θ,φ}, j={δ,φ}, k ={δ,ρ}, l={δ, ρ, γ}, m={ρ}, n ={ρ}, o={ρ,γ}and p={γ} are the nodes and ACs are in
the communication range of them. According to this list, only one node can be localized in the first
iteration of the method because it is connected to δ, ρ, and γ as ACs. So there is only one trilateration can
be made during the first iteration. The ratio of trilaterations realized by the ACi (Trii) to all trilaterations
in WSN (Tri allð Þ) is another indicator for the suitability of WSN to localization.
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As a result of laterations several nodes may be localized. Finally the number of localized number of
nodes via the trilaterations made by ACi (NNodeTrii), and it’s the rate to the whole node number in a
network is an excellent factor to determine how useful iterative localization. It is needed to derive more
parameters from obtaining better iterative localization. a1, a2, a3, a4, and a5 are the numbers in a range of
[0,1]. We explain the fitness function in the following equation:

F xð Þ ¼ a1
r � davi

r
þ a2

V � Vavi
V

þ a3
Mmax�Mavi

Mmax
þ a4

Trii
Tri allð Þ þ a5

NNodeTrii
NNodeAll

(29)

After the determination of ACs via mentioned optimization methods, iterative localization is the final
step for completing the process for the whole wireless sensor network.

4.4 Localization

RSSI is used as a distance metric for range-based protocols. It is a measured value of received signal
power by receiver. Also, it is measured as an integer and can be converted to power unit as dBm. In
general, this particular value is obtained by the physical layer of the WSN as in ZigBee nodes. This
distance information is used to determine node positions. Examples are locating wireless devices in
WLAN and providing location information. This technique can be implemented with a little hardware in
a wireless communication system. Simply a receiver gets the power of received signal and it uses these
data as the RSSI output for location estimation. RSSI value can be calculated via the following equation:

RSSI ¼ A� 10nlog dð Þ (30)

A indicates the signal strength of transmitter node. In our experiments this value is used as 5 dB. As it is
mentioned before n is the path loss of the ambient. d is the measured distance between the transmitter and
receiver which is calculated as follows:

d ¼ 10 A�RSSIð Þ=10n (31)

RSSI and distance typically have a non-linear inverse relationship such that the RSSI value decreases as
the distance is increased. In our study, the least-squares method is performed for the localization process. This
kind of mathematical optimization technique has an unknown or target node to locate and n anchor nodes that
have coordinates X1; Y1ð Þ . . . . . . Xn; Ynð Þ: First of all, the distances between the unknown node and anchor
nodes are called di. Then a circle is created for each anchor node as a center and has a radius as di. Those
circles are intersected in one point that has the coordinates of the unknown node. In this method, at least
three anchor nodes are needed. X1; Y1ð Þ; X2; Y2ð Þ; X3; Y3ð Þ . . . : Xn; Ynð Þ are the coordinates of the
anchor nodes that have distances to the unknown node are d1, d2; d3 . . . . . . dn: Those distances are
explained in the following equations:

X � X1ð Þ2 þ Y � Y1ð Þ2 ¼ d1
2

X � X2ð Þ2 þ Y � Y2ð Þ2 ¼ d2
2

..

.

X � Xnð Þ2 þ Y � Ynð Þ2 ¼ dn
2

8>>><
>>>:

(32)

For the conversion of Ax ¼ B into linear equations:

A ¼
2 X1 � Xnð Þ2 Y1 � Ynð Þ

..

.

2 Xn�1 � Xnð Þ2 Yn�1 � Ynð Þ

2
64

3
75 (33)
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B ¼
X1

2 � Xn
2 þ Y12 � Yn2 þ dn

2 � d1
2

..

.

Xn�1
2 � Xn

2 þ Yn�1
2 � Yn2 þ dn

2 � dn�1
2

2
64

3
75 (34)

x̂ ¼ ATA
� ��1

ATB (35)

5 Performance Analysis

In this section, we analyze the performance of the proposed method. We first describe a two-dimensional
simulated system model. Then we present and compare the performance results. Also, we investigate the
results of the algorithms followed by a detailed discussion.

5.1 Simulated System Model

In this section, we evaluate the performance of the proposed methods. First, a two-dimensional
simulation environment is formed with a random defined wireless sensor network, and later, simulation
results are presented. In order to test the variable states of the large-scale WSN structure, simulations
were performed with the various number of nodes and communication ranges of nodes. In each trial, the
nodes are randomly positioned on various network topologies. Naturally, the positions and numbers of
anchor candidates have been different each time. In each simulation, the three methods mentioned in the
study were executed 1000 times with the topologies that have the same parameters and compared with
each other. On the other hand, the proposed methods are compared with Bhatti’s work [42] that provides
an efficient evaluation in large-scale WSN localization issue. 5 dB as transmitting power of nodes, 2 as
path loss exponent are determiner values of the channel which were used in experimental analysis. In
fact, this path loss exponent is the value of the free-space propagation model currently used in our work.
Each information packet has 512 bits that is used in info communication. Moving speed of the nodes
change between 0-15 m/s. Nodes move periodically with the random walk mobility model in accordance
with the mentioned speed limits. In fact, this model is suitable for sheep and cattle movements related to
herd localization mentioned in section 1. Other parameters are changed according to experiments. As
mentioned before, first of all, anchor node candidates are provided from IAs. There are some technical
comparisons to choose from among these kinds of anchor deployment methods. The effect of
communication range of node has been observed with the aspects of anchor number and localization
error. Changing the node number and processing time of the optimization methods are other subjects that
are investigated. This experiment was carried out in MATLAB 2020a environment using a server that has
Intel Core I7-9750H processor (2.6 GHz) and 16 gigabyte RAM. Fig. 6 shows an example of WSN with
initial and final positions of nodes and anchor nodes.

5.2 Results

5.2.1 Effect of Communication Range
In this section, we evaluate the impact of the communication range on RSSI, anchor node number

localization accuracy, and the trade-off options on the number of anchor nodes.

Fig. 7 shows the received signal strength with respect to the communication distances of the nodes to
anchors in our experiments. A consistent decline has been observed for the mean RSSI values via curve
fitting method. The distance between anchors and non-localized nodes varies between 0 to 80 m. The
RSSI value decreases rapidly from 5 to -15 dB, between 0-10 m communication range. Another decline
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is also observed between the distances 10-80 m. On the other hand, the rate of the decrease in this region is
considerably lower than the first region. The variation of RSS in this second region is about 18-20 dB.

For these experiments which determine anchor node number and other values, four different WSN
network structures are considered where 750, 1000, 1250, and 1500 nodes have been placed on a
network area of 7500 × 7500 square m Fig. 8 shows the determined anchor node numbers by the PSO,
GWO, and Analytical Method versus the communication range of the nodes. While range is increasing,
efficient location numbers for anchors rise due to the increment of the IAs. The communication range
was changed from 40 to 80 m, with the 5 m steps. In addition, due to the increase in the number of nodes
in the WSN from 750 to 1500, the node density and the number of anchor nodes are also increased. This
change represents the difference in values between Figs. 8a–8d. As shown in Fig. 8, the PSO method has
lower anchor location numbers compared with the other techniques. On the other hand, the GWO method
obtained near anchor number values to PSO. Analytical method caused lower performance results.

Figure 6: A simulated WSN example with initial and final positions of sensor nodes and anchor nodes are
determined by GWO

Figure 7: RSSI as a function of the communication distances of the non-localized nodes to anchor nodes
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Furthermore, the difference between the two metaheuristic optimization methods and the analytical
method gets bigger with the increment of the communication range of a node. For instance, in the
scenario of 750 nodes with a 40-m communication range, anchor numbers are 4.82, 4.82, and 4.88 for
PSO, GWO, and analytical method, respectively. However, with an 80-m communication range 41.48,
43.7, and 57.07 values are obtained. In the other three WSNs, those differences between the analytical
method and the optimization methods are bigger. For example, the WSN with 1500 nodes that have 40-m
communication ranges, 27.71, 28.25, and 34.68 anchors were acquired, while 80-m communication
ranges were obtaining 238.1, 249.2 and 331.1 for PSO, GWO and analytical method respectively. Thus,
the number of nodes and density of the IAs in a WSN has an essential effect on the performance of the
analytical method. Furthermore, it is understood that those parameters have fewer effects on the
interoperability of PSO and GWO optimization. Changing the communication ranges of the nodes also
affects the localization error. With the pre-selected anchors, localization simulations were executed. As

Figure 8: Minimum anchor numbers for WSNs (a) 7500 m × 7500 m 750 nodes, (b) 1000 nodes,
(c) 1250 nodes and (d) 1500 nodes
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shown in Fig. 9, the differences among the localization results obtained from the four mentioned WSNs are
marginal. Furthermore, due to the increment of the node numbers and consequently determined anchor
numbers, there is a slow decline observed in localization errors that are shown in Figs. 9a–9d. For
instance, those errors change between 8.49-3.66 m, 7.72-2.73 m, 6.72-2.54, and 5.33-2.09 m for WSNs
that have 750, 1000, 1250, and 1500 nodes, respectively. It is also observed that GWO anchor
deployment-based algorithm has better accuracy, whereas PSO and analytical method algorithms are less
accurate for localization. Furthermore, the accuracy of the analytical method is not improved, despite this
method has the highest number of anchor nodes. We evaluate the impact of communication range on
anchor numbers and localization errors. However, it is not a trivial task to find out which algorithm
performs better than the others under different circumstances. To better understand the correlations, we
provide multiple charts (See Fig. 10), demonstrating the relationship between localization errors and the
number of anchors. In particular, these charts show the trade-off between the density of anchor nodes in a
network and localization errors.

Figure 9: Localization errors with minimum anchor numbers for WSNs (a) 7500 m × 7500 m 750 nodes, (b)
1000 nodes, (c) 1250 nodes and (d) 1500 nodes
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In these charts, lines that are closer to the origin points represent the algorithms performing better than
the others in terms of the aforementioned trade-off. Furthermore, since Fig. 10 reflects the data in Figs. 8
and 9, the changes between Figs. 10a–10d result from these previous graphs. As shown in Fig. 10, the
GWO performs better than all other algorithms in terms of localization results. 3.68, 2.75, 2.53, and
2.12 m are the approximate localization error levels that are not affected by the increment of anchor
nodes for the GWO method applied to WSNs that have 750,1000,1250 and 1500, respectively. On the
other hand, PSO has a relatively steady line and better results compared to the analytical approach, and
this makes it a better way to determine the anchors. 3.85, 2.84, 2.7, and 2.24 m are approximate
localization error values providing a better trade-off option which are not affected by the increase in the
number of anchors.

Figure 10: The trade-offs with minimum anchor numbers for WSNs (a) 7500 m × 7500 m 750 nodes, (b)
1000 nodes, (c) 1250 nodes and (d) 1500 nodes
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5.2.2 Effect of Node Number
The number of anchor nodes and localization errors in a WSN depend on the number of sensor nodes if

the network size and communication range remains to be unchanged. Fig. 11 shows the relation between the
number of nodes in a WSN and localization error. In this simulation, the communication range is 50 m, and
the network size is 4000×4000 square meters. The number of sensor nodes vary between 500 and 1000, so
the numbers of anchor nodes are determined between 20 and 215, respectively. Localization errors decrease
because of the increment of anchor nodes. It is important to note that the marginal inconsistencies in Fig. 11
are emphasized since the RMSE values in the y axis of the chart are displayed in the range of 2.5 and
3.2 despite the fact that these variations have negligible impact on RMSE error results. GWO algorithm
obtains slightly better localization results among the three explained methods, and its accuracy changes
from 3.01 m to 2.58 m. In addition to this, while running the PSO and analytical method, RMSE errors
are decreased from 3.05 meters to 2.63 and 3.14 meters to 2.71, respectively.

However, still, PSO and GWO are more successful options to determine the anchor nodes in this kind of
simulation. For instance, PSO obtains 26.5 as the mean value of anchor nodes in the 500 nodes network. The
network under the same conditions provides 26.75 mean value for GWO. Above all, the analytical method
leverages 32.78 anchors to provide the abovementioned RMSE results. Similar cases are valid for other
simulated networks, and the analytical approach has worse results too. It is evident that the Analytical
method is not adequate to be part of an economical option for under those circumstances. GWO and PSO
are more useful options to achieve that kind of large-scale WSN localization.

5.2.3 Execution Time of the Algorithms
In a large-scale WSN, optimization methods may take longer time to execute than the deterministic

techniques in simulations due to the usage of various parameters for all nodes in the WSN. Thus, the
execution times of swarm optimizations have an important role in long and continuous simulations. If it
takes too long, it adversely affects the efficiency of the technique. In our experiments, where we measure
the elapsed time to run the algorithms the simulation was performed in a 4000 m × 4000 m size network.
Also, it has 500 nodes that their communication ranges are 50 meters, like the previous simulation. As
shown in Fig. 12, the simulations were performed with 300-1800 seconds time intervals. According to
the results, GWO took less time during the simulation.

Figure 11: Effect of the changing anchor node numbers to the localization error in a 4000 m × 4000 mWSN
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The difference between PSO and GWO is increased as time goes by. The running time of PSO is about
2.55 s during the total simulation time is 1800 s. Hence it may cause a 2.5-second delay in localization for an
1800 second continuous simulation. This value is about 0.98 s for GWO method. We do not compare these
algorithms with the analytical method since it is not a continuous process.

5.2.4 Performance Comparison with Machine Learning Methods for Localization
In this subsection, we compare GWO, PSO, and Analytical method with Multiple Regression and

Support Vector Machine (SVM) approaches. Also, these machine learning methods are prominent ways
to perform the localization process for large-scale WSNs [42]. In that study localization is treated as a
regression problem. The impact of varying network parameters, such as anchor population, network size,
and localization accuracy of these models are studied in this paper. Also, the effect of anchor distribution
types on localization was analyzed. In the first experiment, our goal is to study the localization
performance of a WSN in the situation of adding new nodes, whereas the number of anchors is
unchanged. Fig. 13a shows this relation. So, the number of nodes is changed between 80-150, in a 100 m
× 100 m network area. On the other hand, the number of anchor nodes is 40 for this experiment. GWO,
PSO, and analytical method may yield different number of anchor nodes, which could be less than or
greater than 40 in some cases. If the number of anchor nodes is more than 40, simulation considers the
most efficient 40 anchor nodes and performs localization with those anchor nodes. If the values are less
than 40, the simulation gets interrupted, and the results are not taken into consideration. There are two
kinds of anchor placement of SVM and Multiple Regression in this experiment. These are random anchor
deployment and grid anchor deployment. On the contrary, GWO, PSO, and analytical method can be
utilized with random anchor deployment due to the selection of efficient anchor deployment coordinates
in a WSN. In this experiment, GWO performs slightly better than PSO, providing 3.4 meters RMSE.
Obviously, these two algorithms are more successful than other methods. The localization error of the
analytical method rose with the increment of sensor nodes, and it obtains 5.34 meters RMSE. SVM and
Multiple Regression have higher localization errors, especially their grid anchor deployment. In grid
deployment, RMSEs of those two algorithms increases with the addition of new sensor nodes to. We also
analyze the impact of using more anchor nodes while keeping the number of sensor nodes constant.
These relations for all mentioned algorithms shown in Fig. 13b. The WSN has 120 sensor nodes in this
test. Also, the number of anchor nodes changes between 20-60.

Figure 12: Algorithm execution times of GWO and PSO anchor placement algorithms in a 4000 m ×
4000 m WSN for 1800 seconds
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According to the results of this experiment, GWO has better results than the other methods, and it
achieves 3.58 m as RMSE. Also, PSO performs slightly worse than the GWO based on these results. On
the other hand, the analytical method and Machine Learning methods yield the results of 5.62-14.8 m for
RSME. Especially machine learning methods with a grid anchor deployment technique can be described
as a low-efficient way in this test area. In addition to those circumstances, we would like to analyze the
efficiency of localization. This can be better understood with the relation of two parameters that are the
rate of anchor node number to the number of sensor nodes and natural localization error. This trade-off is
demonstrated in Fig. 13c with the experiment results. GWO has lower RMSE localization errors with the
same ratios of anchor node numbers to all nodes in the WSN. With this aspect, GWO is considered to be
the most efficient algorithm in this test. Although the performance of PSO is slightly lower than GWO, it

Figure 13: Performance comparison with machine learning methods. (a) Impact of increasing the number of
sensor nodes on the localization performances while keeping the number of anchor nodes constant; (b)
Impact of increasing the number of anchor nodes on the localization performances while keeping the
number of sensor nodes constant; (c) The comparison of the trade-offs between the rate of changing
anchor node numbers to all nodes and localization error
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has a similar trend in the chart. Also, this kind of anchor deployment method takes advantage of localization
when we compare it with the machine learning methods and analytical method. Similar to the previous
experiments, grid anchor deployments in SVM and Multiple Regression show the lower performance in
this trade-off graph.

5.2.5 Discussion
The proposed GWO and PSO algorithms for the anchor placement problem about localization are

successfully compared. The results of experiments show that PSO provides the minimum and the efficient
number of anchor node locations for deployment compared to the GWO and analytical method. PSO
algorithm is better due to its dynamic optimization. This solution improves the performance of the
localization error. On the other hand, GWO has performed minimum localization errors with slightly
more anchor nodes than PSO. Both algorithms outperform the localization methods for large-scale WSN
environment. When a trade-off chart is formed for both aspects, one can observe that GWO is slightly
more efficient than the PSO approach. Finally, our results prove that the GWO method performs better to
achieve the minimum localization error with a fair amount of anchor nodes. In contrast, the PSO
algorithm revealed fewer anchor nodes for localization. Stability during the change of sensor node
number in WSN and less computation time for acquiring the anchor nodes can be considered as
additional advantages of the GWO algorithm.

6 Conclusion and Future Work

WSN is a structure that could gather data from various points and use that to activate the environment.
Collecting the location information of nodes in WSN is useful that may be utilized in many areas. Thus, the
localization process is an essential subject that has two leading roles for nodes in WSN initially. Those roles
are non-localized nodes and anchor nodes. Anchor nodes are elements of WSN which have its own location
information and may help to localize the non-localized nodes in the network. In the localization process, the
existence and efficiency of anchor nodes have an essential role in obtaining accurate location information of
nodes. In the first stage, a virtual coordinate system is produced, and nodes are located with the virtual
coordinates. During this process, every node in WSN got various information from its neighbors like the
distances to one-hop neighbors. Thus every node knows its two-hop neighbors and distances to them.
After the formation of the virtual coordinate system, IAs and the coordinates of intersection area center
points of the sensor nodes are identified. After that, PSO and GWO optimization algorithms and
analytical methods are implemented to choose the minimum and more efficient intersection area center
points to put the possible anchor nodes. While determining the locations of anchor nodes, the parameters
related to localization formed a fitness function that helps a better optimization. Thus, the iterative
localization process is performed with these anchor nodes. GWO and PSO algorithms have never used
before for choosing efficient locations to put the anchor nodes. This study utilized GWO and PSO
algorithms for determining the most suitable sites to deploy the anchor nodes. The numerical results such
as anchor number and running time of algorithm of the proposed GWO method are noted, and it is
compared with other techniques such as PSO and Analytical method in anchor deployment stage. In the
localization stage, the aforementioned methods are compared with machine learning methods (multiple
regression and SVM). Localization error and the trade-off between localization error and anchor numbers
were analyzed and compared in this stage as well. In our experiments, many parameters, such as the
communication range of a node, size of WSN, and the number of sensor nodes have been changed to
obtain the simulation results. According to those results, PSO algorithms have acquired minimum anchor
node numbers for localization that is slightly lower than GWO. On the other hand, the GWO technique
has provided the most accurate localization among those methods. Also, it has an advantage of simulating
in a shorter time when we compare it with the PSO. Some advantages of the study can be listed as

IASC, 2022, vol.31, no.2 1219



follows. Less localization errors were obtained with the applied GWO and PSO optimizations. In addition,
both GWO and PSO are suitable methods in terms of multi-criteria decision-making mechanism, as in our
study. This method can be performed with newly designed metaheuristic algorithms in the future. Also,
GWO can be integrated with other practical metaheuristic algorithms to make a hybrid algorithm with the
aim of more efficient anchor node deployment in localization. The theory of the aforementioned study
has been successfully applied in large-scale WSNs. On the other hand, optimal anchor placement for 3D
WSNs with different parameters is an interesting research question. Furthermore, deploying WSNs in
practice to determine the optimal anchor nodes is another worth investigating subject.
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