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Abstract: Fractal strategy is an important tool in manufacturing proposals, includ-
ing computer design, conserving, power supplies and decorations. In this work, a
parametric programming, analysis is proposed to mitigate an optimization pro-
blem. By employing a fractal difference equation of the spread functions (local
fractional calculus operator) in linear programming, we aim to analyze the
restraints and the objective function. This work proposes a new technique of frac-
tal fuzzy linear programming (FFLP) model based on the symmetric triangular
fuzzy number. The parameter fuzzy number is selected from the fractal power
of the difference equation. Note that this number indicates the fractal parameter,
denoting by A € [0, 1]. Accordingly, we specify the objective function to the frac-
tional case, utilizing the fractal difference equation. We apply the suggested model
in an application under the oil market. Based on the fractal fuzzy set theory, the
fuzzy demand, transportations, management, inventory and buying cost are
explained and formulated in a unique fractal fuzzy linear programming model.
This model is presented to obtain a maximal profit production approach with
an evaluation. The costs indicate that the proposed model can bring valued solu-
tions for developing profit-effective oil refinery methods in a fuzzy fractal situa-
tion. Some examples are illustrated in the sequel.

Keywords: Parametric fuzzy; linear programming; objective function; fractal;
fractional calculus; fractal difference equation

1 Introduction

The idea of a fuzzy linear programming (FLP) problem is the most important method for decision
making [1]. In 1986, Carlsson and Korhonen suggested the parametric method of fuzzy linear
programming [2]. They presented a parametric model to get the optimal solution. The parameter space is
the environment of probable constraint values that clarifies certain mathematical modeling, which could
typically be a subset of finite-dimensional Euclidean space. Normally, the parameters are suggested in a
formula (or function) in which the condition is a domain of the function. The benefit of the parameter
spaces is its capability to create profitable yet flexible strategies. The mathematical representations offer a
massive variety of procedures to assess the system.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.


mailto:robaid@psu.edu.sa
http://dx.doi.org/10.32604/iasc.2021.018011
http://dx.doi.org/10.32604/iasc.2021.018011

1074 TASC, 2021, vol.30, no.3

Recently, researchers have explored the FLP by utilizing the parametric analysis and parametric spaces.
Payan et al. [3] presented a linearization development to determine the multi-objective linear fractional
programming problem with fuzzy parameters. Ghaznavi et al. [4] categorized the notion of parametric
analysis in FLP, though the objective function quantities are parameterized. Ebrahim [5] introduced a
training of parametric analysis to optimize the solution of many problems. He carried a PFLP to define
the optimal outcome and the fuzzy optimal detached values as a function of parameters, when the fuzzy
cost factors are unsettled alongside an original fuzzy cost function. Meanwhile, Hesamian et al. [6]
introduced a partial PFLP system for a similar study, which has been further improved by Hesamian
et al. [7]. Recently, Zaire et al. [8] formulated a hybrid system concerning non-parametric system and
paramedic system simultaneously. Lastly, Singh et al. [9] proposed a parametric analysis of the usefulness
in a multi-objective linear programming problem to create the fuzzy set solution.

In this work, we utilize the concept of fractal derivative to present a parametric set for solving a fuzzy
linear system. A fractal derivative [10] is a subclass of the local fractional calculus for which the fractal
measurement strictly exceeds the topological measurement. This study suggests a new system of fractal
fuzzy linear programming (FFLP) model based on the symmetric triangular fuzzy number and,
consequently, the objective function. We employ the suggested model in the oil market. Based on the
parametric fuzzy set theory, the fuzzy demand and cost have been clarified, and an FFLP model has been
developed to obtain a maximal profit production approach. Overall, it is concluded that the model brings
valuable information for developing oil refinery methods in a parametric fuzzy situation.

2 The Fuzzy Processing

One or more of the following uncertainties can occur in the refinery industry: the cost of oils alternates
depending on the international oil reserve. In such cases, the factors that may increase the oil price include
global political issues, military pressure, periodic demand, and/or cold (or hot) issues. Similarly,
environmental security problems have tempted dogmatic discussions on valuing rules for oil, which has
led to additional uncertainties [11-15]. Consequently, the manufacturing price is diverse, as well as the
unit inventory price. Diverse unit transportation price (such as the oil transporter, whether trains or
tankers) is utilized to provide oil from the port to the refinery to filling locations. These transporters also
face a number of uncertainties. Finally, the management price is the amount of the electricity of the
factories, conservation, taxation, and damage across the different stages of oil production, all of which
imply a fuzzy cost. Based on the above issues, we present a fuzzy system describing each of the uncertainties.

2.1 Parametric Spaces

Here, we consider a fuzzy demand A/ of the manufacture p at the month 7 as symmetric triangle, fuzzy-
valued by the following: (see Fig. 1)

A7 ={(d,n(d)): n(d) = (d, (1 = da)d, (1 + 04)d){'} )

where d indicates the shrinking middle point (a halfway point), Ld’:= (1 — ,)d represents to the left side of
d, and Rd/:= (1 4 d,)d indicates the right side of d.

04 denotes the spread function formulating as a variance function in terms of selling price (the impulse
response point):
04(C7) = a1 + axCf

(for some constants a; and a, in R). Moreover, the symbol 7 is equivalent to n,(d) = (d,Ld’,Rd’)
representing to the membership grade of the element d in the set A? and is known as the membership
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function. By the definition of the spread function, we may describe any value in the above space as
follows:

o — Ld’ Rd! — o
n(a) = {0, ngfd_Ld{,,Ld;ka < dm,d<a < Rdf
h
0
(1-8")d d (1+3Y d

Figure 1: The symmetric triangle fractal fuzzy value of A/

We proceed to define another item in the parametric space, which is the fuzzy buying cost,
as follows:

BC = {(b,n(0)):n(b) = (b,(1 = &,)b, 1 + 6,)0)}, 2
where b is the middle price of the type oil 7, Lb] := (1 — 6,)b is the left part of b and Rb} := (1 + &, )b is the

right part to b of the type oil 7 at month z. Now, we introduce the uncertain production price as follows:

PC, = {(p,n(p)):n(p) = (9, (1 = d,)p, (1 +6,)p) }, 3)

where @ is the rough middle value, L}, := (1 — d,)p is the left part of p and Rp}, := (1 4 J,)p is the
right part to p of the type oil p at month ¢ from refinery ¢. Similarly, we define the rest of parametric
spaces, fuzzy inventory price, fuzzy transportation and fuzzy management value, respectively
as follows:

1C7, = {(1,m\(1)):n(1) = (1, (1 = 0,)1, (1 + 0,)1)}, “4)
TCl, = {(r,m\(2)):n(z) = (z,(1 = 0:)7, (1 + d.)1)}, 6))
MCP, = {(umy():n(u) = (1, (1= 6,)p, (14 0,)p) }- (6)

2.2 Local Fractional Difference Operator

Yang presented the local fractional derivative (fractal) of the function g(x) of order (0 < A< 1) at the fixed
value xj as [10]:
D(g(x) — g(x0))

(x —xo)A

T g(x) = limy_y, , (7

where D*(g(x) — g(x0)) ~ (A + 1)D(g(x) — g(xp))and the forward difference D formulated as
D(g(x) — g(x0)) = g(x) — g(x0), and T represents the gamma function I'(n + 1) = n!.
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Now, by using the concept of a fractal, we introduce a generalization of the spread function
04(CY) = a; + a,C! as in the following fractal difference equation

53(Cl): = DN3a(Cf) — 0a(Cp)) ~ T(A+ 1)D(34(C/) — ar) = T(A +1)(84(CY) — a1)

8
=al(A+ 1)C7: =AM+ 1)C7, ®

where a; = A, 94(C/) >0,0,4(Ch) = a; and the fractal A € (0,1). Note that if A € (0,1), then we have
I'(A+1) € (0,1). In this place, we note that A plays a critical role in improving the classical system
when A= 1 (see [I1]). In our investigation, we suppose that A = 0.5 to get a good result for
maximization. We shall use the fractal difference operator 52 in all spaces given in Eqs. (1)—(6). For
example, a fuzzy fractal demand A? of the manufacture p at the month ¢ becomes

A = {(d,ny(d)) : n\(d) = (d, (1 = 3))d, (1 + 33)d)"} )

where d indicates the shriveled middle point (i.e., halfway pomt) Ld’ = (1— 5A)d represents to the left side
of d and Rd’ := (1 + (5A)d indicates the right side of d. 5d is given in Eq. (8). Similarly, for the other

parametric spaces BC/, PC/ ,,IC{,, TC/, and MC} .

3 Mathematical Modeling System

Under a fuzzy economic situation and constraints on manufacturing ability, inventory and operations, we
propose a mathematical model to sustain a master buying and manufacturing proposal such that when the
fluctuating demand is achieved, the maximum gain can be attained at an acceptable flat value.

3.1 Objective Function
The aim is to maximize the II, which is formulated by

Maximize Y "1(Tl, — BC, — PC, — IC, — IC, — MC,), (10)
t

I, = (ZTZT@@,,C?),

- 5
BC, =Y 1(BCLy) = ET((b, (1=, (1+ 5@)b)j.x3)
y 3
PC, = Z ZT (Pc?,. %:T%:T((p, (1= (1 +52>p);@gvt>
16 = YISk a0) = D3 1((1 (1= 8 (14 00)0)] 12
o - G
¢ = >3 u(rct, 2) = ST 01((5 (1= )z, (14 ))7)7 T2,
L ® p
MC, = ZTZT (Mc,,.00,) = ZTZT((M, (1-00)u (1+0)) ) @gt>,
where y/,0%,,15,,T?, are Var1ab1:s |
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3.2 Constraint Inequalities
We have the following list of constraints inequalities:

* Invention of manufacturing in a month plus the previous manufacturing inventory must be larger than
or equal to the fluctuating demand (variation demand) for the manufacturing. Therefore, we suggest the
average by using \ as follows:

A
(éZ?(@P +15, 1>1/A> > (d, (1= 83)d, (14 8})d);, (11)

¢
(t=1,...., T, € (0,1),p=1,...,P);

* The invention of every manufacturing at all refineries should be no less than the economical
manufacture quantity of every manufacture at all refineries. Consequently, we obtain the following
inequality

e, >M), (t=1,....,T,p=1,...,P,p=1,...,0); (12)

» The manufacturing at all refineries is controlled by the maximum production capability. Thus, we
conclude the following inequality

e, <M, (t=1,....,T,p=1,...,P,p=1,...,0); (13)
* The quantity of every category of oil produced should be greater than or equal to the minimum monthly
buying amount of every category of oil by agreements. Hence, we obtain the next inequality

* The total sum of oil purchases rendering to agreements is at least a positive fraction f (balance
parameter) of the total sum of basic oils by the refinery manufacturing. Then as a conclusion, we
have the constrained inequality

NB > Y =1, Tt =1, T); (15)
J J

* The total of manufactured material transported from a refinery by any type of transportation (trains,
pipelines or trucks) is less than or equal to the maximum permissible amount of the transportation

T, <TG (t=1,....T,p=1,...,Pp=1,.., ) (16)

* The overall sum of manufactured material transported from refineries ought to be less than or equal to
the refineries’ overall manufacturing output. Hence, we get the inequality

Z?T" <Z 00, (t=1,....,T,p=1,...,Pp=1,...,0); (17)

* The overall sum of manufactured material transported from refineries has to be greater than or equal to
the fluctuating (changing) demand for the manufacturing process. Connected to what has been
mentioned above, we have the following constrain

Z? > (d, (1=8))d, (1+0))d)!,t=1,....,T,X€ (0,1),p=1,....,Pp=1,...,®); (18)
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¢ Overall, the variables must be non-negative
1,900,010, T0,>0,)=1,....J,p=1,...,P; A€ (0,1),t=1,....T,p=1,...,9). (19)

4 The Technique
The following steps represent our technique, respectively:

4.1 The Result of the Objective Function

We aim to maximize the objective function A = ¢y, where ¢ indicates symmetric coefficients. By
utilizing the symmetric coefficient terms:

(c, (1 — 5?)0, (1 + 5?)0) = (¢, e, rac).

Based on the 3-D parametric space, we represent the objective function by the 3-multi-objective system,
as follows:

max\; = ciy; + ...+ capmaxy = Deyyy + ...+ DenymaxAs = raeiyy + - .o+ racalns (20)

where I, = 1 — 82 and r, = 1 + &.. The next step is to compute the upper and lower bound of A, (AY, AL) .
Accordingly, we have the following system for the lower bound

A =min(eryy + ...+ e Ay = min(Leryy + ...+ Deag,) NS = min(raciyy + ...+ racatn), 1)

and the following system for the upper bound

AV = max(cryy + ...+ cay) N = max(heryy + ...+ heay)AY = max(raciyy + ..o+ racatn). (22)
Following the membership function of A, we employ:

A_AL L U U
T AP SASAVLASA (23)

where we aim to maximize #,(A); or maximize y = min(y;,y,,7;) where n,(A) > y. This solves the
following issue:

WA(A) = {07A < AL

maxy, subjectto(ciyy + ...+ caxy) — 71 (A = AY) = Af(Deryy + .- 4 henry) — 12 (A — AS) >

. (@9
N (rer + .o+ mear,) — 13 (A —Ay) > Ay, >0,i=1,...,ny€0,1],
where ALk =1,2,3 is given in Eq. (21).
4.2 Transportation Problem
We formulate the multiple objective functions (A;, Ay, A3) based on Eq. (10) as follows:
ma.xAl — ZT(H[ _BC[ - PCt —]C, - TC; —MC;)
t
maxAy =Y 1T, — (1 = 62)(BC, + PC, + IC, + TC, — MC,)) (25)

t

maxAs = 1T, — (1 4 62)(BC, + PC, + IC, + TC, — MC,)),

t

where dc = a; + a>C, a1,a, € R. Next, by utilizing Mathematica 11.2, we compute the upper and lower
bounds. Accordingly, the system becomes as follows:
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> I, — BC, = PC, — IC, — TC, — MC,) — y,(AY — Af) > A

t

> ML — (1= 82)(BC, + PC, + IC, + TC, — MC,)) — 7y (A — AT) > AS (26)

t

S I — (14 82)(BC, + PC, +IC, + TC, — MCy)) — 75(AY — Af) > AL,

t

Next, we proceed to convert the fuzzy inequality constraints as it is implied by Egs. (11) and (18):

A
<¢Z L ’“) —d(I = (1= 6)); > d(I 3]\ € (01), 27)
and
D ITL —9d(1— (1= 53))] > d(I - 5y)!. (28)
®

Finally, we combine the multi-objective functions to maximize the following:

maxy, subjectto Z(H, — BC, — PC, —IC, — TC, — MC,) — v, (A? — Af)
t

> AN (I — (1 82) (B + PCy+ I, + TC, — MC,)) — 7, (AY — AY)

t

> A5 (T, — (14 62)(BC, + PC, + IC, + TC, — MC,)) — 3 (AY — AY)

t

A
>AL<@Z (©h, +17, 1“) —yd(1—(1=8))"

>d(1—6)f Y Th, —yd(1—(1-5)))0 >d(1 -5y €[0,1],
©

(29)

taking in account that inequalities (12)-(17) and (19) are all achieved.

5 Document of the Development

We applied the above mentioned model in the Iraqi Patrol Company (IPC). IPC is the major oil
manufacturing firm in Iraq. This company has one part located in Kirkuk city in northern Iraq, and
another in Basrah city in southern Iraq. While there are four sub-companies in the middle of Iraq:
Al-Doura, Al-Samawa, Al-Najaf and Al-Diwaniya (all have four yields) correspondingly. In this study,
we dealt with the primary materials, specifically Gasoline (Ga), Kerosene (Tk), Gas oil (Go) and Fuel oil
(Fo). The types of plain oils were limited to the four types mentioned above, and the planning and
manufacturing period was set to 7 = 12 months (between 2018 and 2019).

To ensure an acceptable oil source, the IPC must come to an agreement with industrial oil countries.
Relevant to our work, each group of basic oil j must be delivered in every month z. Fig. 2 depicts the
stages of our procedure.
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« Initial analysis of data
il| ¢ (see appendix A)

* Determine the fuzzy number &
=yl * (see Eq.(8))

* Determine the left and right values of the triangle
« Figure 3

e Calculate the objective function under constrainse

No Maximize the Yes —
‘ solution >( Stop )
/ \—/
| ///
\ /,/
L //
4

Figure 2: Steps to maximize the solution and find the best interval of Y

5.1 Data Analysis

To find the optimal solution, we collected our data as in Appendix A from its sources. Fig. 3 provides
symmetric triangle values based on the parameter values 0 << A <<1. The tables involve three values of
A :0.2,0.5,0.8; which implies three different values of y. It is evident that there is a relation between y
and A which can be recognized by the equation y = 1 — A = A. Each product has its own parameter fuzzy
value 1. For example, to determine (Aj, A, As) for the production costs, we search for the maximum
value in all refineries (which is 28.8 in the Al-Samawa refinery). Then by setting the three values
A:0.2,0.5,0.8, we determine the parametric fuzzy number of the product by using (8) as follows:

For A = 0.2, we have A\I'(1 +0.2) = 0.2 x 0.91 ~ 0.2 — A =1 — 0.2 = 0.8. Therefore, we obtain
two parametric fuzzy numbers corresponding to 28.8 : (23.04,51.84) (see Fig. 3). This new method
provides many advantages, such as high accuracy and stability of the data. Using the information in
Section 3 and Section 4, we follow the steps:

* Step 1: we obtained the upper bounds A3 and lower bounds A, of the objective function (see the second
and third column of the first matrix in Fig. 3, respectively)

* Step 2: we determine the vector (GaTkGoFo) by employing the values in step one. This vector
represents the interval or the best value of y; for instance, the value y = 0.5 implies the proper evaluation
for the left and right amounts of the triangle.

« Step 3: Using the vector in step two, we estimate the interval or the value of y € [0, 1] to maximize the
problem in (24). As we realize that the value of y = A (the fractal parameter). Based on the analysis shown in
Fig. 3, the most accurate analysis is given when A = 0.5.

* Step 4: By employing the vector in step two, we calculate the interval or the value of y € [0, 1] to
maximize the problem in (24). In this place, we confirm that by using Mathematica 11.2, solving system
(24) implies that the exact value ) ~ ‘5—‘ maximizes the system.
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Maximum solution

Objective function

Maximum solution

Objective function

Graph
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Figure 3: From the top, Selling block costs, Management block costs, Product costs, Inventory costs,

transportation costs and demand costs with A = 0.2; 0.5; 0.8 respectively




1082 TASC, 2021, vol.30, no.3

5.2 Impact Analysis

Since the hypotheses and incomes are time irregular, several mathematical tests can describe the impact
of uncertainty of the recent model. By shifting both demand and the price factors, as well as the estimate of
the systems (see Fig. 3) with various symmetric triangular fuzzy number, the demand D and the price factors
can be examined. The graphs in Fig. 3 indicate the date of the corresponding matrix (A, Ay, A3); The data
show that the manufacturers’ order conferring to income action is unaffected by rises in the selling cost.

6 Discussion and Conclusion
We point out the following facts for our data that is collected in Appendix A.

* Modeling system: The fuzzy system can compute variables such as the selling and demand. This system
has the ability to consider the relation between the selling amount and demand is investigated in three cases
(real, upper and lower). The consequence limits the accumulative profit rule of gathering, buying amount,
and selling value at the same average, while minimizing both at the same rate gives the least profit. The
significance of a membership takes back to first principles of elastic and broader requests; it also provides
a current systematic method with beneficial outcomes.

* Study case: This analysis illustrates that when there is more manufacturing yield, the total price will be
lower, and vice versa. Nonetheless, the manufacturing design must trade-off demand and output, and the
maximum market demand controls it. A study on IPC recognized uncertain market demand and different
prices in the indefinite setting. The dynamics and outcomes indicate that the developed system is capable
of delivering valuable data for increasing profit-effective oil refinery approaches under different settings.
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