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Abstract: In industrial practice, certain processes are unstable, such as different
types of reactors, distillation columns, and combustion systems. To ensure greater
maneuverability and improve the speed of response command, certain systems in
the military and aviation fields are purposely configured to be unstable. These sys-
tems are often more difficult to control than stable systems and are of particular
interest to designers and control engineers. Despite all advances in process control
over the past six decades, the proportional–integral–derivative (PID) controller is
still the most common. The main reasons are the simplicity, robustness, and suc-
cessful applications provided by PID-based control structures. The design of pro-
portional–integral (PI) controller for time-delay (TD) systems is a traditional and
classical problem. On one hand, PI controllers are used in more than 95% of
industrial processes. On the other hand, there are TD phenomena in almost all
practical control systems. In this paper, we study the robustness of a PI controller
in stabilizing systems containing uncertain parameters and delays. A robust con-
troller for an unknown unstable second-order with margin TD is constructed using
a generalized Kharitonov theorem for quasi-polynomials. A constructive method
based on the Hermite–Biehler theorem is used to obtain all PI gains, which stabi-
lize an uncertain and unstable second-order delay system. Genetic algorithms
(GAs) and optimization methods are used to obtain optimal system and control
parameters for providing the best PI control that makes the system robust and
stable under uncertainty. By minimizing performance criteria such as the integral
of square error, integral of absolute error, time-weighted integral of absolute error,
and integral of time weighted square error, GAs and particle swarm optimization
are used to optimize the PI parameters and system parameters that provide the best
control under uncertainties.
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1 Introduction

Time delays are found in several industrial processes and engineering systems, such as hydraulic systems,
turbojet engines, chemical processes and communication networks. Delays have a considerable effect on the
dynamic behavior of closed-loop control systems and can cause oscillations and even lead to instability [1].
According to Gao et al. [2], over 90% of the physical systems in process control can be modelled by first-
order + time-delay (TD) and second-order + TD (about 30%) models with tolerable accuracy.

Open-loop unstable delay systems are popular in the processing industry. Compared with stable open-
loop systems, open-loop unstable delay systems pose a relatively challenging problem for controller design.
In an unstable delay system, the presence of an unstable pole imposes a minimum control performance limit,
which could yield long settling time and excessive overshoot.

Although the proportional–integral–derivative (PID) controller is an antiquated design, numerous
applications for the control of industrial process prefer and widely use it. This is because of its simple
structure, satisfactory control effect, and acceptable robustness [3]. Over the past six decades, numerous
techniques have been used to calculate the parameters PID controller of systems with long TD. The use
of PID controllers to stabilize uncertain systems with or without delay has received a lot of attention.

A generalization of the Hermite–Biehler theorem (HBT) is one of the well-known methods for
determining the stabilizing PID controller region [4]. To define all stabilizing regions of PID parameters,
this approach necessitates sweeping over the proportional gain. An extended theorem, which was used to
locate the PID stabilizing parameter regions, used the HBT as its basis. Farkh et al. [5] have derived the
complete stabilizing set of the classical proportional–integral (PI) and PID controller parameter regions
for unstable second-order TD plants.

Ma et al. [6] presented explicit lower bounds on the delay margin of second-order unstable delay systems
using PID controller. In Wang et al. [7], a multiple dominant pole placement for an unstable delay system,
was used to build a PID controller with a lead/lag filter. An internal model control-PID controller was
proposed for an unstable second-order TD system, which shows the characteristics of inverse response
[8]. PID controller tuning using genetic algorithm (GA) for stable and unstable process was presented in
Ayas et al. [9]. A particle swarm optimization (PSO) algorithm was proposed to tune and retune the
parameter of PID controller for a class of unstable TD systems [10].

Over the last few decades, there has been a lot of interest in the stable stability of uncertain systems. For
the stability analysis of interval systems, the Kharitonov theorem (KT) is well-known. The performance and
stability of plants that are exposed to uncertainties are defined as robustness.

The edge theorem in Barmish et al. [11] and the box theorem in Kwon et al. [1] were based on KT and
suggested that the set of transfer functions generated by varying its perturbed coefficients in the defined
ranges corresponds to a box in the parameter space and is referred to as "interval plants."

Generalized KT (GKT) states that a controller robustly stabilizes an interval system if it stabilizes a
specified set of line segments in the plant parameter space [12,13].

Researchers have expanded the GKT and edge theorem to determine the robust stability of a TD system
subjected to parametric uncertainty in the case of quasi-polynomials [14,15].

Relevant results relating to the stabilization of interval systems have been acquired from previous
studies. In Barmish et al. [16], it was proven that a first-order controller stabilized an interval plant if and
only if the controller stabilized the 16 plants of the Kharitonov plant family at the same time.

A parameter plan based on KT and the gain phase margin tester method was used in Huang et al. [17] to
obtain the nonconstructive region of a PID controller, which stabilizes the entire interval plants.
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The stability boundary locus can be used to find the stabilizing region of PI parameters for the regulation
of a plant with unknown parameters, according to Tan et al. [18].

Patre et al. [19] suggested a two-degrees-of-freedom design technique for interval process plants to
ensure robust stability and satisfactory performance.

To stabilize a delay-free interval plant family, the HBT was employed in Refs. [20,21] to formulate
the proportional, PI, and PID controllers. The stabilizing problem of a PI/PID controller was studied for a
first-order delay system and then used to find both PI and PID gains that stabilize an interval first-order
delay system [22].

We propose in this paper to extend the work presented in Farkh et al. [23] by determining the set of all PI
gains that stabilize an unstable uncertain second-order delay system with coefficients that are perturbed
within prescribed ranges. Applying GAs and PSO algorithms in the robust stable region using integral
performance criteria, the optimal PI controller and optimal system parameters are then calculated.

2 Problem Formulation

A tool to design a robust PI controller for an unstable second-order system with bounded uncertain
parameters and bounded uncertain TD is proposed in this paper.

We consider the plant family F sð Þ ¼ Ke�Ls

s2þa1sþa0
, where K > 0, L > 0, a0 < 0, and a1 > 0 and K 2 K;K

� �
,

a1 2 a1; a1
� �

, a0 2 a0; a0
� �

and L 2 L;L
� �

.

By combining robust stabilization results obtained earlier [4], which are presented in Section 5, and the
approach developed in Section 3, we designed a robust PI controller that stabilizes the uncertain plant family
F sð Þ. In Section 4, we show that stabilizing a plant family, where K 2 K;K

� �
, a1 2 a1; a1

� �
, a0 2 a0; a0

� �
,

and L ¼ �L ¼ Lmax, is enough to compute a robust stability region in the parametric space of the PI controller.

3 PI Controller Design for Unstable Second-Order Delay System

In Farkh et al. [5], all stabilizing PI controllers’ computation for an unstable delay system was
considered.

3.1 Theorem 1 [5]

Under the assumptions, K > 0, L > 0, a0 < 0, and a1 > 0, the Kp values for which there is a solution for the
stabilization problem of the PI controller of unstable second-order delay system, verify

� a0
K

,Kp ,
1

K
a1

a
L
sin að Þ � cos að Þ a0 � a2

L2

� �� �

where a is the solution of the equation below.

tan að Þ ¼ a 2þa1Lð Þ
a2�a1L�a0L2ð Þ in the interval [0,π].

The range of Ki values is given by 0,Ki , Min
j¼1;3;5…

fajg

where aj ¼ aðzjÞ ¼ zj
KL sinðzjÞða0– z2j

L2Þ þ a1
zj
L cosðzjÞ

h i
and zj; j ¼ 1; 3; 5; . . . are the roots, arranged in ascending order of magnitude, as follows.

di zð Þ ¼ z

L
KKp þ cos zð Þ a0 � z2

L2

� �
� a1

z

L
sin zð Þ

� �
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3.2 Example

Consider the following transfer function for a second-order delay system:

F sð Þ ¼ 2e�0:5s

�0:5þ 5sþ s2

To determine the values of Kp, we search for a in interval 0;p½ � satisfying: tan að Þ ¼
4:5a

a2�2:625ð Þ ) a ¼ 1:5617.

For Kp, the range is given by 0:25,Kp, 7:85.

We notice that

0:25,Kp, 6:2 ) Ki. 0
6:2, Kp , 7:85 ) Ki , 0

�

Consequently, we choose the final range of Kp as 0.25 < Kp < 6.2

The system stability region is obtained in Kp;Ki

� �
; Fig. 1 presents the plane.

4 Design of a Robust Controller for an Unstable System with an Uncertain Delay

The problem of stabilizing an unstable second-order system with TD is presented in this section., where
the parameters K, a1, and a0 are known and the TD is unknown but lies inside a known interval.

We consider the following plant family: F1 sð Þ ¼ Ke�Ls

s2þa1sþa0
, where L 2 L; L

� �
, K, a1, and a0 are known.

4.1 Lemma 1 [4]

Consider the system with a transfer function F1 sð Þ. If a given PI controller stabilizes the delay-free
system and the system L ¼ �L. 0, then the same PI controller stabilizes the system 8L 2 ½0; �L�.

-1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1
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2

Kp

K
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L = 1

L = 1.5

L = 3

L = 2

Figure 1: Sets of stabilizing PI controllers for Example 1
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4.2 Example

Consider the plant family F1 sð Þ ¼ 1:9e�Ls

s2þ4s�0:4, where L 2 0:1; 0:5½ � seconds. The set of all stabilizing PI

controllers for different TD values can be found using the algorithm presented in Farkh et al. [5].

Fig. 2 represents these sets for L ¼ 1; 1:5; 2; 3. The intersection of all these sets is the set corresponding
to L = 3 (dashed area).

Thus, any PI controller from this set will stabilize the entire family of plants described by F1 sð Þ. In view
of Lemma 1 because the closed-loop system is stable for �L, it is also stable for L 2 L; L

� �
.

This result is used to simplify the problem stabilization of the family plant F sð Þ to design a robust
controller such that the following parameters verify K 2 K;K

� �
, a1 2 a1; a1

� �
, a0 2 a0; a0

� �
, and L ¼ �L.

The delay is set to �L for the rest of this article, which is the established upper bound of the TD.

5 Robust Controller Design for Interval System with Fixed TD

The procedure for finding a robust stabilization of an unstable delay system belonging to a linear interval
plant is discussed in this section, where the TD, L, is a known constant.

Consider the transfer function below:

F sð Þ ¼ F1 sð Þ
F2 sð Þ e

�Ls (1)

where F1 sð Þ and F2 sð Þ are linear interval polynomials. Our goal is to find a robust controller C sð Þ ¼ C1 sð Þ
C2 sð Þwith

fixed polynomials C1 sð Þ and C2 sð Þ to guarantee the system’s robust stability.

To compute all the stabilizing controller parameters for interval systems with TDs, we can use the GKT
expanded for quasi-polynomials [13]. Before stating the GKT, we study some results from the field of robust
parametric control.
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Figure 2: Kp;Ki

� �
Controller stability region for unstable second-order delay system
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Consider the following family of quasi-polynomials D sð Þ:
D sð Þ ¼ F1 sð ÞC1 sð Þ þ F2 sð ÞC2 sð Þ (2)

−F sð Þ ¼ F1 sð Þ;F2 sð Þð Þ is a fixed two-tuple of real interval polynomials, where each Fi sð Þ is a linear
interval polynomial characterized by the intervals Fj;i as follows:

Fj;i 2 Fj;i;Fj;i

� �
; i ¼ 1; 2; j ¼ 0; 1; . . . ; ni: (3)

Fi sð Þ is a real independent interval polynomial described as:

Fi sð Þ ¼ f0;i þ f1;isþ . . .þ fni;is
ni ; i ¼ 1; 2: (4)

− C sð Þ ¼ C1 sð Þ;C2 sð Þð Þ is a fixed two-tuple of complex quasi-polynomials in the following form:

Ci sð Þ ¼ C0
i sð Þ þ C1

i sð Þe�sL1i þ C2
i sð Þe�sL2i þ . . . (5)

where Cj
i sð Þ are complex polynomials satisfying the following condition:

degree C0
i ðsÞ

� �
. degree Cj

iðsÞ
� �

; j 6¼ 0 (6)

In this sudy, we use Ci sð Þ with a single delay as: Ci sð Þ ¼ C0
i sð Þ þ C1

i sð Þe�sLi .

The stability problem (2) can be solved with the GKT by constructing an extremal set of line segments
DE sð Þ � D sð Þ, where the stability of DE sð Þ implies the stability of D sð Þ, according to Bhattacharyya et al. [2].

DE sð Þ will be produced by constructing an extremal subset FE sð Þ, which is derived from the Kharitonov
polynomials of Fi sð Þ.

5.1 Theorem 2 [13]

Let C ¼ C1 sð Þ;C2 sð Þð Þ be a two-tuple of complex quasi-polynomials verifying condition (6) above, and
let F ¼ F1 sð Þ;F2 sð Þð Þ be a polynomial with independent real intervals : the entire family F sð Þ is stabilized
C sð Þ if and only if C stabilizes every two-tuple segment in FE sð Þ. Equivalently, D sð Þ is stable if and only if
DE sð Þ is stable.

5.2 Corollary

The linear system F sð Þ is stabilized by C sð Þ, if and only if the controller stabilizes the extremal transfer
function FE sð Þ. This is discussed in detail later.

To use the GKT, we must first define the most extremal set of line segments DE sð Þ. Eight Kharitonov
vertex equations are derived from the segment polynomials of F1 sð Þ and F2 sð Þ.They are expressed by
Refs. [13,15]:

Km
1 sð Þ;m ¼ 1; 2; 3; 4 for F1ðsÞ

and

Km
2 sð Þ;m ¼ 1; 2; 3; 4 for F2ðsÞ

where:

K1
i sð Þ ¼ f

i;0
þ f i;1sþ f i;2s

2 þ f i;3s
3 þ . . .

K2
i sð Þ ¼ f

i;0
þ f i;1sþ f i;2s

2 þ f
i;3
s3 þ . . .

K3
i sð Þ ¼ f i;0 þ f

1
sþ f

i;2
s2 þ f i;3s

3 þ . . .

K4
i sð Þ ¼ fi;0 þ f i;1sþ f

i;2
s2 þ f

i;3
s3 þ . . .

(7)
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The extremal subset Fi
E sð Þ; i ¼ 1; 2; consists of:

F1
E sð Þ ¼ �Kl

1 sð Þþ 1��ð ÞKk
1 sð Þ

Kh
2 sð Þ

F2
E sð Þ ¼ Kh

1 sð Þ
�Kl

2 sð Þþ 1��ð ÞKk
2 sð Þ

(8)

where � 2 0; 1½ �, h ¼ 1; 2; 3; 4 and [l,k] = [1,2] [1,3] [2,4] [3,4].

The number of extremal equations is i4ið Þ, where i denotes the number of perturbed polynomials and
l; k½ � present the connection points to make Kharitonov polytope �Kl

i sð Þ þ 1� �ð ÞKk
i sð Þ.

Some of the subset equations may be the same; hence, the extremal subset is described as [13]:

FE sð Þ ¼ F1
E sð Þ [ F2

E sð Þ (9)

The extremal subset of line segments (or generalized Kharitonov segment polynomials) is [2]:

DE sð Þ ¼ D1
E sð Þ [ D2

E sð Þ ¼ ,C sð Þ;F sð Þ. : F sð Þ 2 FE sð Þf g (10)

where

,C sð Þ;F sð Þ. ¼ C1 sð ÞF1 sð Þ þ C2 sð ÞF2 sð Þ þ . . .þ Cm sð ÞFm sð Þ (11)

With the knowledge that DE sð Þ � D sð Þ, If the linear interval system's polynomials are all stable, the
system with perturbed parameters would be as well.

The robust parametric approach control technique is an efficient control design technique, as shown by
the previous findings.

For the synthesis of controllers that simultaneously stabilize a given uncertain TD system, the following
will be used.

6 Robust Stabilization for Uncertain Unstable Second-Order Delay System

The problem of characterizing all PI controllers that stabilize an unstable second-order interval plant
with TD is addressed in this section.

F sð Þ ¼ Ke�Ls

a0þa1sþs2, where K 2 K;K
� �

, a0 2 a0; a0
� �

, a1 2 a1; a1
� �

and fixed TD, L.

The controller is given by:

C sð Þ ¼ Kp þ Ki

s

� �
:

Using the GKT for quasi-polynomials, we can obtain all PI gains that stabilize F sð Þ, we will use the new
transfer function F sð Þ as: F sð Þ ¼ F1 sð Þ

F2 sð Þ ¼ Ke�Ls

a0þa1sþs2 and the new compensator as follows:

C sð Þ ¼ C1 sð Þ
C2 sð Þ ¼ Kp þ Ki

s

� �
e�Ls:

The family of closed-loop characteristic quasi-polynomials D s;Kp;Ki

� �
becomes

D s;Kp;Ki

� � ¼ C1 sð ÞF1 sð Þ þ C2 sð ÞF2 sð Þ
¼ K Ki þ Kps

� �
e�Ls þ a0 þ a1sþ s2ð Þs (12)

The problem of determining all stabilizing PI controllers is to find all the values of Kp and Ki for which
the entire family of closed-loop characteristic quasi-polynomials is stable.
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Let Kj
1 sð Þ and Kj

2 sð Þ; j ¼ 1; 2; 3; 4 be the Kharitonov polynomials corresponding to F1 sð Þ ¼ K and
F2 sð Þ ¼ a0 þ a1sþ s2, respectively.

where: K 2 K;K
� �

, a0 2 a0; a0
� �

, and a1 2 a1; a1
� �

.

K1
1 sð Þ ¼ K2

1 sð Þ ¼ K

K3
1 sð Þ ¼ K4

1 sð Þ ¼ K

(
and

K1
2 sð Þ ¼ a0 þ a1sþ s2

K2
2 sð Þ ¼ a0 þ a1sþ s2

K3
2 sð Þ ¼ a0 þ a1sþ s2

K4
2 sð Þ ¼ a0 þ a1sþ s2

8>><
>>:

Let FE s; �ð Þ denote the family of 32 plant segments:

FE s; �ð Þ ¼

Flkh s; �ð Þ=
Flkh s; �ð Þ ¼ �Kl

1 sð Þþ 1��ð ÞKk
1 sð Þ

Kh
2 sð Þ

[
Flkh s; �ð Þ ¼ Kh

1 sð Þ
�Kl

2 sð Þþ 1��ð ÞKk
2 sð Þ

� 2 0; 1½ �; h ¼ 1; 2; 3; 4;
l; k½ � ¼ 1; 2½ �; 1; 3½ �; 2; 4½ �; 3; 4½ �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(13)

Then, FE s; �ð Þ it consists of the following plant segments, where the 32 extremal plants in Eq. (13) are
reduced to 20:

FE s; �ð Þ ¼

F1 ¼ K
a0þa1sþs2 ;F2 ¼ K

a0þa1sþs2

F3 ¼ K
a0þa1sþs2 ;F4 ¼ K

a0þa1sþs2

F5 ¼ K
a0þa1sþs2 ;F6 ¼ K

a0þa1sþs2

F7 ¼ K
a0þa1sþs2 ;F8 ¼ K

a0þa1sþs2

F9 ¼ K�� K�Kð Þ
a0þa1sþs2 ;F10 ¼ K�� K�Kð Þ

a0þa1sþs2

F11 ¼ K�� K�Kð Þ
a0þa1sþs2 ;F12 ¼ K�� K�Kð Þ

a0þa1sþs2

[
F13 ¼ K

a0þ a1�� a1�a1ð Þð Þsþs2
; F14 ¼ K

a0þ a1�� a1�a1ð Þð Þsþs2

F15 ¼ K

a0þ� a0�a0ð Þþa1sþs2
; F16 ¼ K

a0þ� a0�a0ð Þþa1sþs2

F17 ¼ K

a0þ� a0�a1ð Þþa1sþs2
;F18 ¼ K

a0þ� a0�a1ð Þþa1sþs2
;

F19 ¼ F4 ¼ K
a0þa1sþs2 ;F20 ¼ F8 ¼ K

a0þa1sþs2

� 2 0; 1½ �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(14)

The closed-loop characteristic quasi-polynomials for each of these 32 plant segments Flkh s; �ð Þ are
denoted by dlkhðs;Kp;Ki; �Þ and are defined as:

dlkh s; �ð Þ ¼ sNum Flkh s; �ð Þð Þ þ Ki þ Kps
� �

den Flkh s; �ð Þð Þ (15)

where:

Num Flkh s; �ð Þð Þ ¼ �Kl
1 sð Þ þ 1� �ð ÞKk

1 sð Þ [ Kh
1 sð Þ

den Flkh s; �ð Þð Þ ¼ Kh
2 sð Þ [ �Kl

2 sð Þ þ 1� �ð ÞKk
2 sð Þ

�
(16)

We posit the following theorem on using a PI controller to stabilize a second-order interval plant with TD.
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6.1 Theorem 3

Let F sð Þ be an unstable second-order interval system with uncertain TD; a PI controller stabilizes the
entire family F sð Þ if and only if each Flkh s; �ð Þ 2 FE s; �ð Þ is stabilized by the same PI controller.

6.2 Proof

According to Theorem 3, the entire family D s;Kp;Ki

� �
is stable if and only if dlkh s;Kp;Ki; �

� �
are all

stable. Therefore, a PI controller will stabilize the entire family F sð Þ if and only if every element of
FE s; �ð Þis simultaneously stabilized by the same PI controller.

To obtain the all PI controllers that stabilize the interval plant F sð Þ by applying this method to each
Flkh s; �ð Þ belonging FE s; �ð Þ, we use the results in Farkh et al. [5].

6.3 Example

We consider the plant family F sð Þ ¼ Ke�Ls

a0þa1sþs2 where K 2 1:9; 2:2½ �, a0 2 �0:6;�0:4½ �, a1 2 4; 6½ � and
L 2 0:1; 0:5½ �.

The entire family FE s; �ð Þ is given as follows:

FE s; �ð Þ ¼

Fij s; �ð Þ=
F s; �ð Þ ¼ �lKl

1 sð Þþ 1��lð ÞKk
1 sð Þ

Kh
2 sð Þ

[
F s; �ð Þ ¼ Kh

1 sð Þ
�mKl

2 sð Þþ 1��mð ÞKk
2 sð Þ

� 2 0; 1½ �; h ¼ 1; 2; 3; 4;
l; k½ � ¼ 1; 2½ �; 1; 3½ �; 2; 4½ �; 3; 4½ �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(17)

According to Eq. (14), we obtain

FE s; �ð Þ ¼

F1 ¼ 1:9

�0:6þ 4sþ s2
;F2 ¼ 1:9

�0:6þ 6sþ s2

F3 ¼ 1:9

�0:4þ 4sþ s2
;F4 ¼ 1:9

�0:4þ 6sþ s2

F5 ¼ 2:2

�0:6þ 4sþ s2
;F6 ¼ 2:2

�0:6þ 6sþ s2

F7 ¼ 2:2

�0:4þ 4sþ s2
;F8 ¼ 2:2

�0:4þ 6sþ s2

F9 ¼ 2:2� 0:3�

�0:6þ 4sþ s2
;F10 ¼ 2:2� 0:3�

�0:6þ 6sþ s2

F11 ¼ 2:2� 0:3�

�0:4þ 4sþ s2
;F12 ¼ 2:2� 0:3�

�0:4þ 6sþ s2

[
F13 ¼ 1:9

�0:6þ 6� 2�ð Þsþ s2
; F14 ¼ 2:2

�0:6þ 6� 2�ð Þsþ s2

F15 ¼ 1:9

�0:4þ 0:2�þ 4sþ s2
; F16 ¼ 2:2

�0:4þ 0:2�þ 4sþ s2

F17 ¼ 1:9

�0:4þ 0:2�þ 6sþ s2
;F18 ¼ 2:2

�0:4þ 0:2�þ 6sþ s2
;

F19 ¼ G4 ¼ 1:9

�0:4þ 6sþ s2
;F20 ¼ F8 ¼ 2:2

�0:6þ 6sþ s2
� 2 0; 1½ �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(18)

We remark that from F9 to F18, we have an infinity of transfer function’s sets due to their dependence on �.
To reduce this problem’s complexity, we set � to 0, 0.33, 0.66, and 1 as different values of � 2 0; 1½ � for F9 to F12.
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We set � to 0, 0.25, 0.5, 0.75, and 1 as different values of � 2 0; 1½ � for F13 to F18.

Therefore, we obtain

Fh 1 ¼ Fh1 s; � ¼ 0ð Þ
Fh 2 ¼ Fh s; � ¼ 0:33ð Þ
Fh 3 ¼ Fh s; � ¼ 0:66ð Þ
Fh 4 ¼ Fh s; � ¼ 1ð Þ

8>><
>>: (19)

We define Fk p ¼ Fh s; �p

� �
, where �p 2 0; 0:25; 0:5; 0:75; 1f g for k ¼ 13; ::; 18 and p ¼ 1; . . . ; 5.

We obtain

Fh 1 ¼ Fh1 s; � ¼ 0ð Þ
Fh 2 ¼ Fh s; � ¼ 0:25ð Þ
Fh 3 ¼ Fh s; � ¼ 0:5ð Þ
Fh 4 ¼ Fh s; � ¼ 0:75ð Þ
Fh 5 ¼ Fh s; � ¼ 0:75ð Þ

8>>>><
>>>>:

(20)

The following figure (Fig. 3) presents the stabilizing Kp;Ki

� �
values for the entire family F sð Þ by

invoking the result presented in Farkh et al. [5], which applies to each transfer function belonging to FE s; �ð Þ.

An overlapped area of the boundaries is the intersection of these stability regions, which constitutes the
entire feasible controller sets that stabilize the entire family F sð Þ (Fig. 4).

7 Optimization Controller Design

7.1 GAs optimization

GAs are effective stochastic search methods based on natural selection and evolutionary genetics
principles.

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Kp

K
i

Figure 3: The stabilizing set of Kp;Ki

� �
for F(s)
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GAs sustain a community of individuals. Individuals are adapted to a particular setting by changing the
discovery, crossover, and mutation periods. People benefit from the environment's valuable knowledge
(fitness), and the selection mechanism ensures that people of higher quality are preserved.

As a result, the population's overall output increases during the development cycle, ideally
contributing to an optimal solution [24]. Because of its strong capacity for global optimization, GA is
used in a variety of fields.

7.2 PSO

Particle swarm optimization (PSO) [25] is an artificial intelligence-based technique for maximizing and
minimizing problems.

It was inspired by the social behavior of animals, such as birds flocking and fish schooling. It starts with
a random set of solutions (known as particles). Each particle has its positions (value of variables) and
velocities. It improves the initial solutions by updating velocities and positions.

Fig. 5 illustrates the theory of PSO and GA optimization for control problems.
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Figure 4: Final stability region in Kp;Ki

� �
the plan for interval plant

Figure 5: Optimization of controller and system parameters
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In this case, it's in our best interests to find the best system and controller parameters in the robust
stability area by combining one or more of the following criteria:, ISE; IAE; ITAE and ITSE defined by
the following relationships:

ISE ¼
Xtmax

0

e tð Þ2; IAE ¼
Xtmax

0

e tð Þj j; ITAE ¼
Xtmax

0

t e tð Þj j; ITSE ¼
Xtmax

0

te tð Þ2

7.3 Example

We consider the uncertain, unstable delay system F sð Þ ¼ Ke�Ls

a0þa1sþs2 where K 2 1:9; 2:2½ �,
a0 2 �0:6;�0:4½ �, a1 2 4; 6½ � and L 2 0:1; 0:5½ �.

The robust PI stability region is given in Fig. 4, from which Kp they Ki are choosing between
Kp 2 0:2727; 5:974½ � and Ki 2 0; 1:9½ �.

The following table presents the optimum PI and system parameters supplied by GA and PSO.

Using the values in Tab. 1, Figs. 6 and 7 show the closed-loop system's step responses.

The time parameter specifications are given in Tab. 2.

Table 1: Optimum PI and system parameters

criteria ISE IAE ITAE ITSE

GA K 2.035 2.035 2.065 1.49

a0 −0.51 − 0.49 −0.49 −0.51

a1 4.9 4.9 4.9 4.66

L 0.5 0.5 0.5 0.5

Kp 3.4439 3.51 0.99 1.49

Ki 0.88 0.72 0.77 0.72

PSO K 2.1588 2.1464 1.962 2.0738

a0 −0.552 −0.471 −0.451 −0.435

a1 4.3872 4.7618 5.994 4.327

L 0.5 0.5 0.5 0.5

Kp 3.6745 4.4886 3.427 3.3769

Ki 1.4 0.48 0.877 1.4161
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Figure 6: Step responses with GA-PI controllers

Figure 7: Step responses with PSO-PI controllers

Table 2: Time-domain specifications

ISE IAE ITAE ITSE

GA Rise Time 0.972 1.007 0.949 0.56

Settling Time 34.41 63.806 64.500 7.203

Peak time 3.966 3.809 2.110 2.133

Overshoot 58.84 98.948 111.087 71.922

PSO Rise Time 0.485 0.5587 0.6963 0.5262

Settling Time 75.99 93.376 8.89 31.48

Peak time 2.11 1.9 1.6139 2.2

Overshoot 133.1 88.375 61.3855 120.045
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8 Conclusions

The HBT and GKT can be applied promptly to define the robust PI stability area for the control of
uncertain and unstable second-order TD systems. The optimal system and optimal PI control parameters
were computed using the integral performance criterion based on the optimization process's error.
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