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Abstract: Graph labeling is useful in networks because each transmitter has a dif-
ferent transmission capacity to send or receive wired or wireless links. An interfer-
ence of signals can occur when transmitters that are close together receive close
frequencies. This problem has been modeled mathematically in the radio labeling
problem on graphs, where vertices represent transmitters and edges indicate close-
ness of the transmitters. For this purpose, each vertex is labeled with a unique posi-
tive integer, and to minimize the interference, the difference between maximum and
minimum used labels has to be minimized. A radio labeling for a graph
G ¼ ðVðGÞ;EðGÞÞ is a function � from the set of vertices VðGÞ to the set of posi-
tive integers satisfying the condition dðx; yÞ þ j�ðxÞ � �ðyÞj � 1þ diamðGÞ,
where dðx; yÞ is the shortest distance between two distinct vertices x; y 2 VðGÞ,
and diamðGÞ is the diameter of the graph G: The minimum span of a radio labeling
for G is called the radio number of G: Because the problem of finding radio label-
ing appears to be difficult in general, many particular cases have been studied. Let
R be a commutative ring with nonzero identity, and ZðRÞ its set of (nonzero) zero-
divisors. The zero-divisor graph of a ring R is the graph �ðRÞ with vertex set
Vð�ðRÞÞ ¼ ZðRÞ and edge set Eð�ðRÞÞ ¼ fðx; yÞ: x � y ¼ 0g. In this paper, we
investigate the radio number for an associated zero-divisor graph, �ðZpnÞ. The
study provides some combinatorial properties associated with commutative rings
and can be useful for the structures of network communication problems.

Keywords: Radio labeling; radio number; distances in graph; zero divisor graph;
commutative ring

1 Introduction

Antennas transmit and receive different frequencies of electromagnetic waves, such as radio waves. By
tuning in a radio, we receive signals to access particular frequencies. Each radio station is assigned to a
distinct channel. When two radio stations are near each other, the difference between their assigned
channels must be greater than a specific number to avoid interference. The task of allocating channels to
transmitters is known as channel assignment (CA).
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The CA model was introduced in 1980 by William Hale [1]. CA is generally modeled as a graph
coloring and labeling representation, where transmitters are represented as nodes (vertices) of the graph.
When two nodes are adjacent, their transmitters are close. The labels assigned to nodes are of the
channels of the transmitters, where for each pair of labels, there must be an acceptable distance between
their nodes. This study aims to find a suitable labeling to minimize the range (span) of the channels.

Let G be a simple and connected graph. The degree of a vertex x 2 VðGÞ is the number of vertices
adjacent to x, and is denoted as dGðxÞ. The shortest distance between two vertices x; y 2 VðGÞ is denoted
by dðx; yÞ, and the maximum value of dðx; yÞ in G is called the diameter of G; denoted as diamðGÞ.
Radio labeling of G [2,3], also known as multi-level distance labeling, is a function c: V Gð Þ ! N for
which the following condition holds for any two distinct vertices x and y:

dðx; yÞ þ jcðxÞ � cðyÞj � 1þ diamðGÞ; (1)

which is referred to as a radio condition.

We denote by SðG; cÞ the set of consecutive integers fm;mþ 1; . . . ;Mg, wherem ¼ minx2V ðGÞcðxÞ, and
M ¼ maxx2V ðGÞcðxÞ is the span of c, denoted by span cð Þ ¼ 1þM � m.

The minimum span of a radio labeling for G is called the radio number of G, denoted by rnðGÞ. A radio
labeling c of G with spanðcÞ ¼ rnðGÞ will be called the optimal radio labeling for G. Radio labeling is an
interesting graph labeling problem that is the subject of much research. It is complicated to determine the
radio number for a general graph. The radio problem is NP-hard, even for a graph with a small diameter,
and as a rule, its complication is still unknown [4]. Due to this, researchers have studied this problem,
and even for some known families of the graph, the problem is shown to be complex [2,5–12].

2 Applications of Zero-divisor Graphs

The zero-divisor graph over a commutative ring was introduced in 1988 by Beck [13], who discussed the
coloring of such graphs.

The interdisciplinary research in algebraic graph theory is excelling, and associated applications are
benefiting from such desk research. The study conducted in [14] and [15] serves as an interesting survey
to find the relation between the ring-theoretic properties and graph-theoretic properties of �ðGÞ. This
study deals with techniques that vary from simple computations to sophisticated ring theory, and in many
cases, all the rings or graphs satisfy a certain property. We raise two questions:

i) Could rings with certain theoretic properties have the same physical structures and graphical
properties, or vice versa?

ii) Is it possible to determine �ðRÞ such that �ðRÞ ffi G?

Redmond [16,17] provided all graphs up to 14 vertices that can be realized as the zero-divisor graph of a
commutative ring with identity, listed all rings (up to isomorphism) that produce these graphs, and created an
algorithm to find all commutative reduced rings with identity (up to isomorphism) that give rise to a zero-
divisor graph on n vertices for any n � 1. A question that naturally arises when studying zero-divisor
graphs is whether they are unique. There are some applications and relationships between algebraic
theory and chemical graph theory [18,19]. Recent work has been performed on the radio numbers of
different algebraic structures [20,21].

Let p be a prime number, and �ðZpnÞ a zero-divisor graph of the commutative rings Zpn . We investigate
the radio number of zero divisor graphs �ðZpnÞ for any positive integer n and prime number p:
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3 Main Results

Let R be a commutative ring. A nonzero element a 2 R is called a zero-divisor of R if there exists another
nonzero element b 2 R such that a:b ¼ 0:We denote the set of all zero divisors in a ring R by ZðRÞ. Assume
that R is a ring with identity 1. Then an element u 2 R is called a unit in R if there exists an element v 2 R
such that u:v ¼ 1: We denote the set of all units in R by UðRÞ: A unit element in a ring R cannot be a zero
divisor. Similarly, a zero-divisor in R cannot be a unit but a:u 2 ZðRÞ for any a 2 ZðRÞ and u 2 UðRÞ.

We consider rings of the form R ¼ Zk for a fixed positive integer k; where a nonzero element is either a
unit or a zero-divisor. More precisely, an element a 2 Zknf0g is a zero divisor if and only if gcd a; kð Þ 6¼ 1,
and an element u 2 Zknf0g is a unit if and only if gcd u; kð Þ ¼ 1:

For a fixed prime p and a fixed positive integer n, we consider the ring R ¼ Zpn :An element a 2 Zpnnf0g
is a zero-divisor if and only if p divides a. It is easy to see that the set of zero-divisors ZðZpnÞ ¼

‘n�1
i¼1 Zi;

where each Zi ¼ fu:pi: u is a unit in Zpng contains those elements of Zpn that are multiples of pi but not
of piþ1. Therefore, jZij ¼ pn�i � pn�i�1 for each i ¼ 1; 2; . . . ; n� 1, and hence jZðZpnÞj ¼Pn�1

i¼1 jZij ¼ pn�1 � 1:

We associate a zero-divisor graph �ðZpnÞ to a ring Zpn with vertex set V ð�ðZpnÞÞ ¼ ZðZpnÞ; note that
we consider a zero-divisor to be a nonzero element, so 0 =2 V ð�ðZpnÞÞ: The degree of each vertex in Zi is
shown in the following theorem.

Theorem 3.1 Let �ðZpnÞ be a zero-divisor graph of Zpn . Then,

dZiðxÞ ¼
pi � 1; for1 � i � dn2e � 1
pi � 2; fordn2e � i � n� 1

�

Proof. For any vertex x 2 Zi, we have x � y ¼ 0 if and only if y 2 Zj for j � n� i. For 1 � i � dn2e � 1,

we get dZiðxÞ ¼ j ‘n�1

j¼n�i
Zjj ¼

Pn�1

j¼n�i
jZjj ¼ pi � 1. For dn2e � i � n� 1, we get dZiðxÞ ¼ j ‘n�1

j¼n�i
Zj � fxgj ¼

Pn�1

j¼n�i
jZjj � 1 ¼ pi � 1� 1 ¼ pi � 2:

Using the handshaking lemma, after simplification, we obtain the size of �ðZpnÞ in the following
theorem.

Theorem 3.2 For n � 2 and prime number p, the size of �ðZpnÞ is
1
2 f

P
x2V ð�ðZpn ÞÞ dðxÞg ¼ 1

2 fpn�1ðnp� n� pÞ � pn�dn2e þ 2g, except n ¼ p ¼ 2:

We know that the radio number of complete graph Kn is n. From the definition, it can be seen that the
zero-divisor graph of �ðZpnÞ is a complete graph Kp�1 for n = 2. Therefore, the following theorem holds.

Theorem 3.3 Let �ðZpnÞ be a zero-divisor graph of Zpn . Then rnð�ðZpnÞÞ ¼ p� 1 for n ¼ 2:

In the next theorem, we determine the radio number of a zero-divisor graph of Zpn for n ¼ 3:

Theorem 3.4 Let p � 2 be a prime number, and �ðZp3Þ a zero-divisor graph of Zp3 .
Then rnð�ðZp3ÞÞ ¼ p2 þ p� 2:

Proof. For simplicity, we partition the vertex set of �ðZp3Þ into two mutually disjoint
sets, Z1 ¼ fu:p : u 6¼ k1:p; 1 � k1 � p� 1g ¼ fui: 1 � i � p2 � pg and Z2 ¼ fu:p2 : u ¼ k2 : p; 1 � k1
� p� 1g ¼ fwj : 1 � j � p� 1g. According to the definition of the zero-divisor graph, the vertices of
the set Z1 are not adjacent, and the vertices of the set Z2 are adjacent. This means that dðu1; u2Þ 6¼ 1 and
dðw1;w2Þ ¼ 1 for u1; u2 2 Z1 and w1;w2 2 Z2. Also, all the vertices of set Z1 are adjacent to each vertex
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of set Z2. Hence, dðu;wÞ ¼ 1 8u 2 Z1;w 2 Z2 and jZ1j ¼ p2 � p, jZ2j ¼ p� 1. From this, we observe that
dðu1; u2Þ ¼ 2: This indicates that the diameter of �ðZp3Þ is 2. Therefore, the zero-divisor graph �ðZp3Þ must
satisfy the radio condition defined in Eq. (1),

dðx; yÞ þ jcðxÞ � cðyÞj � 3; for x; y 2 Vð�ðZp3ÞÞ: (2)

Since dðu1; u2Þ ¼ 2, there are no forbidden values between the vertices of set Z1. Since dðw1;w2Þ ¼ 1,
there are p� 2 forbidden values between the vertices of set Z2. Also, dðu;wÞ ¼ 1, which gives only one
forbidden value between the vertices of sets Z1 and Z2: Therefore, there is a total of p� 1 forbidden
values in zero-divisor graph �ðZp3Þ: Hence, the lower bound of the radio number of zero-divisor
graph �ðZp3Þ is
rnð�ðZp3ÞÞ � jV ð�ðZp3ÞÞj þ p� 1 ¼ p2 þ p� 2: (3)

To obtain the upper bound of the radio number of zero-divisor graph �ðZp3Þ, we define the radio labeling
c1: V ð�ðZp3Þ ! f1; 2; 3; . . . ; p2 þ p� 2g as c1ðuiÞ ¼ i for 1 � i � p2 � p, and c1ðwjÞ ¼ p2 � pþ 2j for
1 � j � p� 1: Without loss of generality, assume that for any two vertices us; ut 2 Z1, ws;wt 2 Z2,
jc1ðusÞ � c1ðutÞj � 1, jc1ðwsÞ � c1ðwtÞj � 2, and jc1ðujÞ � c1ðwiÞj ¼ p2 � pþ 2j� i � 2: This
demonstrates that the radio labeling c1 satisfies the radio condition (2) for zero-divisor graph �ðZp3Þ.
Therefore,

rnð�ðZp3ÞÞ � p2 � pþ 2ðp� 1Þ ¼ p2 þ p� 2: (4)

Combining Eqs. (3) and (4), we obtain the required result. This completes the proof.

Theorem 3.5 Let p be a prime number, and �ðZp4Þ a zero-divisor graph of Zp4 . Then
rnð�ðZp4ÞÞ ¼ p3 þ p2 � 3:

Proof. For simplicity, we partition the vertex set of �ðZp4Þ into three mutually disjoint sets:
Z1 ¼ fu:p: u 6¼ k1:p2; 1 � k1 � p2 � 1g ¼ fxi: 1 � i � p3 � p2g, Z2 ¼ fu:p2: u 6¼ k2:p; 1 � k2 � p3�
p2 þ p� 1g ¼ fyj: 1 � j � p2 � pg, and Z3 ¼ fu:p3: u 6¼ k3:p; 1 � k3 � p3 � pg ¼ fzt: 1 � t � p� 1g.
According to the definition of the zero-divisor graph, the vertices of set Z1 are not adjacent, and the
vertices of sets Z2 and Z3 are adjacent. This means that dðx1; x2Þ 6¼ 1 and dðy1; y2Þ ¼ dðz1; z2Þ ¼ 1 for
x1; x2 2 Z1, y1; y2 2 Z2, and z1; z2 2 Z3. Additionally, all the vertices of sets Z1 and Z2 are adjacent to
each vertex of set Z3. This means that dðx; zÞ ¼ dðy; zÞ ¼ 1 8x 2 Z1; y 2 Z2; z 2 Z3, and jZ1j ¼ p3 � p2,
jZ2j ¼ p2 � p, jZ3j ¼ p� 1. This implies that jV ð�ðZp4ÞÞj ¼ p3 � 1. From the above discussion, it is
observed that dðx1; x2Þ ¼ dðx; yÞ ¼ 2: This shows that the diameter of �ðZp4Þ is 2. Therefore, the zero-
divisor graph �ðZp4Þ must satisfy the radio condition defined in Eq. (1), i.e.,

dðu; vÞ þ jcðuÞ � cðvÞj � 3; for u; v 2 Vð�ðZp4ÞÞ: (5)

Since dðx1; x2Þ ¼ 2, there is no forbidden value between the vertices of set Z1 and dðy1; y2Þ ¼ 1.
Therefore, there are p2 � p� 1 forbidden values between the vertices of set Z2 and dðz1; z2Þ ¼ 1.
Similarly, there are p� 2 forbidden values between the vertices of set Z3. Since dðx; yÞ ¼ 2, this shows
that there is no forbidden value between the vertices of sets Z1 and Z2: Also dðx; zÞ ¼ dðy; zÞ ¼ 1, which
gives only one forbidden value between the vertices of set Z3 and sets Z1;Z2. Thus there are
p2 � p� 1þ p� 2þ 1 ¼ p2 � 2 forbidden values in the zero-divisor graph �ðZp4Þ: Hence, the lower
bound of the radio number of zero-divisor graph �ðZp4Þ is
rnð�ðZp4ÞÞ � jV ð�ðZp4ÞÞj þ p2 � 2 ¼ p3 þ p2 � 3: (6)
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To obtain the upper bound of the radio number of zero-divisor graph �ðZp4Þ, we define the radio labeling
c2: V ð�ðZp4ÞÞ ! f1; 2; 3; . . . ; p3 þ p2 � 3g as follows.

c2ðxiÞ ¼ i for 1 � i � p3 � p2, c2ðyjÞ ¼ p3 � p2 þ 2j� 1 for 1 � j � p2 � p, and c2ðztÞ ¼
p3 þ p2 � 2pþ 2t � 1 for 1 � t � p� 1: For any two vertices xs; xt 2 Z1, ys; yt 2 Z2, zs; zt 2 Z3,
jc2ðxsÞ � c2ðxtÞj � 1, jc2ðysÞ � c2ðytÞj � 2, jc2ðzsÞ � c2ðztÞj � 2, jc2ðxiÞ � c2ðyjÞj � 1, jc2ðxiÞ�
c2ðztÞj � 2, and jc2ðyjÞ � c2ðztÞj � 2. In addition, dðxs; xtÞ ¼ dðx; yÞ ¼ 2 and dðxi; ztÞ ¼ dðyj; ztÞ ¼
dðys; ytÞ ¼ dðzs; ztÞ ¼ 1. This shows that the radio labeling c2 satisfies the radio condition (2) for zero-
divisor graph �ðZp4Þ. Therefore, we arrive at
rnð�ðZp4ÞÞ � p3 þ p2 � 3: (7)

Combining Eqs. (6) and (7), we obtain the required result. This completes the proof.

The above theorems lead us to establish general results related to the radio number of zero-divisor graphs
associated to rings Zpn for n � 5.

In the following proposition, we determine the lower bound of the radio number for a zero-divisor graph
of Zpn for n � 5.

Proposition 3.6 Let p be a prime number and n � 5. Then rnð�ðZpnÞÞ � pn�1 þ pb
n
2c � 3.

Proof. From the above discussion, we have V ð�ðZpnÞÞ ¼ Zi ¼ fu:pi: u is a unit in Zpng. This means
that it contains those elements of Zpn which are multiples of pi but not of piþ1, which implies that
jZij ¼ pn�i � pn�i�1 for 1 � i � n� 1. Therefore, V ð�ðZpnÞÞ ¼ pn�1 � 1. Let dZiðxÞ denote the degree of
a vertex x in set Zi, and dðZi; ZjÞ the distance between the vertices of sets Zi and Zj. For any vertex
xi1 2 Zi, we have dZiðxi1Þ ¼ pi � 1 for 1 � i � dn2e � 1 and dZiðxi1Þ ¼ pi � 2 for dn2e � i � n� 1.
Additionally,

dðxi1; xj2Þ ¼
1; if i ¼ j and dn2e � i � n� 1
2; if i ¼ j and 1 � i � dn2e � 1

�

dðxi1; xj2Þ ¼
2; if i 6¼ j and 1 � i; j � dn2e � 1
1; if i 6¼ j and dn2e � i; j � n� 1

�

dðx11; xj2Þ ¼
2; if 2 � j � n� 2
1; if j ¼ n� 1

�
;

and dðxi1; xj2Þ ¼ 1 for 2 � i � dn2e � 1 and dn2e � j � n� 1. This implies that diamð�ðZpnÞÞ ¼ 2. Any radio
labeling c of �ðZpnÞ must satisfy the following radio condition:

dðxi1; xj2Þ þ jcðxi1Þ � cðxj2Þj � diamð�ðZpnÞÞ þ 1 ¼ 3;

for any distinct vertices xi1; x
j
2 2 V ð�ðZpnÞÞ:We now count the forbidden values for �ðZpnÞ. If dðxi1; xj2Þ ¼ 2,

then it is possible to assign consecutive labels between those vertices. This means there is no forbidden value
between them. Therefore, for n-even, there are no forbidden values between the vertices of Zi(1 � i � n

2 � 1)

and Zj(n2 � j � n� 1), and for n-odd, there are no forbidden values between the vertices of Zi(1 � i � n�1
2 )

and Zj(nþ1
2 � j � n� 1). Now, if dðxi1; xj2Þ ¼ 1; then jcðxi1Þ � cðxj2Þjmust be greater than 2. This means there

must be a forbidden value between those vertices. Therefore, for n-even, there are
Pn�1

i¼n
2
jZij � 1 forbidden

values between the vertices of Zi(n2 � i � n� 1), and for n-odd, there are
Pn�1

i¼nþ1
2
jZij � 1 forbidden values

between the vertices of Zi(nþ1
2 � i � n� 1). By adding the forbidden values to the order of the graph, we

obtain the total number of labels.
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Hence, for n-even,

rnð�ðZpnÞÞ � jV ð�ðZpnÞÞj þ
Xn�1

i¼n
2

jZij � 1 ¼
Xn

2�1

i¼1
jZij þ 2

Xn�1

i¼n
2

jZij � 1 ¼ pn�1 þ pb
n
2c � 3; (8)

and for n-odd,

rnð�ðZpnÞÞ � jV ð�ðZpnÞÞj þ
Xn�1

i¼nþ1
2

jZij � 1 ¼
Xn�1

2 �1

i¼1
jZij þ 2

Xn�1

i¼nþ1
2

jZij � 1 ¼ pn�1 þ pb
n
2c � 3: (9)

Combining Eqs. (8) and (9), we arrive at

rnð�ðZpnÞÞ � pn�1 þ pb
n
2c � 3: (10)

This completes the proof.

The next proposition determines the upper bound of the radio number for a zero-divisor graph of Zpn

for n � 5.

Proposition 3.7 Let p be a prime number and n � 5. Then rnð�ðZpnÞÞ � pn�1 þ pb
n
2c � 3.

Proof. We provide a radio labeling of �ðZpnÞ with span pn�1 þ pb
n
2c � 3, which implies that

rnð�ðZpnÞÞ � pn�1 þ pb
n
2c � 3.

The radio labeling c: V ð�ðZpnÞÞ ! Zþ is defined as follows.

Case 1: n-even

For xij 2 Zi, where jZij ¼ pn�i � pn�i�1 and jZ0j ¼ 0,

c xij

� �
¼

jþ Pi
s¼1

jZs�1j; if 1 � j � jZij and 1 � i � n
2 � 1

2j� 1þ Pn2�1

s¼1
jZsj þ 2

Pi
s¼n

2

jZs�1j � 2jZn
2�1j; if 1 � j � jZij and n

2 � i � n� 1

8>>><
>>>:

Case 2: n-odd

For xij 2 Zi, where jZij ¼ pn�i � pn�i�1 and jZ0j ¼ 0,

cðxijÞ ¼
j� 1þPi

s¼1 jZs�1j þ 2
Pn�1

s¼nþ1
2
jZsj; if 1 � j � jZij and 1 � i � n�1

2

2j� 1þ 2
Pn�1

s¼nþ1
2
jZsj � 2

Pi
s¼nþ1

2
jZsj; if 1 � j � jZij and nþ1

2 � i � n� 1

(

From case 1, it can be seen that �ðZpnÞ attains an upper bound if and only if i ¼ n� 1 and
j ¼ jZn�1j, i.e.,
2jZn�1j � 1þ

Xn
2�1

s¼1
jZsj þ 2

Xn�1

s¼n
2

jZs�1j � 2jZn
2�1j

¼ 2ðp� 1Þ � 1þ
Xn

2�1

s¼1
jZsj þ 2

Xn�1

s¼n
2þ1

jZs�1j þ 2jZn
2�1j � 2jZn

2�1j

¼ 2p� 3þ
Xn

2�1

s¼1
jZsj þ 2

Xn�2

s¼n
2

jZsj

¼ 2p� 3þ
Xn�2

s¼1
jZsj þ

Xn�2

s¼n
2

jZsj
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¼ 2p� 3þ pn�1 � pn�nþ2�1 þ p
n
2 � p

¼ pn�1 þ p
n
2 � 3 ¼ pn�1 þ pb

n
2c � 3:

Similarly, from case 2, it can be seen that �ðZpnÞ attains an upper bound if and only if i ¼ n�1
2 and

j ¼ jZn�1
2
j, i.e.,

jZn�1
2
j � 1þ

Xn�1
2

s¼1
jZs�1j þ 2

Xn�1

s¼nþ1
2

jZsj

¼ jZn�1
2
j � 1þ

Xn�3
2

s¼1
jZsj þ 2

Xn�1

s¼nþ1
2

jZsj

¼ �1þ
Xn�1

2

s¼1
jZsj þ 2

Xn�1

s¼nþ1
2

jZsj

¼ �1þ
Xn�1

s¼1
jZsj þ

Xn�1

s¼nþ1
2

jZsj

¼ �1þ pn�1 � 1þ p
n�1
2 � 1 ¼ pn�1 þ p

n�1
2 � 3 ¼ pn�1 þ pb

n
2c � 3:

One can see that for both cases, the span of c is equal to pn�1 þ pb
n
2c � 3:

Claim: The labeling c is a valid radio labeling. We must show that the following radio condition holds

for all pair of vertices xi1; x
j
2 2 V ð�ðZpnÞÞ, where xi1 6¼ xj2:

dðxi1; xj2Þ þ jcðxi1Þ � cðxj2Þj � diamð�ðZpnÞÞ þ 1 ¼ 3: (11)

Case 1: n-even

1: Consider the pair ðxi1; xj2Þ with 1 � i; j � n
2 � 1. Note that dðxi1; xj2Þ ¼ 2 and jcðxi1Þ � cðxj2Þj � 1.

Hence, radio Eq. (11) is satisfied.

2: Consider the pair ðxi1; xj2Þ with n
2 � i; j � n� 1. We have dðxi1; xj2Þ ¼ 1 and jcðxi1Þ � cðxj2Þj � 2.

Hence, radio Eq. (11) is satisfied.

3: Consider the pair ðxi1; xj2Þ with i ¼ 1; j ¼ n� 1. We have dðxi1; xj2Þ ¼ 1 and jcðxi1Þ � cðxj2Þj � 2.
Hence, radio Eq. (11) is satisfied.

4: Consider the pair ðxi1; xj2Þ with i ¼ 1; n2 � j � n� 2. We have dðxi1; xj2Þ ¼ 2 and jcðxi1Þ � cðxj2Þj � 2.
Hence, radio Eq. (11) is satisfied.

5: Consider the pair ðxi1; xj2Þ with 2 � i � n
2 � 2; n2 � j � n� 1. We have dðxi1; xj2Þ ¼ 1 and

jcðxi1Þ � cðxj2Þj � 2. Hence, radio Eq. (11) is satisfied.

6: Consider the pair ðxi1; xj2Þ with i ¼ n
2 � 1; j ¼ n

2. We have dðxi1; xj2Þ ¼ 2 and jcðxi1Þ � cðxj2Þj � 1.
Hence, radio Eq. (11) is satisfied.

7: Consider the pair ðxi1; xj2Þ with i ¼ n
2 � 1; n2 þ 1 � j � n� 1. We have dðxi1; xj2Þ ¼ 1 and

jcðxi1Þ � cðxj2Þj � 2. Hence, radio Eq. (11) is satisfied.

We have shown that condition (11) is satisfied for all pairs. This means that rnð�ðZpnÞÞ
� spanðcÞ ¼ pn�1 þ pb

n
2c � 3 for n-even. Similarly, it is easy to show that rnð�ðZpnÞÞ � spanðcÞ ¼

pn�1 þ pb
n
2c � 3 for n-odd. This implies that rnð�ðZpnÞÞ � spanðcÞ ¼ pn�1 þ pb

n
2c � 3 for n � 5: This

completes the proof.

Theorem 3.8 Let p be a prime number, and n � 5 a positive integer. The radio number for a zero-divisor
graph of Zpn is pn�1 þ pb

n
2c � 3, i.e., rnð�ðZpnÞÞ ¼ pn�1 þ pb

n
2c � 3.

Proof. Combining Propositions 3.6 and 3.7, we obtain rnð�ðZpnÞÞ ¼ pn�1 þ pb
n
2c � 3 for any n � 5.
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4 Conclusion

We determined the radio number for the zero-divisor graph �ðZpnÞ of the commutative ring Zpn . In
addition to the importance of the study on combinatorial properties associated with algebraic structure,
these results can also be useful for circuit design and communication problems such as channel assessment.
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