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Abstract: In this paper, we present an oneM2M-compliant system including an
artificial intelligence of things (AIoT) edge device whose principal function is
to estimate human poses by using two PoseNet models built on MobileNet
v1 and ResNet-50 backbone architectures. Although MobileNet v1 is generally
known to be much faster but less accurate than ResNet50, it is necessary to ana-
lyze the performances of whole PoseNet models carefully and select one of them
suitable for the AIoT edge device. For this reason, we first investigate the compu-
tational complexity of the models about their neural network layers and para-
meters and then compare their performances in terms of inference time, frame
rate and pose score. We found that the model with MobileNet v1 could estimate
human poses very fast without significant pose score degradation when compared
with the model with ResNet-50 through some experimental results. In addition,
the model with MobileNet v1 could smoothly handle video clips with 480 ×
360 and 640 × 480 resolutions as inputs except 1280 × 720 resolution. Finally,
we implemented the overall oneM2M-compliant system with an AIoT edge
device containing the model with MobileNet v1 and a floating population moni-
toring server, which is applicable to commercial area analysis in a smart city and
we verified its operation and feasibility by periodically displaying all the data of
temperature, humidity, illuminance, and floating population estimation from the
AIoT edge device on a map in a web browser.

Keywords: Deep learning; edge computing; Internet of Things; MobileNet v1;
PoseNet; ResNet-50

1 Introduction

Artificial intelligence of things (AIoT) is a new technology combining artificial intelligence (AI) with the
Internet of Things (IoT) [1,2]. It enables the IoT devices to analyze their sensing data, make decisions and act
on the decisions without human involvement. In addition, edge computing is known as a distributed
computing technology bringing computation to the edge of an IoT network, where local IoT devices can
process time-sensitive sensing data as close to its source as possible [3]. Its primary benefit is that it
allows sensing data to be processed right on the spot, eliminates latency and responds instantaneously. It
is able to address any concerns with regard to response time requirement, bandwidth cost saving, battery
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life constraint, data safety and privacy [4,5]. Moreover, the fusion of AIoT and edge computing can create a
new AIoT edge device and this combination of edge computing and AI in an IoT device has great potential to
be applicable in various fields [6–9].

Deep learning as a subfield of AI is usually considered in order to make an AIoT edge device intelligent
[10]. Here we want to add a deep learning model for pose estimation to an AIoT edge device and the pose
estimation model is a key component in enabling the AIoT edge device to have an understanding of people in
images and videos. There are two approaches referred to as top-down and bottom-up for pose estimation [11].
Top-down approaches employ a person detector and then perform single person pose estimation for each
detection. But they have no way to recovery if the person detector fails and their runtime highly depends
on the number of people in the image for each person detection. In contrast, bottom-up approaches offer
robustness to the recovery problem and may decouple runtime complexity from the number of people in
the image. Traditional bottom-up approaches perform inference over a combination of local observations
on body parts and the spatial dependencies between them. Convolutional neural networks (CNNs) have
been widely used to obtain reliable local observations of body parts. PoseNet is one of CNN models for
estimating human poses in which human poses are made from a group of 17 different and predefined
body parts called keypoints [12,13] and it has two variants of backbone architectures known as
MobileNet v1 and ResNet50. Generally, MobileNet v1 is much faster but less accurate when compared
with ResNet50 but we need to analyze the performances of two PoseNet models with MobileNet v1 and
ResNet50 to know which one is more suitable for AIoT edge devices with different hardware resources
and applications.

Therefore, this paper presents an oneM2M-compliant system model with an AIoT edge device and a
floating population monitoring server for commercial area analysis and store operation services, select the
PoseNet model proper to the AIoT edge device through performance comparisons, and additionally
shows some experimental results. The rest of the paper is organized as follows. In Section 2, a system
model and its PoseNet models are presented. Also, oneM2M-compliant IoT entities and web monitoring
application are briefly described. In Section 3, we compare the PoseNet models according to some
performance metrics. In Section 4, the concluding remarks are given.

2 AIoT Edge Device and Its PoseNet Models

2.1 System Model with an AIoT Edge Device

In Fig. 1, an oneM2M-compliant system consisting of an AIoT edge device and a floating population
monitoring server is illustrated.

The AIoT edge device receives temperature and humidity data from a DHT11 sensor, illuminance data
from a BH1750 sensor and video data from a C270 high definition (HD) webcam. It estimates human poses
in video data with PoseNet models that are based on MobileNet v1 and ResNet-50 architectures and then
estimates floating population by counting estimated human poses. Finally, an IoT client application in the
AIoT edge device sends all the data such as temperature, humidity, illuminance and floating population
estimation data to an IoT server middleware in the floating population monitoring server. The IoT server
middleware stores the data coming from the IoT client application and forwards them to a web
monitoring application. The web monitoring application displays the coordinates of the AIoT edge device
and the data on a map in a web browser.

2.2 Comparison of PoseNet Models

In terms of their neural network layers and parameters, we compare computational complexity of two
PoseNet models based on MobileNet v1 and ResNet-50 architectures in the AIoT edge device. The
PoseNet is a deep learning model to estimate human poses by detecting 17 keypoints which include
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5 facial points such as two eyes, two ears and one nose and 12 joints of the body such as shoulders, elbows,
wrists, hips, knees and ankles [14–16]. Here two PoseNet models are considered where the first model is built
on a backbone network of MobileNet v1 and the second is built on a backbone network of ResNet-
50 [17,18]. The MobileNet v1 or ResNet-50 block takes an input image with red, green and blue
channels and outputs feature maps. From feature maps, the Keypoint Heatmaps block predicts a heatmap
pk xið Þ with a binary classification task which is represented as

pk xið Þ ¼ 1 if xi 2 DR yj;k
� �

otherwise pk xið Þ ¼ 0 (1)

Assuming that N is the number of pixels in the image,M is the number of person instances in the image,
and K is the number of keypoint types in a person instance, xi denotes the 2-D position for i ¼ 1; . . . ;N, yj;k
denotes the 2-D position of the k-th keypoint of the j-th person instance for k ¼ 1; . . . ;K and j ¼ 1; . . . ;M ,
andDR yj;k

� � ¼ x :k x� yj;k k� R
� �

denotes a disk of radius R ¼ 32 of centered on yj;k . During training, the
heatmap loss is computed as the average logistic loss along image positions. To improve the keypoint
localization accuracy, the Short-Range Offsets block predicts short-range offset vectors given as

Sk xð Þ ¼ yj;k � x (2)

which point from the image position xwithin the keypoint disks to the k-th keypoint of the closest person
instance j. During training, the short-range offset prediction errors are penalized with the L1 loss and the
errors only at the positions x 2 DR yj;k

� �
in the keypoint disks are averaged and back-propagated. To

connect pairs of keypoints belonging to each person instance, the Mid-Range Offsets block predicts a
separate pairwise mid-range 2-D offset vectors Mk;l xð Þ ¼ yj;l � x

� �
x 2 DR yj;k

� �� �
which are 2 K � 1ð Þ

target regression vectors for each directed edge connecting pairs (k, l) of keypoints adjacent to each other
in a tree-structured kinematic graph of the person. During training, the average L1 loss of the regression
prediction errors is computed and back-propagated through the network. To address accurate regressions,
refining the mid-range pairwise offsets is repeated twice by using the more accurate short-range offsets,
which is shown as

Figure 1: oneM2M-compliant system with an AIoTedge device and a floating population monitoring server
applicable to commercial area analysis in a smart city
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Mk;l xð Þ  x0 þ Sl x
0ð Þ; where x0 ¼ Mk;l xð Þ (3)

To sample Sl x0ð Þ, bilinear interpolation is employed. the errors through Eq. (3) are back-propagated
along both the mid-range and short-range input offset branches. The Multi-person Pose Decoding block
aggregates the heatmap and short-range offsets through Hough voting into 2-D Hough score maps hk xð Þ
given as

hkðxÞ ¼ 1

pR2

X
i¼1:N pkðxiÞBðxi þ SkðxiÞ � xÞ (4)

where B �ð Þ is the bilinear interpolation kernel. The position xi and keypoint type k of all local maxima in the
Hough score maps hk xð Þ are inserted in a priority queue and then they are popped out of the queue in
descending score order. At each iteration, if the current candidate seed xi of the keypoint type k is within
a disk Dr yj0;k

� �
of previously detected person instances j0, it will be rejected by using a non-maximum

suppression radius of r ¼ 20 pixels. Otherwise, a new person instance j with the keypoint type k is
started at position yj;k ¼ xi as a seed and the pairs k; lð Þ of adjacent keypoints are greedily connected
along the edges of the kinematic person graph, which is represented as

yj;l ¼ yj;k þMk;l yj;k
� �

(5)

Fig. 2 shows the PoseNet models with MobileNet v1 and ResNet-50 backbone architectures in order to
compare their computational complexity for a 640 × 480 video stream.

The MobileNet v1 consists of 18 Conv2D layers and 13 Depthwise Conv2D layers. The first Conv2D
layer receives an image of (1 × 481 × 641 × 3) as the tensor of (batch, height, width, channels) as an input and
outputs a feature map of (1 × 241 × 321 × 24) by using filters of (24 × 3 × 3 × 3) and a bias of (24). The
second DepthwiseConv2D layer receiving the feature map outputs a feature map of (1 × 241 × 321 × 24)
by using a weight of (1 × 3 × 3 × 24) and a bias of (24). In this way, other Conv2D and
DepthwiseConv2D layers perform similar tasks repeatedly and the last Conv2D layer feed the same

Figure 2: Comparison of PoseNet models with different backbone architectures (a) PoseNet model with
MobileNet v1, (b) PoseNet model with ResNet-50
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feature map of (1 × 31 × 41 × 384) to Conv2D layers for Keypoint Heatmaps, Short-Range Offsets and Mid-
Range Pairwise Offsets. The Conv2D layers produce a feature map with 17 channels, a feature map with
34 channels, and a feature map with 64 channels, respectively. The PosenetDecoderOP for Multi-person
Pose Decoding receives the feature maps as inputs and finally produces keypoint positions of (1 × 10 ×
17 × 2), keypoint confidence scores of (1 × 10 × 17), and pose confidence scores of (1 × 10), when
assuming that the maximum number of person instances detected is 10. Compared with the MobileNet
v1, the ResNet-50 consists of 57 Conv2D and 4 MaxPool2D layers. The first Conv2D layer receives an
image of (1 × 487 × 647 × 3) as an input and outputs a feature map of (1 × 241 × 321 × 64) by using
filters of (64 × 7 × 7 × 3) and a bias of (64), the second MaxPool2D layer receiving the feature map
outputs a feature map of (1 × 121 × 161 × 64), and so on. Also, the last Conv2D layer feed the same
feature map of (1 × 31 × 41 × 2048) to Conv2D layers for Keypoint Heatmaps, Short-Range Offsets and
Mid-Range Pairwise Offsets and the Conv2D layers produce feature maps which are fed to the
PosenetDecoderOP. Thus, we will obtain keypoint positions of (1 × 20 × 17 × 2), keypoint confidence
scores of (1 × 20 × 17), and pose confidence scores of (1 × 20), when assuming that the maximum
number of person instances detected is 20.

Overall, we compare the number of Conv2D layers and parameters of two PoseNet models in Tab. 1.
The number of parameters in each Conv2D layer can be calculated by

NConv2D ¼ a � b � cð Þ þ 1f g � d (6)

where a is the width of a filter, b is the height of a filter, c is the number of filters in the previous layer, and d is
the number of filters. We use c ¼ 1 for each DepthwiseConv2D in MobileNet v1.

The model with MobileNet v1 has 31 layers and 1,180,147 parameters while the model with ResNet-50
does 61 layers and 23,717,107 parameters. In other words, computational complexity of the model with
MobileNet v1 is about 20 times lower than that of the model with ResNet-50 because it has fewer
number of layers and parameters, compared with the other. In terms of the computational complexity,
therefore, the model with MobileNet v1 may be more suitable for the AIoT edge device than the model
with ResNet-50. However, we need to analyze the performances of two models with regard to the pose
estimation accuracy as well as the computation complexity and we will use the pose score as a
performance metric of the pose estimation accuracy and the inference time and frame rate as performance
metrics of the computational complexity in Section 3.

2.3 oneM2M-Compliant IoT Entities and Web Monitoring Application

The Floating Population Estimation block simply estimates the number of person instances by thinking
of the number of pose confidence scores from the PoseNet model as it. Next, The IoT Client Application
block modeled as an application dedicated node-application entity (ADN-AE) in oneM2M specifications
[19] puts the temperature, humidity, illuminance, number of person instances data in a content instance
and send the content instance to a remote IoT Server Middleware block considered as an infrastructure
node-common service entity (IN-CSE) [20]. The IoT Server Middleware block stores the received content
instance in the container of a Web Monitoring Application block modeled as an infrastructure node-

Table 1: Number of Conv2D layers and parameters in two PoseNet models

Type of backbone architectures Number of layers Number of parameters

MobileNet v1 31 1,180,147

ResNet-50 57 23,717,107
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application entity (IN-AE). Then it immediately notifies a message including all the data to the Web
Monitoring Application block already permitted to subscribe it. The Web Monitoring Application block
shows all the data on a map in a web browser periodically and this application may be expected to be
used for various smart city services such as trade area analysis, crime prevention, etc.

3 Experimental Results

We implemented the AIoT edge device by using a Raspberry Pi 4 Model B with a Google Coral USB
Accelerator. The Google Coral USB Accelerator provides high-performance deep learning inference at low
power costs. To run this, we installed PyCoral, TensorFlow Lite Runtime, and libedgetpu-max [21]. In
addition, we installed a DHT11 sensor for detecting temperature and humidity, a BH1750 sensor for
detecting illuminance in Lux, and a C270 HD webcam for capturing real-time videos at 30 frames per
second (fps) on the AIoT edge device. For the purpose of comparing performances of PoseNet models
with MobileNet v1 and ResNet-50 architectures, we pre-recorded three 50 second video clips with 480 ×
360, 640 × 480, and 1280 × 720 resolutions as inputs and considered inference time, frame rate, and pose
score as performance metrics. Moreover, to implement the IoT client application and server middleware,
we exploited oneM2M-compliant IoT platforms called &Cube and Mobius, respectively [22]. For
implementing the floating population monitoring server, Kakao map web application programming
interface (API) [23] was used to display temperature, humidity, illuminance, and floating population
estimation results from the AIoT edge device.

We compare inference times of two PoseNet models on the AIoT edge device according to video
resolutions in Fig. 3. For 480 × 360 video clip, the model with MobileNet v1 shows inference time of
8.19 milliseconds (ms) and the other with ResNet-50 shows that of 66.8 ms. For 640 × 480 video clip,
the model with MobileNet v1 shows inference time of 13.89 ms and the other with ResNet-50 shows that
of 537.6 ms. For 1280 × 720 video clip, the model with MobileNet v1 shows inference time of 43.51 ms
and the other with ResNet-50 shows that of 1203 ms. In other words, the model with MobileNet v1 can
estimate human poses about 27 times faster than the other with ResNet-50 because it has fewer number
of parameters and smaller computational complexity than the model with ResNet-50. As the video
resolution increases, the difference between their inference times increases rapidly. In terms of inference
time, we can say that the model with ResNet-50 is very sensitive to the video resolution.

Fig. 4 shows frame rates, that refer to speeds at which the AIoT edge device displays the video clip
including pose estimation results on a single screen, of two PoseNet models. For 480 × 360 video clip,
the model with MobileNet v1 provides 122.5 fps that is about 8 times faster than the other model with
the ResNet-50. For 640 × 480 video clip, the model with MobileNet v1 provides 70.37 fps while the
other model with ResNet-50 does 1.86 fps. For 1280 × 720 video clip, the model with MobileNet
v1 provides 23.04 fps while the other model with ResNet-50 does 0.82 fps. In terms of frame rate, the
model with ResNet-50 is not suitable for use on the AIoT edge device because it only supports frame
rates less than 30 fps. Also, the model with MobileNet v1 cannot display the video clip smoothly if an
input video clip with 1280 × 720 resolution is fed into it.

In Fig. 5, pose scores of two PoseNet models are shown according to video resolutions. The pose score
or pose confidence score denotes the mean of confidence scores of 17 keypoints or heatmap positions
detected by the PoseNet models. As video resolution increases, their pose scores slightly decrease. The
difference between their pose scores seems negligible and they can offer over 0.7 pose scores regardless
of the video resolution. After analyzing all the results from Figs. 3–5, we found that the model with
MobileNet v1 is more suitable for our AIoT edge device than the model with ResNet-50 since it can
estimate human poses very fast without significant pose score degradation. Video resolutions of 480 ×
360 and 640 × 480 pixels are recommended as inputs to the model with MobileNet v1.
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Figure 3: Inference times of PoseNet models based onMobileNet v1 and ResNet-50 architectures according
to input video clips with three different resolutions

Figure 4: Frame rates of PoseNet models based on MobileNet v1 and ResNet-50 architectures according to
input video clips with three different resolutions
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Figure 5: Pose scores of PoseNet models based on MobileNet v1 and ResNet-50 architectures according to
input video clips with three different resolutions

Figure 6: The output of the PoseNet model with MobileNet v1 for a real-time video from the C270 HD
webcam installed on the AIoT edge device
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In Fig. 6, a captured output image of the PoseNet model using MobileNet v1 is shown for a real-time
video from the C270 HD webcam installed on the AIoT edge device where all the operations of the model
were verified. Finally, we verified the interaction between oneM2M-compliant platforms and a web
monitoring application and displayed all the information about temperature, humidity, illuminance, and
floating population through the Kakao map web API in Fig. 7.

4 Conclusion

In this paper, we presented an oneM2M-compliant system including an AIoT edge device with two
PoseNet models based on MobileNet v1 and ResNet-50 backbone architectures and selected the PoseNet
model with MobileNet v1 suitable for the AIoT edge device by comparing the models in terms of
inference time, frame rate and pose score. Experimental results showed that the model with MobileNet
v1 could estimate human poses very fast without significant pose score degradation when compared with
the model with ResNet-50. In other words, the difference between their pose scores was negligible but
the inference time of the model with MobileNet v1 was faster than that of the model with ResNet-
50 regardless of video resolutions. In terms of frame rate, video resolutions of 480 × 360 and 640 ×
480 pixels are recommended as inputs to the model with MobileNet v1. Finally, the overall oneM2M-
compliant system applicable to commercial area analysis in a smart city was implemented. It consisted of
an AIoT edge device containing the model with MobileNet v1 and a floating population monitoring

Figure 7: The outputs of the interaction between oneM2M-compliant platforms and a web browser through
the Kakao map web API: temperature, humidity, illuminance, and floating population
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server and periodically displayed temperature, humidity, illuminance and floating population estimation data
on a map in a web browser.
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