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Abstract: In recent years, due to the popularization of deep learning technology,
more and more attention has been paid to the security of deep neural networks. A
wide variety of machine learning algorithms can attack neural networks and make
its classification and judgement of target samples wrong. However, the previous
attack algorithms are based on the calculation of the corresponding model to gen-
erate unique adversarial examples, and cannot extract attack features and generate
corresponding samples in batches. In this paper, Generative Adversarial Networks
(GAN) is used to learn the distribution of adversarial examples generated by
FGSM and establish a generation model, thus generating corresponding adversar-
ial examples in batches. The experiment shows that using the Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial Net-
works (DCGAN) to extract and learn the attack characteristics from the FGSM
algorithm, the generated adversarial examples attacked the original model with
a success rate of 89.1%. For the model attack with increased protection, the suc-
cess rate increased by 30.3%. This suggests that the adversarial examples gener-
ated by GAN are more effective and aggressive. This paper proposes a new
approach to generate adversarial examples.

Keywords: Adversarial examples;GAN; deep learning; FGSMalgorithm;MNIST
dataset

1 Introduction

With the development of information technology rapidly, deep learning is gradually being recognized
and accepted. In many domains, deep learning can complete preset tasks outerform traditional methods,
achieving even human-competitive results. However, while deep learning technology is widely used, the
importance of its security cannot be overlooked.

According to research, existing deep neural networks are fragile and vulnerable to attacks. Szegedy et al.
[1] first found that in the field of image recognition, only a very slight modification on the image will cause
the classifier to misclassify the instances. In fact, these modifications make deep neural networks (DNNs)
vulnerable to attacks. As the attack algorithms become more and more advanced, the adversarial example
becomes more and more aggressive and produces more and more damage. As shown in Fig. 1:
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The picture at the bottom is generated by a certain algorithm from the picture at the top, and the neural
network will classify it incorrectly. This is very dangerous since deep learning has widely used in security-
sensitive fields such as unmanned vehicles, face recognition, bank identity recognition, etc. Therefore, it’s
necessary to research on what mentioned above. This research direction is called Adversarial Machine
Learning (AML), which means that the target model will misclassify the data under the intentional design
of the attacker.

In recent years, a large number of papers about adversarial examples and GAN have been published.

In the aspect of adversarial examples, since 2014, Szegedy et al. [1] proposed the concept of adversarial
examples and proposed the L-BFGS algorithm for the first time. He pointed out that deep neural network is
highly expressive model but this high expressive force also leads to its counter-intuitive properties: the input-
output mapping learned by the deep neural network is discontinuous to a large extent, so the network can
misclassify the image by applying some imperceptible perturbations which is found by maximizing the
prediction error of the network. Goodfellow et al. [2] proposed FGSM, a fast and efficient attack
algorithm, as well as a defense idea, which can be summarized as follows. Let’s say there is an input
instance x, calculate g ¼ Esign rxlf x; yð Þ� �

to get the adversarial examples xA ¼ x þ g. FGSM algorithm
calculates the gradient of the target data and make it increase in reverse so as to make the model random
misclassification or specified misclassification. Kurakin et al. [3] put forward an iterative algorithm BIM
based on FGSM, which improves the attack effect of adversarial examples through repeated negative
gradient calculations. Papernot et al. [4] formalized the space of attacks against DNNs, and introduced a
new type of algorithm JSMA. On the basis of the accurate understanding of the mapping between the
input and output of DNNs, the adversarial examples were made with a success rate of 97%. JSMA
determines the sensitive data position in the sample by calculating the saliency map value of the sample,
and achieves good results at the cost of a small amount of data change. Su et al. [5] proposed a new
single-pixel adversarial example generation approach based on differential evolution (DE). Papernot et al.
[6] proposed a defense mechanism called defensive distillation to reduce the aggressiveness of adversarial
examples to deep learning models. Carlini et al. [7] introduced the C&W algorithm, which can be applied
to L0, L2, L∞. Experiments show that the C&W algorithm succeeds with 100% probability on both
distilled and undistilled neural networks, which proves that defensive distillation does not significantly
improve the robustness of neural networks. Moosavi-Dezfooli et al. [8] proposed the DeepFool algorithm
to accurately calculate the robustness of the latest deep classifiers to disturbances on large-scale data sets,
and quantify the robustness of these classifiers by calculating the perturbation of attacking deep networks.
Moosavidezfooli et al. [9] proposed a universal perturbation attack, which has good universality in neural
networks. Sarkar et al. [10] proposed two attack methods, UPSET and Houdini. The UPSET method can
generate general disturbances of the target class, and the Houdini method can generate image-specific
disturbances. Baluja et al. [11] proposed a network for generating adversarial examples, which performs
fast and provides exceptionally diverse outputs.

In the field of GAN, Goodfellow et al. [12] proposed Generative Adversarial Network in 2014. In this
paper, he analyzed the advantages and disadvantages of GAN and pointed out the future research direction
and expansion. In the same year, Mirza et al. [13] and others proposed a conditional generative adversarial
network, which is a conditional version of the GAN. It is proved that CGAN can generate MNIST digits

Figure 1: Comparison of adversarial examples and original images
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based on class labels. Arjovsky et al. [14] published a paper in 2017, which introduced WGAN. In this paper,
he used the theory of maximum likelihood estimation to explain the significance of learning probability
distribution in unsupervised learning, used one division to approximate the true distribution, and solved it
by minimizing two KL divergence between distributions. Li et al. [15] pointed out that although progress
has been made in generating image modeling, it is still an elusive goal to successfully generate high-
resolution and diverse samples from complex data sets such as ImageNet [16]. Therefore, they proposed
applying orthogonal regularization to the generator to make it suitable for simple “truncation techniques”,
allowing precise control of the trade-off between sample fidelity and variation by truncating the latent
space. Such modification led to the model reaching a new level of technology in image synthesis under
category conditions. Zhang et al. [17] proposed an alternative generator architecture for generative
adversarial networks. This new architecture [18] is able to control the high-level attributes of the
generated image, such as hairstyle, freckles. The generated image scores better on some evaluation criteria.

The previous adversary algorithms are directly generated by neural networks, while the algorithm proposed
in this paper is based on the generated adversarial examples extracting features through GAN networks, which
can generate similar adversarial samples in batches with effectiveness and high aggressiveness.

2 Related Works

2.1 FGSM

Ian Goodfellow [2] found that the accuracy of a single input function is limited in many problems. For
example, they usually use only 8 bits per pixel in digital images domain, so they discard all information
below 1/255 of the dynamic range. Owing to the features of limited accuracy, in the case of inputting x
and xA ¼ x þ g, if the perturbation of each element of h is lower than the accuracy, the classifier cannot
correctly classify. Formally, for the problem of good category separation, as long as hj jj j1<E, you can
expect the classifier to assign the same class to x and xA, where E is small enough to be discarded by
related sensors or data storage devices.

Consider the dot product between the weight vector v and the adversarial example xA:

xT~x ¼ xTxþ xTg (1)

Adversarial disturbances increase the activation value by vTh. By assigning h ¼ sign vð Þ, this increment
can be maximized under the maximum norm constraint on h. If x has n dimensions and the average size of
the weight vector elements is m, then the activation value will increase by Emn. Because hj jj j1 will not
increase with the dimension of the problem, but the activation change caused by the h disturbance can
increase linearly with n. Then for high-dimensional problems, many infinitesimal changes can be made to
the input, resulting in one large change to the output.

That is to say, if the input of the simple linear model has sufficient dimensions, adversarial examples can
be generated. Under this condition, suppose that u is the model parameter, x is the model input, y is the label
associated with x, and J h; x; yð Þ is the loss function of training the neural network. The cost function can be
linearized near the current value of u to obtain the disturbance of the optimal maximum norm constraint:

g ¼ Esign rxJ ðh; x; yÞð Þ (2)

Since n-dimensional gradient calculation is applied in the formula, this algorithm is called Fast Gradient
Sign Method (FGSM) [19], which can use backpropagation [20] to efficiently calculate the required gradient.
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2.2 DCGAN

DCGAN is a new method after Ian J. Goodfellow's pioneering GAN in his paper in 2014 that combines
GAN and convolutional networks to solve the instability of GAN training [21]. CNN has made great
achievements in the field of supervised learning for a long time, such as large-scale image classification
and target detection, but has not made particular progress in the field of unsupervised learning [22],
which inspired Alec Radford proposed DCGAN, which combines CNN with GAN, and demonstrated its
impressive achievements in unsupervised learning [23]. Through training on a large number of different
data sets, it is fully demonstrated that the generator and discriminator of DCGAN have learned a rich
level of expression in terms of object components and scenes [24].

The main reasons why DCGAN can improve the stability of GAN training are as follows:

1. Use step-size convolution instead of the up-sampling layer [25]. Convolution has a good effect in
extracting image features, and convolution is used to instead the fully connected layer.

2. Almost every layer in the generator G and the discriminator D uses the batch normalization layer to
normalize the output of the feature layer together, which speeds up the training and improves the stability of
the training.

3. The LeakyRelu activation function is used in the discriminator instead of the Relu activation function
to prevent gradient sparseness. Relu is still used in the generator, but Tanh is used in the output layer [26].

4. Use Adam optimizer to train, and the best learning rate is 0.0002.

2.3 Adversarial Training

In order to improve the robustness of the neural network, the neural network can be regularized to a
certain extent by training a mixture of adversarial examples and legal examples. This form of data
augmentation uses inputs that are unlikely to occur naturally, but exposes flaws in the way the model
conceptualizes its decision-making function. The FGSM-based countermeasure objective function training
is shown in the Eq. (3):

~J ðh; x; yÞ ¼ aJðh; x; yÞ þ ð1� aÞJ h; xþ Esign rxJ ðh; x; yÞð Þð Þ (3)

When the data is disturbed by counter disturbances, the counter training process can be seen as trying to
minimize the worst-case error. This training process can be interpreted as adding the noise with U �E; Eð Þ to
the noisy examples in the input and minimizing the upper limit of the expected cost. Adversarial training can
also be seen as a form of active learning in which the model could request labels for new points. In this
situation, the human tagger will be replaced with a heuristic tagger which copies tags from nearby points.

3 Method

3.1 Definition

In the remaining of the paper we use the following notation:

M* represents the neural network model trained by *, T(*) stands for training on the * data, FGSM(M*)
denotes the FGSM attack against the * model, D(*) signifies the adversarial sample generated by *, G(*)
symbolizes the DCGAN generator trained by *.

1. Mmnist : MNIST handwritten digit recognition model.

2. FGSM Mmnistð Þ : Attacks on the Mmnist model.

3. D FGSM Mmnistð Þð Þ : Mmnist adversarial examples.

4. Mdefence : Mmnist[D FGSM Mmnistð Þð Þ means Handwritten model after adversarial training.

892 IASC, 2021, vol.30, no.3



5. G D FGSM Mmnistð Þð Þð Þ : Mmnist feature generator.

6. FGSM Mdefence

� �
: Attacks against the Mdefence model.

7. D FGSM Mdefence

� �� �
: Mdefence adversarial examples.

8. G D FGSM Mdefence

� �� �� �
: Mdefence feature generator.

9. D G D FGSM Mmnistð Þð Þð Þð Þ : Adversarial examples generated by Mmnist feature generator.

10. D G D FGSM Mdefence

� �� �� �� �
: Adversarial examples generated by Mdefence feature generator.

3.2 Algorithm Introduction

In order to verify the effectiveness and offensiveness of generating new adversarial examples in the
DCGAN, the experiment is divided into two parts:

3.2.1 Unprotected Aggressiveness
The initial modelMmnist can be obtained by training the MNIST dataset according to the model set up in

Section 4.2.2. And the FGSM algorithm is called on the model Mmnist to calculate the gradient and then the
adversarial examples D FGSM Mmnistð Þð Þ are generated by the formula xA ¼ x þ g. The adversarial
examples are used as the training set of DCGAN, and a DCGAN generator G D FGSM Mmnistð Þð Þð Þ is
obtained by extracting the features and learning the distribution of the adversarial examples. The
generator is capable of generating batches of adversarial instances quickly. If the generated images
maintain good adversarial properties, it means that the method is valid under unprotected model conditions.

3.2.2 Protected Aggressiveness
The MNIST dataset is trained according to the model set in Section 4.2.2, and the corresponding

adversarial training is performed on the model at the same time, and the model Mdefence with the ability to
defend against the adversarial examples is obtained, and the adversarial examples are generated according
to the steps in Section 4.3.1, as shown in Fig. 3. If the generated images can attack the model Mdefence, it
means that the method is valid under the condition of the protected model.

Figure 2: Mmnist generates new adversarial examples D G D FGSM Mmnistð Þð Þð Þð Þ through DCGAN

Figure 3: Mdefence generates new adversarial examples D G D FGSM Mdefence

� �� �� �� �
through DCGAN
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4 Experiment

4.1 Experimental Environment

The operating system used in the experiment is Ubuntu 18.04, the CPU is Intel Xeon(R)CPU E5-
2609 v4 @ 1.70 GHz, the GPU is Nvidia 1080Ti with 8 GB of memory.

4.2 Experimental Setup

4.2.1 MNIST
MNIST (Mixed National Institute of Standards and Technology database) is a computer vision data set

that contains 70,000 gray-scale pictures of handwritten numbers, each of which contains 28 � 28 pixels.
Each picture has a corresponding label. The data set is divided into two parts: a training data set of
60,000 rows and a test data set of 10,000 rows. Among them: the training set of 60000 rows is divided
into the training set of 55000 rows and the verification set of 5000 rows. The MNIST data set is widely
used in the domain of deep learning and computer vision.

4.2.2 Parameters
There are three kinds of neural network models in this experiment, which respectively are used for CNN

model training, DCGAN generator and DCGAN discriminator construction.

In the CNN model, it is composed of two convolution kernels with 32 filters and a 3 × 3 size, a
convolution layer with a step size of 1, two 64 filters immediately after the maximum pooling, and a 3 ×
3 convolution kernel, the convolutional layer of the convolutional layer with a step size of 1, two 200-
unit full units after the maximum pooling and a 10-unit Softmax fully connected layer for classification,
as shown in Tab. 1.

The generator consists of 1568 units fully connected, 64 filters, 3 × 3 size convolution kernel, step size
1 convolution layer, upsampling layer, 128 filters, 3 × 3 size convolution kernel, step size 1 convolution
layer, upsampling layer, 64 filters, 3 × 3 size convolution kernel, step size 1 convolution layer, 1 filter, 3
× 3 size convolution kernel, step size 1 convolution layer, as shown in Tab. 2;

Table 1: CNN model network

Layer type Architecture

Relu convolutional 32 filters (3 × 3),1

Relu convolutional 32 filters (3 × 3),1

Max pooling 2 × 2

Relu convolutional 64 filters (3 × 3),1

Relu convolutional 64 filters (3 × 3),1

Max pooling 2 × 2

Relu fully connect 200 units

Relu fully connect 200 units

Softmax 10 units
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Discriminator is consists of three convolutional layers and a fully connected layer. The three
convolutional layers are respectively 32, 64, and 128 filters, a 3 × 3 size convolution kernel, and a step
size of 2.

The specific and detailed structural parameters of these three networks are shown in Tabs. 1–3:

4.3 Experimental Results

The evaluation indicators of this article are as follows:

TP: Positive examples of correctly classified

FN: Positive cases that are misclassified

TN: Negative cases that are correctly classified

FP: Negative cases that are misclassified

Acc ¼ TP þ TN

TP þ FN þ TN þ FP
(4)

The cost function we use is cross entropy function:

J ðhÞ ¼ � 1

m

Xn
i¼1

yðiÞ log hh xðiÞ
� �

þ 1� yðiÞ
� �

log 1� hh xðiÞ
� �� �� �" #

(5)

Attack Acc ¼ 1� Acc (6)

Aiming at the effectiveness and aggressiveness of adversarial examples, the experiment was divided into
two groups.

Table 2: Generator network

Layer type Architecture

Relu fully connect 1568 units

Relu convolutional 64 filters (3 × 3),1

Upsampling 2 × 2

Relu convolutional 128 filters (3 × 3),1

Upsampling 2 × 2

Relu convolutional 64 filters (3 × 3),1

Tanh convolutional 1 filter (3 × 3),1

Table 3: Discriminator network

Layer type Architecture

LeakyRelu convolutional 32(3 × 3),2

LeakyRelu convolutional 64(3 × 3),2

LeakyRelu convolutional 128(3 × 3),2

Sigmoid fully connect 1 unit
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Tab. 4 shows the results of the experiment in Fig. 2. TheMNISToriginal images reduce the classification
accuracy from 0.99 to 0.29 through the adversarial examples generated by FGSM, and the confidence of
adversarial examples generated by DCGAN is 0.11, which shows the effectiveness of the adversarial
examples generated by DCGAN.

Tab. 5 corresponds to the results of the experiment in Fig. 3. After the model Mmnist is trained to obtain
Mdefence, it can be seen that the adversarial examples generated by FGSM algorithm are not aggressive at all.
On this basis, after putting D FGSM Mdefence

� �� �
into DCGAN to extract features, the attack success rate of

the adversarial examples D G D FGSM Mdefence

� �� �� �� �
is increased from 0.01 to 0.31, which improves the

aggressiveness under protection conditions.

5 Conclusion

In this paper, in-depth research on adversarial algorithms is conducted to find a method to generate
adversarial examples in batches. Considering the idea of GAN, the application of DCGAN is proposed to
learn features of adversarial examples generated by the FGSM algorithm, so that adversarial examples
can get rid of the dependence on the original samples and the database, and can automatically generate
adversarial examples with the same characteristics. The article introduces the method and effect of the
adversarial algorithm attacking the neural network, the protection of the neural network and the method
of GAN learning from the adversarial examples in two cases. Experiments show that DCGAN can learn
the attack features in adversarial examples and generate adversarial examples in batches. If the model has
been trained in the corresponding adversarial, using DCGAN to generate adversarial examples can
improve the aggression of the original attack method. In recent years, GAN technology and adversarial
learning technology have developed rapidly. There are more than 200 types of networks in the GAN field
with diverse performances. With the emergence of attack methods in adversarial learning, there will be
more and more options for combining GAN with adversarial learning. Although this article points out the
feasibility of combining GAN with adversarial learning, there are still some shortcomings in generality. In
the next stage, we will actively seek more options and improve the performance of the attack model.
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