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Abstract: In this article, we propose some novel computational methods in the
form of iteration schemes for computing the roots of non-linear scalar equations
in a new way. The construction of these iteration schemes is purely based on
exponential series expansion. The convergence criterion of the suggested schemes
is also given and certified that the newly developed iteration schemes possess
quartic convergence order. To analyze the suggested schemes numerically, several
test examples have been given and then solved. These examples also include
some real-world problems such as van der Wall’s equation, Plank’s radiation
law and kinetic problem equation whose numerical results showing the better per-
formance, applicability and efficiency of these iteration schemes against the other
similar-nature two-step iteration schemes in the literature. Finally, a detailed gra-
phical analysis of the suggested iteration schemes has been given in the form of
polynomiographs for the different complex polynomials with the aid of computer
technology that reveals the convergence characteristics and other dynamical fea-
tures of the presented iteration schemes.

Keywords: Non-linear equations; Newton’smethod; Ostrowski’smethod; Traub’s
method; polynomiography

1 Introduction

The polynomial’s root-finding task has played a major role in the entire history of computational and
applied mathematics and covers many other fields of modern sciences. In many branches of Engineering,
there exist a plethora of problems that can be easily converted to the form of non-linear functions using
different mathematical tools and then can be solved through different numerical methods. Analytical
methods for these problems are mostly unable to obtain the required solution and ultimately, we have to
move towards the different iteration schemes for getting the approximate solution of the given problem.
The first and the most important step in an iteration scheme is the selection of the initial guess to execute
the algorithm. The main characteristics of an iteration scheme such as rate and order of convergence are
mostly depended upon the choice of that starting point. At each step of the iteration scheme, this starting
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point has been filtered till the required stopping criterion is achieved. Some of the most famous and classical
iteration schemes are given in the literature [1–8] and the references therein. The most famous and classical
iteration scheme was introduced by Newton [1] in 15th century. With the passage of time, a significant
number of scholars researched on the iteration schemes and introduced many modified forms of Newton’s
algorithm with higher convergence order. Among them, there are plenty of iteration schemes that involve
predictor and corrector steps and usually known as multi-step iterative methods. For further details,
see [9–16] and the references therein. Usually, the convergence orders of the multi-step iterative methods
are greater due to the involvement of predictor and corrector steps but it causes to increase in the
computational cost per iteration because these methods require the evaluation of the function along with
the higher-order derivatives which is the main drawback of these methods. It is really a difficult task to
manage the convergence rate and the computational cost because it looks that these two quantities are in
an inverse relation.

In the last few years, the mathematicians focussed on the above-described issue and tried to modify the
existing iteration schemes with low computational cost per iterations and higher convergence rate by
implementing several mathematical techniques. In 2007, Noor et al. [17], proposed a sixth-order
predictor-corrector type Halley’s method and then made it second-derivative free via finite difference
scheme and obtained a novel fifth-order algorithm. In 2017, Rhee et al. [18] developed a new class of
three-step optimal eighth-order methods with higher-order weight functions employed in the second and
third sub-steps and then investigated their dynamics underlying the purely imaginary extraneous fixed
points. Based on the weight combination of midpoint with Simpson quadrature formulae and using the
predictor-corrector technique, Hafiz et al. [19] introduced two novel seventh- and ninth-order root-finding
algorithms. In 2018, Salimi et al. [20] proposed an optimal class of eighth-order methods with the help of
weight functions and the Newton interpolation technique. After that, Solaiman et al. [21] suggested some
higher-order optimal methods and proved their applicability by solving some real-life problems in
chemical engineering. Very recently, Chu et al. [22] constructed an efficient family of simultaneous
iterative methods and give a detailed dynamical analysis of the suggested methods. Some latest work that
includes the system of non-linear equations and its relevant fields along with the applications has been
given in [23–34] and the references are therein.

In this research article, we give a new idea to derive some new computational methods in the form of
iteration schemes. The main idea behind the construction of these schemes is the expansion of exponential
series up to fifth term. We also certify that the suggested schemes are quartic-order and then applied to
different arbitrary test problems along with some real-world problems for showing its applicability,
validity, and accuracy among the other similar-nature two-step iteration schemes in the literature.

2 General Iteration Scheme Based on Exponential Series Expansion

The general iteration scheme based on the expansion of exponential series is given as:

uiþ1 ¼ vie
� w við Þ

viw
0 við Þ

� �
; (1)

where vi ¼ ui � w uið Þ
w0 uið Þ :

With the help of the above general iteration scheme, we will deduce some new algorithms by expanding
the exponential series up to two, three, four and five terms.
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Expanding Eq. (1) upto two terms gives us the following iterative scheme:

uiþ1 ¼ vi � w við Þ
w0 við Þ ;

which is actually the well-known fourth-order Traub’s algorithms [12] for computing approximate roots of
the non-linear scalar equations.

Again expanding Eq. (1) up to three, four and five terms, we obtain the iterative schemes given as:

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ ;

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ �

w3 við Þ
6 við Þ2w03

við Þ;

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ �

w3 við Þ
6 við Þ2w03

við Þ þ
w4 við Þ

24 við Þ3w04
við Þ;

which are quite new iteration forms and allow us to suggest the following algorithms.

Algorithm 1

For a given u0, compute the approximate solution uiþ1 by the following iterative schemes:

vi ¼ ui � w uið Þ
w0 uið Þ ; i ¼ 0; 1; 2; . . . ;

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ

Algorithm 2

For a given u0, compute the approximate solution uiþ1 by the following iterative schemes:

vi ¼ ui � w uið Þ
w0 uið Þ ; i ¼ 0; 1; 2; . . . ;

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ �

w3 við Þ
6 við Þ2w03

við Þ:
Algorithm 3

vi ¼ ui � w uið Þ
w0 uið Þ ; i ¼ 0; 1; 2; . . . ;

uiþ1 ¼ vi � w við Þ
w0 við Þ þ

w2 við Þ
2viw

02
við Þ �

w3 við Þ
6 við Þ2w03

við Þ þ
w4 við Þ

24 við Þ3w04
við Þ:

Which are two-step iterative schemes for computing the roots of non-linear scalar equations. One of the
most important and basic characteristics of the suggested algorithms is that they are second-derivative
free and easy to apply upon those scalar functions whose second derivative does not exist at all. In this
sense, the computational cost of these presented algorithms is less that may cause to aquire higher
efficiency index.
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3 Convergence Analysis

In this section, we will find the convergence order of general iteration scheme given in Eq. (1).

Theorem 1

Suppose that a is a root of the equation w uð Þ ¼ 0. If w uð Þ is sufficiently smooth in the neighborhood of
a, then the order of convergence of the general iteration scheme given in Eq. (1) is at least four.

Proof

To analyze the convergence criterion of the iteration scheme Eq. (1), we assume that a is a root of the
equation w uð Þ ¼ 0 and ei be the error at ith iteration, then ei ¼ ui � a and by using Taylor’s series expansion,
we have

w uið Þ ¼ w0 að Þei þ 1

2!
w00 að Þe2i þ

1

3!
w000 að Þe3i þ

1

4!
w ivð Þ að Þe4i þ

1

5!
w vð Þ að Þe5i þ

1

6!
w við Þ að Þe6i þ O e7i

� �

w uið Þ ¼ w0 að Þ ei þ d2e
2
i þ d3e

3
i þ d4e

4
i þ d5e

5
i þ d6e

6
i þ O e7i

� �� �
(2)

where

di ¼ 1

i!

w ið Þ að Þ
w0 að Þ

w0 uið Þ ¼ w0 að Þ 1þ 2d2ei þ 3d3e
2
i þ 4d4e

3
i þ 5d5e

4
i þ 6d6e

5
i þ 7d7e

6
i þ O e7i

� �� �
(3)

With the help of Eqs. (2) and (3), we get:

vi ¼ aþ d2e
2
i þ 2 d3 � d22

� �
e3i þ 3d4 � 7d3d2 þ 4d32

� �
e4i þ �6d33 þ 20d3d

2
2 � 10d2d4 þ 4d5 � 8d42

� �
e5i

þ �17d3d4 þ 28d4d
2
2 � 13d2d5 þ 5d6 þ 33d2d

3
3 � 52d3d

3
2 þ 16d52

� �
e6i þ O e7i

� � (4)

w við Þ¼w0 að Þ�d2e2i þ 2d3�2d22
� �

e3i þ 5d32�7d2d3þ3d4
� �

e4i þ 24d3d
2
2�12d42�10d2d4þ4d5�6d23

� �
e5i

þ �73d3d
3
2þ34d4d

2
2þ28d52þ37d2d

2
3�17d4d3�13d2d5þ5d6

� �
e6i þO e7i

� �� (5)

w0ðviÞ ¼ w0ðaÞ½1þ 2d22e
2
i þ ð4d2d3 � 4d32Þe3i þ ð6d2d4 � 11d3d

2
2 þ 8d42Þe4i þ 28d3d

3
2 � 20d4d

2
2

þ 8d2d5 � 16d52Þe5i þ ð�16d4d2d3 � 68d3d
4
2 þ 12d33 þ 60d4d

3
2 � 26d5d

2
2 þ 10d2d6

þ 32d62Þe6i þ Oðe7i Þ�
(6)

Using Eqs. (4)–(6) in the general iteraion scheme Eq. (1), we arrive at the following equality:

uiþ1 ¼ aþ d32 þ
d22
2a

� 	
e4i þ O e5

� �

which implies that

eiþ1 ¼ d32 þ
d22
2a

� 	
e4i þ O e5

� �

The above equation shows that the order of convergence of the general iteration scheme Eq. (1) is at least
four and all the algorithms derived from it must possess the same convergence order.
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4 Numerical Comparison and Applications

In this section, we include three real-world problems and five arbitrary problems in the form of
transcendental and algebraic equations to illustrate the validity, applicability, and efficiency of the newly
developed iteration schemes. We compare these iteration schemes with Noor’s method one (NR1) [10],
Noor’s method two (NR2) [10], Ostrowski’s Method (OM) [11] and Traub’s method (TM) [12]. For this
purpose, we consider the following examples.

4.1 Van Der Wall’s Equation

In Chemical Engineering, the van der Waal’s equation has been used for interpreting real and ideal gas
behaviour [35], having the following form:

ðP þ A1n2

V 2
Þ V � nA2ð Þ ¼ nRT

By taking the specific values of the parameters of the above equation, we can easily convert it to the
following non-linear function:

w1 xð Þ ¼ 0:986x3 � 5:181x2 þ 9:067x� 5:289

where s represents the volume that can easily be found by solving the function w1. Since the degree of the
polynomial is three, so it must possess three roots. Among these roots, there is only one positive real root
1.92984624284786221850 which is feasible because the volume of the gas can never be negative. We
start the iteration process with the initial guess x0 ¼ 1:0 and their results can be seen in Tab. 1.

4.2 Plank’s Radiation Law

In mathematical physics, the Planck’s radiation law [36] is used to calculate the energy density inside an
isothermal black body and have the following mathematical form:

’ cð Þ ¼ 8pPc

c5 e
Pc
cTk � 1

� �

Suppose we are interested to find the wavelength c1 corresponding to the maximum value of the
energy density ’ c1ð Þ. To convert the above problem in the form of a non-linear function, we take

x ¼ Pc

cTk
and has the following non-linear equation:

Table 1: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 96 1.712639e�17 5.698070e�09 2

NR2 150 3.971942e�03 2.223879e�06 3

OM 09 1.626245e�22 1.858593e�06 4

TM 10 4.578052e�27 1.235520e�07 4

Algorithm 1 07 1.497357e�20 5.200033e�06 4

Algorithm 2 07 1.089356e�23 1.858593e�07 4

Algorithm 3 07 8.800538e�24 8.096439e�07 4
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w2 xð Þ ¼ �1þ x

5
þ e�x

One of the approximated roots of the above function is 4:96511423174427630370 that represents the
peak value of the wavelength of the radiation. We choose the initial guess x0 ¼ 6:0 to start the iteration
process and the corresponding results through different iteration schemes are given in Tab. 2.

4.3 Kinetic Problem Equation

In Physics, the mathematical form of the equation of kinetic problem is:

1:11� 1011 ¼ T�2e2:1�1004

where T in the above equality denotes the temperature of the system which is being considered. The above
equality was derived from a stirred reactor with cooling coils [37]. By assuming the T ¼ x; the above
equality can be converted to the following form:

w2 xð Þ ¼ X�2e2:1�1004 � 1:11� 1011

The above given equation can be utilized to determine the temperature of the system which is being
considered. One of the roots of the above equation is 551:77382493032659964000. To execute the
iteration process, we take the starting point x0 ¼ 500:0 and the corresponding results are given in Tab. 3.

Table 2: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 04 1.151396e�28 1.816721e�13 2

NR2 03 2.431762e�36 1.674009e�11 3

OM 02 5.273987e�23 3.927947e�05 4

TM 02 9.958730e�22 1.719370e�04 4

Algorithm 1 02 1.239803e�25 1.134320e�05 4

Algorithm 2 02 1.237047e�25 1.133689e�05 4

Algorithm 3 02 1.237048e�25 1.133690e�05 4

Table 3: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 08 2.722614e�28 9.420745e�19 2

NR2 07 1.149254e�41 9.003318e�17 3

OM 05 2.752679e�19 1.195566e�16 4

TM 06 1.395852e�23 7.485651e�08 4

Algorithm 1 05 2.675790e�24 4.983088e�08 4

Algorithm 2 05 2.653176e�24 4.972526e�08 4

Algorithm 3 05 2.653066e�24 4.972474e�08 4
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4.4 Transcendental and Algebraic Equations

To numerically analyze the suggested iteration schemes, we consider the following five algebraic and
transcendental equations:

w4 uð Þ ¼ u2 þ sin
u

5

� �
� 1

4
; u0 ¼ 2:0; a ¼ 0:40999201798913713162

w5 uð Þ ¼ ln uþ u; u0 ¼ 1:2; a ¼ 0:56714329040978387300

w6 uð Þ ¼ u3 � 10; u0 ¼ 1:5; a ¼ 2:15443469003188372180

w7 uð Þ ¼ u3 þ u2 � 2; u0 ¼ 0:6; a ¼ 1:00000000000000000000

w8 uð Þ ¼ sin2u� u2 þ 1; u0 ¼ �3:0; a ¼ �1:40449164821534122600

as shown in the following Tabs. 4–8.

Here, we take e ¼ 10�15 in the following stopping criteria |unþ1 � un| < e. The numerical examples have
been solved using the computer program Maple 13.

Tabs. 1–8 show the numerical comparisons of the developed iteration schemes with Noor's method one
(NR1), Noor's method two (NR2), Ostrowski's method (OM), and Traub's method (TM). In the columns of
the given tables, IT denotes the consumption of iterations by each method, w uð Þj j denotes the absolute value
of w uð Þ, unþ1 shows the approximate root, r represents the absolute difference of the consecutive

Table 4: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 05 3.163807e�17 5.629386e�09 2

NR2 04 3.382231e�18 1.512669e�06 3

OM 04 6.783183e�56 1.630792e�14 4

TM 04 6.063382e�56 1.586231e�14 4

Algorithm 1 03 2.818961e�38 3.383761e�10 4

Algorithm 2 03 1.417623e�39 1.602388e�10 4

Algorithm 3 03 1.933809e�39 1.731732e�10 4

Table 5: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 07 3.278748e�27 4.592634e�14 2

NR2 04 1.127879e�31 3.980665e�11 3

OM 03 3.550831e�37 9.021794e�10 4

TM 03 3.135655e�36 1.588919e�09 4

Algorithm 1 03 3.387395e�43 3.319425e�11 4

Algorithm 2 03 1.570459e�41 8.661699e�11 4

Algorithm 3 03 1:940504e�41 9.132194e�11 4
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approximations unþ1 and un and ACOC stands for the approximate computational order of convergence
given as:

ACOC �
ln

unþ1 � aj j
un � aj j

ln
un � aj j
un�1 � aj j

That was introduced by Weerakoon et al. [38].

Table 6: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 141 3.196546e�22 7.032555e�12 2

NR2 04 7.066989e�31 5.866631e�11 3

OM 03 5.197614e�31 2.735438e�08 4

TM 04 7.857615e�27 2.740790e�07 4

Algorithm 1 03 1.189365e�33 1.544754e�16 4

Algorithm 2 03 9.999354e�34 1.479188e�16 4

Algorithm 3 03 1.004962e�33 1.481043e�16 4

Table 7: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 78 2.720561e�26 8.247062e�14 2

NR2 04 3.726794e�29 3.726794e�29 3

OM 04 2.937052e�29 6.391455e�08 4

TM 03 1.853180e�25 5.187039e�07 4

Algorithm 1 03 8.475781e�22 3.778092e�06 4

Algorithm 2 03 6.516845e�22 3.537829e�06 4

Algorithm 3 02 6.584765e�22 3.547011e�06 4

Table 8: Comparison of various iteration schemes

Methods IT w unþ1ð Þj j r ¼ unþ1 � unj j ACOC

NR1 06 7.104675e�20 1.911132e�10 2

NR2 03 2.634964e�20 2.526930e�07 3

OM 03 3.941805e�18 4.429812e�05 4

TM 03 2.820318e�22 3.920088e�06 4

Algorithm 1 03 2.458748e�19 1.939717e�05 4

Algorithm 2 03 1.975802e�19 1.836519e�05 4

Algorithm 3 02 1.992721e�17 1.840438e�04 4
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5 Graphical Analysis

This section includes the graphical comparison of the suggested two-step algorithms with the other
similar-nature algorithms via polynomiographs for different complex polynomials. A polynomiograph is
actually a particular image that has been created in the process of polynomiography, first introduced by
Kalantri in 2005 [39]. He defined this term as “the art and science of visualization in the approximation
of the zeros of complex polynomials, via fractal and non-fractal images generated through the
mathematical convergence properties of iteration functions” [40]. The word “fractal” appeared in the
above definition is actually a geometrical image who’s each and every part possesses the same statistical
character as the entire, introduced by Mandelbrot [41]. The polynomiographs and fractals, both can be
achieved through a variety of numerical algorithms. The polynomiographs and fractals are quite different
from each other in terms of structure scale. The “polynomiographer” can modulate the structure and
pattern systematically using different numerical algorithms, applied to a variety of complex polynomials.
Generally, the polynomiographs and fractals are members of distinct families of graphical objects.

To generate polynomiographs using computer program through different numerical algorithms, we have
to choose an initial rectangle R, containing the zeros of the considered complex polynomial. Then
corresponding to each point w0 in the region, we run an iterative process and then color the point
corresponding to w0 depended upon the approximate convergence of truncated orbit to a root, or lack
thereof. The resolution of the generated image relies on the discretization of the rectangle R. For
example, if we discretize R into a 2000 by 2000 grid then the result will be a high-resolution image.

Usually, polynomiographs’ colors are purely associated with the iterations needed to approximate the
zeros of the complex polynomial with given accuracy and a chosen numerical algorithm. The general and
base algorithm for the generation of polynomiograph is presented in the following Algorithm 4.

In an iteration scheme that involves the repetition of steps, there always exists a need for the stopping
criterion that provides us the information about the convergence or divergence of the considered iteration
scheme. Such a test is called a convergence test with the following standard form:

jwiþ1 � wij, e (7)

Algorithm 4: Polynomiograph’s Generation

Input: q 2 C — polynomial, A � C — area, M — maximum iterations, I — iterative scheme, e — the
accuracy, colormap 0 . . .C � 1½ � — colormap with C colors.

Output: Polynomiograph for polynomial q in the area A.
for w0 2 A, do

j ¼ 0

while i � M do

wiþ1 ¼ I wið Þ
if wiþ1 � wij j, E then

break

j ¼ jþ 1

color w0 by the colormap

IASC, 2021, vol.30, no.3 813



where wiþ1 and wi are the successive iterations in the process and e > 0 denotes the accuracy. The
convergence test (wiþ1;wi; EÞ returns TRUE if the considered iteration scheme converged and FALSE in
case of divergence. In this paper, we also use the above-described stopping criterion Eq. (7). The
different colors of the polynomiograph rely on the consumption of iterations to approximate the root with
given accuracy e. Infinitely many aesthetically pleasing and nice-looking graphical objects can be
generated by changing parameter M, where M denotes the upper limit of the number of iterations. The
detailed and comprehensive study of polynomiography and its artistic applications are described in
Refs. [42–48].

Here we present some particular examples of the following complex polynomials using the proposed
iteration schemes and compared them with the polynomiographs obtained by using other similar-nature
two-step iteration schemes.

q1ðwÞ ¼ w3 � 1; q2ðwÞ ¼ ðw3 � 1Þ2; q3ðwÞ ¼ w4 � 1; q4ðwÞ ¼ ðw4 � 1Þ2:
The colormap used for the coloring of iterations in the generation of polynomiographs is presented in the

following Fig. 1:

5.1 Polynomiographs for the Polynomial q1 wð Þ Using Various Iterative Methods

In the first experiment, we take the cubic polynomial q1 wð Þ ¼ w3 � 1; having three distinct roots 1;

� 1
2 þ

ffiffi
3

p
2 i, and � 1

2 �
ffiffi
3

p
2 i. To obtain the simple roots of the considered polynomial, we executed all the

algorithms through the computer program and the results in the form of the polynomiographs are
given in Fig. 2.

5.2 Polynomiographs for the Polynomial q2 wð Þ Using Various Iterative Methods

In the second experiment, we consider the sextic polynomial q2 wð Þ ¼ ðw3 � 1Þ2; having the same three
distinct zeros as the previous polynomial q1 wð Þ but the multiplicity of these zeros is two. To acquire
the simple zeros for the considered polynomial, we ran all the algorithms and the corresponding results
are shown in Fig. 3.

5.3 Polynomiographs for the Polynomial q3 wð Þ Using Various Iterative Methods

In the third example, we take the quartic polynomial q3 wð Þ ¼ w4 � 1; that possesses exactly four simple
zeros 1;�1; i; and� i:We generated the graphical objects through the execution of all the algorithms and the
results can be seen in the following Fig. 4.

5.4 Polynomiographs for the Polynomial q4 wð Þ Using Various Iterative Methods

In the fourth and last experiment, we assume the complex polynomial q4 wð Þ ¼ ðw4 � 1Þ2; that has four
distinct zeros 1;�1; i; and� i out of eight with the multiplicity two. For drawing the polynomiographs of the
considered polynomial, we ran all the algorithms via a computer program and the corresponding results in
the form of aesthetically pleasing images are given in the following Fig. 5.

Figure 1: The colormap used for generating polynomiographs
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Figure 2: Polynomiographs associated with the polynomial q1 wð Þ. (a) stands for Noor’s method one, (b)
stands for Noor’s method two (c) stands for Ostrowski’s method, (d) stands for Traub’s method, (e), (f)
and (g) stand for Algorithms 1-3 respectively

Figure 3: Polynomiographs associated with the polynomial q2 wð Þ. (a) stands for Noor’s method one, (b)
stands for Noor’s method two (c) stands for Ostrowski’s method, (d) stands for Traub’s method, (e), (f)
and (g) stand for Algorithms 1–3 respectively
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Figure 4: Polynomiographs associated with the polynomial q3 wð Þ. (a) stands for Noor’s method one, (b)
stands for Noor’s method two (c) stands for Ostrowski’s method, (d) stands for Traub’s method, (e), (f)
and (g) stand for Algorithms 1–3 respectively

Figure 5: Polynomiographs associated with the polynomial q4 wð Þ. (a) stands for Noor’s method one, (b)
stands for Noor’s method two (c) stands for Ostrowski’s method, (d) stands for Traub’s method, (e), (f)
and (g) stand for Algorithms 1–3 respectively
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In the above experiments, we gave a detailed graphical analysis of the suggested iteration schemes with
the other similar-nature two-step iteration schemes using polynomiographs for the different degrees’
complex polynomials with the aid of computer technology. When we look at the generated images, we
can read two important characteristics. The first one is the speed of convergence of the iteration scheme,
i.e., the color of each point gives us information on how many iterations were performed by the iteration
scheme to approximate the root. The second characteristic is the dynamics of the iteration scheme. Low
dynamics are in areas where the variation of colors is small, whereas in areas with a large variation of
colors the dynamics are high. The black color in images shows that places where the solution cannot be
achieved for the given number of iterations. The appearance of the darker region in the above-presented
images shows that the considered iteration scheme requires a smaller number of iterations. The areas of
the same colors in the above figures indicate the same number of iterations required to determine the
solution and they look alike to the contour lines on the map. It can be noted that the polynomiographs
generated through our developed iteration schemes contained much brighter and darker areas and did not
contain black area as compared to other two-step iteration schemes of the same kind which showing the
superiority of the proposed iteration schemes over the other ones. Also, the polynomiographs of the
suggested iteration schemes showing a larger convergence area than the other comparable methods which
proves the better efficiency of the suggested algorithms.

All these figures have been generated using the computer program Mathematica 12:0 by taking
e ¼ 0:001 and M ¼ 20 where e stands for the accuracy and M stands for the upper limit of the number
of iterations.

6 Conclusion

Based on exponential series expansion, some novel iteration schemes have been constructed for
computing the approximate roots of the non-linear equations with the single variable that possess the
quartic convergence order. By solving some arbitrary test problems along with some real-world problems,
the applicability, validity, accuracy and performance of the suggested iteration schemes have been
analyzed. The numerical results of the Tabs. 1–8 showing better performance and efficiency among the
other comparable iteration schemes. We also presented a detailed and comprehensive graphical
comparison of the suggested iteration schemes with the other similar-nature two-step iteration schemes in
the literature by means of polynomiographs of different complex polynomials that showing the
convergence properties and other dynamical features of the suggested iteration schemes. The technique of
exponential series expansion can also be applied to construct a new class of root-finding algorithms for
the system of non-linear equations.
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