
Face Image Compression and Reconstruction Based on Improved PCA

Yu Xue1,2,*, Chen Chen1, ChiShe Wang2, Linguo Li3 and Romany F. Mansour4

1School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
2Jiangsu Key Laboratory of Data Science and Smart Software, Jinling Institute of Technology, Nanjing, 211169, China

3College of Information Engineering, Fuyang Normal University, Fuyang, 236041, China
4Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt

�Corresponding Author: Yu Xue. Email: xueyu@nuist.edu.cn
Received: 04 February 2021; Accepted: 02 July 2021

Abstract: Face recognition technology has many usages in the real-world appli-
cations, and it has generated extensive interest in recent years. However, the
amount of data in a digital image is growing explosively, taking up a lot of storage
and transmission resources. There is a lot of redundancy in an image data repre-
sentation. Thus, image compression has become a hot topic. The principal com-
ponent analysis (PCA) can effectively remove the correlation of an image and
condense the image information into a characteristic image with several main
components. At the same time, it can restore different data images according to
their principal components and meet the needs of image compression and recon-
struction at diverse levels. This paper introduces an improved PCA algorithms.
The covariance matrix, calculated according to a batch of training samples, is
an approximation of the real covariance matrix. The matrix is relatively to the
dimension of the covariance matrix, and the number of training samples is often
too small. Therefore, it difficult to accurately obtain the covariance matrix. This
improved PCA algorithm called 2DPCA can solve this problem effectively. By
comparing it with several discrete PCA improvement algorithms, we show that
the 2DPCA has a better dimensionality reduction effect. Compared with the
PCA algorithm, the 2DPCA has a lower root-mean-square error under the con-
stant noise condition.
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1 Introduction

At present, the amount of digital image data is soaring, occupying a lot of storage space and apportioning
increased transmission resources [1]. Due to the high correlation of adjacent pixels, there is a lot of
redundancy in image data representation. The principal component analysis (PCA) method can remove
the correlation of the image data [2], and effectively compress the image information into several main
components. At the same time, it can restore different data images according to their number of principal
components, thus meet the needs of image compression and reconstruction at different levels. Moreover,
PCA is often used for feature selection [3–5].
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Among the active subspaces, the researchers’ top concern is the face image. It has been of a wide
concern and deeply studied by the academic community. Feature extraction and dimension reduction are
the key steps of face compression [6]. However, there are many shortcomings in the PCA algorithm. The
common PCA compression method cannot achieve good results due to external conditions such as
change of facial expression and strong light. Another important factor to consider is the dimension of the
pictures [7]. Therefore, it is necessary to study an improved PCA algorithm, which can enhance the
compression efficiency and ameliorates the accuracy of reconstruction [8]. It should be noticed that self-
adaptive parameter is a good direction to optimization PCA. The image compression and reconstruction
can be used in drones [9]. It should be noticed that self-adaptive parameter is a good direction to
optimization PCA [10–13].

The main work of this paper is to study and analyzes the PCA algorithm for image compression and
reconstruction. This paper focus on the study of PCA improved algorithm which includes 2DPCA, Mat
PCA and Module PCA. The rest of the article is structured as follows: Section 2 introduces related work.
Section 3 describes the PCA and improved PCA. Section 4 introduces the designs of experiment and
analysis the experimental results. Finally, Section 5 provides the conclusions.

2 Related Work

PCA is also called principal component analysis. It is a statistical method that converts the original
multiple variables into several new composite variables [14]. These new variables are uncorrelated with
each other and effectively to represent the information of the original variables. PCA can remove the
correlation between image data, and condense the image information on the characteristic image which is
several main components. The PCA is effectively to realize image compression. At the same time, it can
recover different data image according to the number of principal components which are meet the needs
of image compression and reconstruction at diverse levels. To conduct data analysis through deep
learning [15,16]. The PCA can be used to preprocess multi-objective optimization algorithms [17]. The
basic PCA image compression algorithm can achieve ideal compression ratio, but this method does not
have a good standard for the selection of the number of retained features. The signal-to-noise ratio is very
low, and the non-linear or non-stationary image signals are not considered. At the same time, the
algorithm is optimized by the evolutionary algorithm and deep learning [18,19].

3 Improved PCA Algorithms

The pixel represents redundant information on the face image. It can be used to subtract the predicted
value IP from the actual value I , which obtain the difference value DI , and value DI is known as the
prediction error. Finally, the prediction error is only compressed and encoded. Since the predicted value
of each pixel only uses the previously encoded pixel, this coding process is also said to be causal. The
decoding process based on causal encoding is shown in Fig. 1.

Another way of image compression is transformation. In the process of transformation, the image is first
obtained by some transforming (linear or nonlinear), and then which quantize these coefficients to obtain the
compressed image. At the end of decoding, the encoded coefficients are quantized inversely, and the actual
image are produced by inverse transformation. A typical transformation based on compression system is
shown in Fig. 2.

Both forecast code and conversion code have their own advantages. The former one is relatively simple
to implement, and the algorithm itself is adaptive to the original information of the image. The latter one
generally has a higher compression ratio, but the cost is the complexity of transformation calculation,
which also makes the implementation more complex. The evaluation method of image compression is
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usually divided into two aspects, compression performance and compression image quality. Compression
performance is usually measured by compression ratio CR or relative data redundancy R, which is defined
as the ratio between the total amount of original data b and the total amount of compressed data b’.
Relative data redundancy R is defined as the percentage of the reduced amount of compressed data
relative to the original amount of data:

CR ¼ b

b’
(1)

R ¼ Db

b
¼ b� b’

b
¼ 1� 1

CR
(2)

bpp ¼ b’

pixels
(3)

erms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM�1

x¼0

XN�1

y¼0

Î x; yð Þ � I x; yð Þ� �2
vuut (4)

SNR ¼

PM�1

x¼0

PN�1

y¼0
Î x; yð Þ2

PM�1

x¼0

PN�1

y¼0
Î x; yð Þ � I x; yð Þ� �2 (5)

PSNR ¼ 10 log
2n � 1ð Þ2
MSE

(6)

The quality of the compressed image can be evaluated either subjectively or objectively. Among them,
common objective quality evaluation methods include root mean square error, SNR (signal to noise ratio) and
PSNR (peak signal to noise ratio).

Figure 1: A classical predictive based compression system
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The I x; yð Þ and Î x; yð Þ represent decompressed image and original image respectively. In PSNR
calculation formula, N is equal to the bits per pixel, usually 8 bits, and MSE represents the root mean
square error. Although the factual quality assessment method is convenient and feasible, it can’t really
reflect people’s subjective feelings towards the image, so the subjective quality assessment is more
accurate. In this paper, the root mean square error is used primarily to evaluate the quality of image
reconstruction.

3.1 PCA

K-L transformation is one of the main processes of the PCA method. It is necessary to use K-L
transformation to realize facial image compression and reconstruction. The K-L transformation method is
classical and easy to implement. The basic PCA method first selects some image as training image before
facial image compression. Assuming that the image to be trained has a size of N2 � N2, the pixels of all
its columns can be joined end to end. In this way, each image can be stretched into a column vector of
length N2 which can be viewed as a point in N2 dimensional space. Because the training image has a lot
of similarities between each other, the vector on the shearing section is also different. The vector in high-
dimensional space distribution is not random or chaotic, principal component analysis has the very strong
correlation between each other, which uses a low-dimensional subspace to describe image. Assuming that
the spatial description of these training image sets contains m sets of images, let Xi; i 2 1; 2; 3; . . . ;mf g to
be the image vector of i training sample, and x ¼ ½x1; x2; . . . ; xm�, u is the average image vector of all
training sample images, namely:

u ¼ 1

M

XM
i¼1

xi (7)

PCA requires the population dispersion matrix of the training sample set, which named the
covariance matrix:X

¼ E½ðx� uÞðx� uÞT � (8)

It is a matrix with dimension N2 � N2 and the principal component analysis method needs to calculate
its eigenvalues and orthogonal normalized eigenvectors. Since N2 will be very large in practical application,
it is very difficult to directly calculate the formula. For this reason, SVD decomposition can well solve
this problem.

3.1.1 SVD Decomposition
SVD decomposition is a common method to deal with matrices with high dimensions. SVD

decomposition can effectively decompose high-dimensional matrices into low-dimensional space.

Figure 2: A typical transformation-based compression system
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Through SVD decomposition, we can solve the eigenvalues of the high-dimensional matrix easily. The
following is the exact theory related to SVD decomposition.

If A is n� r dimensional matrix of rank R, then there are two orthogonal matrices:

U ¼ u1; u2; � � � ; urð Þ 2 <n�r (9)

V ¼ v1; v2; � � � ; vrð Þ 2 <n�r (10)

� ¼ dig �1; �2; � � � ; �rð Þ 2 <n�r (11)

A ¼ UA
1
2VT (12)

where, �iði ¼ 1; 2; � � � ; rÞ is the non-zero eigenvalue of matrix AATand ATA, ui and vi are eigenvectors of
AATand ATA. The above decomposition becomes the Singular Value Decomposition (SVD) of matrix A,
and the

ffiffiffiffi
�i

p
can be expressed as:

X
¼ 1

M

XM
i¼1

ðxi � uÞðxi � uÞT ¼ 1

M
XXT (13)

Therefore, construct the matrix:

R ¼ XTX 2 <M�M (14)

It is easy to find its eigenvalue �i and corresponding orthogonal normalized eigenvector
viði ¼ 1; 2; � � � ;MÞ. From the above inference, the orthogonal normalized eigenvector is:

ui ¼ 1ffiffiffiffi
�i

p Xvi; i ¼ 1; 2; � � � ;M (15)

Arranging the eigenvalues from large to small: �1 � �2 � � � � � �M ; their corresponding eigenvector is
ui, in this way, each face image can be projected into a subspace of {u1; u2; � � � ; uM} spans. Therefore, each
face image is commensurate with a point in the subspace. Similarly, any point in the subspace corresponds to
an image. With such {u1; u2; � � � ; uM} span subspace, any face image can be projected onto it and a set of
coordinate coefficients are obtained, which show the position of the image in the subspace. In other
words, any face image can be represented as a linear combination of {u1; u2; � � � ; uM} and its weighted
coefficient is the expansion coefficient of K-L transformation, which can also be called the algebraic
feature of the image.

For any face image f to be compressed, its coefficient vector can be obtained by projecting it into the
feature subspace:

y ¼ UT f � uð Þ;U ¼ u1; u2; � � � ; uMð Þ (16)

The resulting coefficient vector can be thought as a compression. Since the coefficient vector dimension
m is usually much less than f, thus it saves storage space greatly. It can be transformed back from u:

f
_ ¼ Uyþ u (17)

3.2 Improved Algorithm

Basic principally component analysis method has some disadvantages. When the face image
illumination position changes, basic PCA cannot capture these changes effectively. Studies have shown
that the basic PCA can capture some of the most simply consistency between image hardly, unless the
information is included in training image. In addition, the basic PCA will stretch the pixels of the image
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in some way (usually the first place of each column is connected) into a vector with high dimension. When
the image size is bigger, the vector dimension after stretching will be very prominent, not to mention the
covariance matrix between the training image. Although the SVD decomposition can be utilized for
approximating the feature image, which avoid the emergence of large covariance matrix, it is not accurate
in many cases. Due to the deficiency in the PCA method, an improved method, named 2DPCA is
proposed in this paper.

Let’s X present a n dimensional normalized column vector. The 2DPCA algorithm take the image A (A
matrix of m� n) according to the formula:

Y ¼ AX (18)

we going to project it onto X . Thus, we get M dimensional projection vector Y , which is called the
projection eigenvector of image A. Finding a good projection direction X in the 2DPCA method is a key
step, and the strength of the projection vector X can be determined by the dispersion degree after training
samples are projected on it. The higher the dispersion of the sample after projection, the better the
projection direction X .

Through the study we know that we can use the trace of the covariance of the projected vector to
describe the dispersion degree of the projected sample. That is:

J Xð Þ ¼ tr Sxð Þ (19)

where, Sx represents the covariance of the vector after training samples are projected on it; tr Sxð Þ is the
trace of Sx.

The physical meaning of the maximization equation is to find a projection direction that maximizes the
dispersion between the vectors after all training samples are projected on it. The covariance matrix of Sx can
be expressed as:

Sx ¼ E Y � E Yð Þð Þ Y � E Yð Þð ÞT (20)

¼ E AX � E AXð Þ½ � AX � E AXð Þ½ �T
¼ E A� E Að Þð ÞX½ � A� E Að Þ½ ÞX �T

tr Sxð Þ ¼ XT E A� E Að Þð ÞT A� EAð Þ
h i

X

(21)

Gt ¼ E A� E Að Þð ÞT A� E Að Þð Þ
h i

(22)

The matrix Gt is called the image covariance matrix. It’s easy to know by definition that Gt is a
nonnegative definite matrix for n� n. The training sample image can be used to directly calculate Gt.
Suppose there are M training image samples, n� n matrix Aj j ¼ 1; 2; 3; . . . ;mð Þ represents the j training
image, and �A represents the average image of all training samples.

�A ¼ 1

M

XM
j¼1

Aj (23)

Gt ¼ 1

M

XM
j¼1

Aj � �A
� �T

Aj � �A
� �

(24)
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J Xð Þ ¼ XTGtX (25)

Eq. (25) is generalized criterion. The normalized vector Xopt that maximizes J ðX Þ is called the optimal
projection axis. According to literature, we can know that Xopt is the eigenvector corresponding to the
maximum eigenvalue of Gt. Generally speaking, it’s not enough to have one optimal projection direction.
It is necessary to find a series of projection directions, the set of projection directions is fX1;X2; � � � ;Xdg,
which satisfies the principle of maximizing the JðX Þ:

X1;X2; � � � ;Xdf g ¼ argmaxJ Xð Þ
XT
i Xj ¼ 0; i 6¼ j; i; j ¼ 1; 2; � � � ; d

�
(26)

In fact, in the projection direction set fX1;X2; � � � ;Xdg, satisfying the above principle is the orthogonal
eigenvectors which corresponds to the first maximum eigenvalue of Gt.

4 Experimental Results

This section mainly summarizes the experimental results of the above algorithms, including the degree
of image compression and the size of the root mean square error in image reconstruction. This paper mainly
assesses the quality of several algorithms based on the size of the reconstruction error.

From Tab. 1, we can see that PCA algorithm can achieve an image compression ratio of about 3, and the
image of the ORL database can have a very stable effect. As shown in Tab. 2, when noise is added, there will
be no difference in compression effect.

From the above table, it shows that no matter what noise is added to PCA image compression. It has no
significant influence on the image compression result. But adding noise will have a huge impact on image
reconstruction. Tab. 3 shows the mean square deviation value of image reconstruction data adds noise.

In Tab. 4, the mean value of Gaussian noise is all 0 by default. From Tab. 4, we can see that the 2DPCA
algorithm also have better results when processing noisy image. Compared with PCA algorithm, 2DPCA
algorithm has lower root-mean-square error under the same noise condition. From Tab. 5, we can see that
compared with Mat PCA, 2DPCA also has lower root-mean-square error under the same noise.

Table 1: Image compression ratio

IMAGE 1 2 3 4 5 6 7 8

CR 3.05 3.01 3.00 2.97 2.98 3.03 3.05 3.00

Table 2: Image compression ratio after adding noise

IMAGE 1 2 3 4 5 6 7 8

GN 3.00 3.05 3.02 2.99 3.00 3.02 3.01 3.00

SAPN 3.00 3.01 3.00 2.99 2.99 3.03 3.02 3.00
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5 Conclusion

This article provides an image reconstruction and compression algorithm based on principal component
analysis and its improved algorithm. PCA is effective to reduce the dimension of data and minimize the error
between the extracted components and the original data, so it can be used to data compression and feature
extraction. Especially with the development of multimedia image data information technology, abundant
image media contains a lot of information. In order to store and transmit these image data effectively,
more and more attention is being paid to image compression technology. The image compression and
reconstruction based on PCA and its improved algorithm is proposed in this paper. The experimental
results demonstrate that the implementation method is simple. It can realize image compression
effectively and restore different data images according to the number of principal components. It also
satisfies the needs of different levels of image compression and reconstruction.

Table 3: The root-mean-square error of the image after adding noise

IMAGE 1 2 3 4 5 6 7 8 9

SAPN 0.05 30.30 29.18 29.36 29.67 30.31 31.19 29.88 29.27

SAPN 0.10 43.51 42.82 42.59 43.66 42.85 42.18 43.64 42.22

SAPN 0.15 54.72 54.33 53.37 54.58 54.50 54.68 55.08 54.68

GN 0.01 25.43 25.61 25.44 25.77 25.78 23.67 23.42 25.68

GN 0.02 35.21 35.54 34.78 34.50 34.69 34.46 36.67 36.21

GN 0.03 41.43 42.12 42.22 42.41 42.57 40.19 40.68 42.45

Table 4: 2DPCA root-mean-square error after adding noise

IMAGE 1 2 3 4 5 6 7 8 9

SAPN 0.05 16.95 18.94 17.99 20.08 18.17 16.76 18.86 19.81

SAPN 0.10 28.96 28.95 29.08 27.05 27.54 27.88 28.12 29.64

SAPN 0.15 35.10 35.16 35.48 35.08 32.66 34.17 34.84 34.84

GN 0.01 21.18 19.96 21.27 20.11 19.28 21.53 21.69 17.26

GN 0.02 24.07 22.99 25.52 24.25 25.16 22.47 24.54 24.22

GN 0.03 27.97 27.59 27.16 28.56 29.00 24.19 29.14 28.64

Table 5: After adding noise to Mat PCA, the image RMS error

IMAGE 1 2 3 4 5 6 7 8 9

SPAN 0.05 24.55 23.43 24.65 23.24 23.33 22.01 24.73 24.25

SPAN 0.10 33.62 33.57 33.43 33.92 32.54 33.12 32.65 32.31

SPAN 0.15 40.31 40.76 40.25 39.45 40.12 40.36 39.94 39.18

GN 0.01 19.55 19.65 20.18 19.58 20.52 20.12 20.13 19.26

GN 0.02 26.46 27.21 27.84 27.98 27.36 27.35 27.42 27.43

GN 0.03 32.32 32.02 32.15 32.52 33.26 33.65 33.32 32.21
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