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Abstract: Smart vehicles use sophisticated sensors to capture real-time data. Due
to the weak communication capabilities of wireless sensors, these data need to
upload to the cloud for processing. Sensor clouds can resolve these drawbacks.
However, there is a large amount of redundant data in the sensor cloud, occupying
a large amount of storage space and network bandwidth. Deduplication can yield
cost savings by storing one data copy. Chunking is essential because it can deter-
mine the performance of deduplication. Content-Defined Chunking (CDC) can
effectively solve the problem of chunk boundaries shifted, but it occupies a lot
of computing resources and has become a bottleneck in deduplication technology.
This paper proposes a Dynamic Asymmetric Maximum algorithm (DAM), which
uses the maximum value as the chunk boundaries and reducing the impact of the
low-entropy string. It also uses the perfect hash algorithm to optimize the chunk
search. Experiments show that our solution can effectively detect low-entropy
strings in redundant data, save storage resources, and improve sensor clouds sys-
tem throughput.

Keywords: Internet of Things; Sensor clouds; Intelligent transportation; Data
deduplication

1 Introduction

With the rapid development of intelligent transportation, wireless sensors are widely used in fields such
as automatic driving [1], noise monitoring [2], and traffic flow detection [3,4]. IDC (International Data
Corporation) shows the global data storage capacity will be reaching 175ZB by 2025. Among them, more
than 79ZB of data will be generated by Internet of Things (IoT) devices. We are living amid an era of
innovation by the Internet of Everything. The IoT has millions of edge devices that are connected, and
these devices will generate data continuously every day. The intelligent traffic management system [5]
deploys many wireless sensor devices in the areas [6,7] that need to be monitored and obtains real-time
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data according to actual scenarios. The wireless sensors in the vehicle map the environment during driving
and need to collect a large amount of wireless sensor data (for example, a video stream with a data rate of
about 1GB/s), communicate with other IoT devices, share data, and provide users with practical information
[8—10]. The amount of data obtained from wireless sensors will increase geometrically as the number of
devices increases, and a large amount of data cannot meet the application requirements of the device. The
shortcomings of the wireless sensor’s weak computing power, limited computing, and communication
capabilities cannot support data storage and processing. Due to limited bandwidth resources, advanced
technologies such as edge computing and fog computing cannot be fully utilized [11-14]. Compared with
resource-constrained IoT devices, resource-rich cloud platforms are more suitable for data storage [15]. In
the upcoming 5G era, cloud data transmission is more convenient [16—18]. People will become
accustomed to store their data to the cloud storage systems for data management. In the existing scenario,
the data collected by massive wireless sensors have a concurrency bottleneck, which causes the remote
data upload to fail [19]. To bring a good experience to users, researchers optimized the data access from
the perspective of data caching [20] and prefetch grouping [21,22] and improved the user experience of
the sensor clouds platform. However, there is a large amount of redundant data between different sensor
clouds users, which occupies many system resources, resulting in a reduction in system throughput,
which has become a severe challenge. The deduplication technology can detect and eliminates redundant
data, which can greatly save storage resources for storage systems in IoT scenarios. Research from
Microsoft shows that eliminating redundant file chunks in a data storage system can save three-quarters
of the data storage space [23].

The traditional deduplication methods are file-level deduplication. It checks whether the backup file is
the same as the index backup [24]. If the fingerprints of chunks are distinct, it will be storing the file and
update the index, otherwise only point out the location directly where the file is storing. In form, it is like
the hard link of the file system; an index node can correspond to multiple directory files. The chunk-level
deduplication technology divides the file into data chunks and checks whether the data chunk is like the
previous data chunk. If it is distinct, the data chunk storing in the disk; otherwise, it is not stored.
A small number of changes in the file may cause the file-level deduplication to restore the file. Chunk-
level deduplication has a finer granularity than file-level approaches. More redundant data can be found,
so it is widely used in cloud storage. Chunk-level deduplication technology divides a file into multiple
data chunks. It calculates a hash for each chunk (e.g., MD5 [25], SHA-1 [26], SHA-256 [27]) to form a
fingerprint, which is used as a unique chunk identifier. If the two data chunks have the same fingerprint,
they will not be stored; otherwise, the unique data chunks will be stored.

Although the chunk-level deduplication system can detect more redundant data, it requires more
computational time, which has become the bottleneck of the chunk-level deduplication technology. The
reason is that the chunk-level deduplication technology is divided into the following four stages: (1)
Content-Defined Chunking. (2) Generating fingerprints. (3) Looking up the index. (4) Storing data
chunks. Among them, the chunk and fingerprint index consume many system resources in chunk-level
deduplication, which is the root cause of the decline in the system throughput. The current mainstream
chunk algorithm is divided into Fixed-Size Chunking (FSC) and Content-Defined Chunking (CDC). FSC
approaches divide the file or data stream into data chunks of uniform length. The advantage is that the
computational cost is small, and the system throughput is high, while one of the disadvantages is content
shifted. For example, if you add or delete a byte anywhere in the file, all the chunk boundaries may
change, which will affect the definition of the chunk boundary. It cannot find duplicate data chunks in a
small number of modified duplicate files.

CDC approaches can effectively solve the problem of chunk shifted. The algorithm uses bytes that meet
predetermined conditions as chunk boundaries. Research shows that in most data sets, the CDC approaches
can detect more redundant data than FSC approaches [28]. Most systems use the content-defined chunking
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based on Rabin, but this algorithm has an enormous computational cost. It cannot eliminate the impact of
low-entropy strings on redundant data. There may be many low-entropy strings in the real data. These
low-entropy character strings which contain few characters, but there are many redundant bytes. It will
affect the selection of chunk boundaries, resulting in a reduction in the detection rate. The chunk and
fingerprint index search also limit the throughput of deduplication. The capacity of the fingerprint index
of a large-scale deduplication system can easily exceed the primary storage capacity, so it is necessary to
store the fingerprint index on the disk. Still, random I/O reads will limit the system performance.

2 Background and Motivations

In this section, we will introduce the challenges brought by the existing chunk-level deduplication
algorithm, provide the necessary background introduction for our proposed RAM optimization algorithm,
and stimulate our research results through analysis and observation.

2.1 Background

Intelligent transportation systems are currently being widely used in people’s daily lives. Their goal is to
use public resources to provide people with high-quality public services [29]. The intelligent transportation
system deploys many wireless sensors in every corner of the city, forming a heterogeneous communication
system. The context provider collects wireless sensor data to provide users with useful information.
However, the edge-constrained IoT devices have the characteristics of limited storage capacity and
computing power, and can no longer meet the demand for increasingly large amounts of data. The sensor
clouds can solve the shortcomings of wireless sensors. Wireless sensors transmit data to the cloud, and
the cloud platform performs data cleaning, processing, and storage of these data, reducing the burden of
resource-constrained IoT devices. However, there is a large amount of redundant data in the massive data,
which will cause the consumption of storage space and communication bandwidth.

Data deduplication has been used in many cloud storage products, such as Microsoft, EMC, Dropbox
[30]. Deduplication technology saves storage space by eliminating redundant data and keeping the only
copy. Chunking is a crucial part of deduplication technology. It helps save time and space, thus improve
the user’s experience by choosing the right partition method. The chunking approaches can be divided
into two categories: Fixed-Size Chunking (FSC) and Content-Defined Chunking (CDC). We will detail
the difference between the two and the current advanced research methods in 2.1.1 and 2.1.2 below.

2.1.1 FSC
FSC is common, but it has the problem of boundary shifted. Fig. 1 illustrates how the chunk boundaries
shift happens.

The data stream is composed of hexadecimal bytes. The fixed chunk size is 8 bytes. Blue bytes represent
chunk boundaries, while the red represents the insertion of new byte, and pink represents the location
of chunk boundaries in data stream A. Data stream B has an 0xAS inserted. It is clearly shown that the
chunk boundaries of Chunk 0-4 have shifted, and even Chunk 5 appeared. In the data stream C, there is
also a byte inserted in the C header, but byte 8A in the header of Chunk 1 was deleted by coincidence,
and the chunk boundary of Chunk 2-4 does not shift. DataStream D and data stream A have a
deduplication rate of only 25%, which will undoubtedly reduce the deduplication rate.

2.1.2 CDC

The most widely used CDC approach is the Rabin fingerprint-based CDC algorithm [31,32]. The Rabin
algorithm uses polynomials to cooperate with sliding windows to implement fingerprint calculation, as
shown in Fig. 2.
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where [ is the sliding window length, p is a predefined constant, and r is the predefined average chunk size.
The sliding window continuously moves on the data stream. When the fingerprint of the next window needs
to be calculated, only the calculation formula (2) needs to be incremented.

Rabin(b,-, bi+17 ceey biJr/g,]) = [Rabin(b,-,l y bl‘, ceey blur[g,g) *p — bl;lpM + biJr/g,l] mod r (2)

Chunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5

Stream A 8967 28 BAFF 3A4F 8A | 67 4289 D4 5A 8F D4 | 86 09 56 23 6C 8B 4F AA | FF 45 34 F1 4A 9F AC 0D | FA 4E 83 12 45 72 B4 C4
Stream B | A389 67 28 BAFF3A4F | 8A67 4289 D4 5A8F | D4 86 09 56 23 6C 8B 4F | AA FF 45 34 F1 4AOF AC | 0D FA4E 83124572 B4 | C4

Stream C A8 89 67 28 BAFF 3A 4F | 67 4289 D4 5A8F D4 | 86 09 56 23 6C 8B 4F AA | FF 45 34 F1 4A9F AC 0D | FA 4E 83 12 45 72 B4 C4

Stream D A8 89 67 28 BAFF 3A4F | 8A 67 4289 D4 5A8F | D486 09 56 23 6C 8B 4F | AA FF 4534 F1 4A9F 4C | FA4E 83 12 4572 B4 C4

Figure 1: FSC approach boundary shifted when inserting or deleting happens

fmod M = x fmod M = x

; t

window —| window

Stream A Chunk 0 Chunk 1 Chunk 2 Chunk 3

Stream B Chunk 0 Chunk 1 Chunk 2 Chunk 3

Figure 2: An example based on the Rabin algorithm. If the hash value f of the sliding window satisfies the
predetermined condition, the mark position is used as the chunk boundary, otherwise, the chunk boundary is
found with the sliding window byte by byte

Although the Rabin fingerprint algorithm can effectively solve the problem of chunking shift, it has the
disadvantages of large calculation amount and low throughput. The chunking stage becomes the bottleneck
of the deduplication system. Moreover, in extreme cases, such as frequent encounters of chunk boundaries or
encountering low-entropy strings, the selection of chunk boundaries will be affected, resulting in uneven
distribution of chunk sizes, thereby reducing the efficiency of deduplication.

LMC [33] slides two symmetric fixed windows on the data stream to find whether the central byte value
is the extreme point and uses the local extreme point as a chunk boundary. It solves the shortcomings of
chunk size variance with extremely low computational overhead. However, when the extreme point is
found, the data stream needs to be traced back to determine whether the point is an extreme point, which
reduces the throughput of the chunk algorithm. AE [34] uses an asymmetric extreme value method, using
a sliding window and a fixed window to determine the split point. The split point is in the middle of the
sliding window and the bald window, reducing the number of byte comparisons, thereby reducing the
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computational overhead. RAM [35] places extreme value on the boundary of the chunk and uses a fixed
window and a sliding window. The sliding window looks for a byte larger than any value in the fixed
window as the chunk boundary. The details are shown in Fig. 3.

Stream A | 45 87 56 23 09 5D 68 FA 56 23 45 78

Stream B | 62 32 03 7F 34 73 A2 54 56 23 45

Stream G | 355223 A2 48 B1 65 41 [4BB1) C8| 34 25 8576 21 25 |

Figure 3: The example of how RAM algorithms work

2.2 Motivation

To verify the deduplication rate between fixed and content-based chunking deduplication. We used two
versions of Linux system images for deduplication detection. As shown in Fig. 4, we define DER as the ratio
of the input data size to the actual data size to be stored. The larger the value, the better. The experimental
results show that the duplicate data detected using the FSC approaches is much smaller than the CDC
approaches. This is due to the change at the 432nd byte, which generates a chunk shift and reduces the
rate of duplicate data detection. Compared with the FSC approaches, the CDC approaches can detect
more redundant data, so it has been used in many deduplication systems. Still, in large-scale data storage,
the CDC approaches require a lot of consumption computing resources seriously to reduce the throughput
of the storage system.

2.5 mFSC mCDC

15

DER

0.5

2KB 8KB 16KB
Datasets

Figure 4: Comparison of deduplication rate between FSC and CDC

Tab. 1 shows the current advanced CDC approaches and compares their performance from multiple
perspectives. The FSC algorithm has a high throughput rate, but it cannot effectively eliminate redundant
data. The Rabin and LMC algorithms can effectively identify redundant data, but the throughput rate is
low. And it cannot effectively eliminate low-entropy strings. The AE algorithm is superior to the Rabin
algorithm in throughput, and the AE algorithm can effectively eliminate low-entropy character strings.
RAM has a high throughput rate, but it cannot effectively eliminate low-entropy strings. Therefore, how
to accelerate the speed of CDC and fingerprint indexing and increase the deduplication rate is still a
challenge.

The low-entropy string mentioned in Section 1 has two patterns [14]. The first pattern consists of the
same character, such as aaaaaaa, and the second pattern consists of a series of repeated substrings, such
as abcdabcedabedabed. Due to the existence of low-entropy strings, the selection of chunk boundaries can
be affected, which directly leads to a reduction in the deduplication rate. Therefore, how to detect more
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low-entropy character strings in the stored data to improve the deduplication rate is currently a research trend.
After the completion of partitioning, how to effectively process the block index is also a significant research
field. Because massive amounts of data generate huge data chunks, it is difficult to find a unique chunk
identifier to determine whether the data is stored within a limited time.

Table 1: A comparison between existing CDC approaches

Algorithms Content Defined Throughout Efficient for low-entropy string

FSC No High No
Rabin Yes Low No
LMC Yes Low No
AE Yes Mid Yes
RAM Yes High No

Currently, bloom filters [36] and hash tables [37] are mainly used for fingerprint indexing. Bloom filter is
a space-efficient probabilistic data structure, so it is often used as an index structure. The bloom filter uses
multiple hash mapping functions and a bit array. When an element inserts in a bloom filter, it will be hashed
multiple times to map the element to the corresponding bit and set to 1. When checking whether an element
exists in the collection, only when all the mapping bits are 1, it means that the element may exist in the
collection. Traditional bloom filters can optimize cache hit rate and disk access. Unfortunately, as the
number of inserted elements increases. Thus, the error rate goes up. When multiple elements are mapping
the same bit, it may be an error to check whether the element exists. Today’s network applications and
services demand more and more memory space, and bloom filters are widely in many applications. But it
may require a huge memory space. For example, data chunks need the three hash calculations, and three
bits need mapping to the physical addresses of files or chunks. 16TB of data requires nearly 1GB of
memory space, which is extremely expensive for memory devices. Therefore, an algorithm for reducing
the false alarm rate and improving the search efficiency is urgently needed.

Therefore, we propose a Dynamic Asymmetric Maximum algorithm to reduce the impact of low-entropy
strings on chunk boundaries and optimize the chunk management scheme to improve the overall throughput
of the system.

3 Design
In this section, we describe the deduplication system and our proposed algorithm.

3.1 Overall Design

According to the chunk-level data deduplication technology introduced in Section 1, we designed the
overall process of the system, as shown in Fig. 5.

Our design includes the following three stages: (1) The system split the data stream into chunks. (2)
Calculate the fingerprint for each chunk as an identifier. (3) Use the index to establish the mapping
relationship between the data chunk and the fingerprint and store the unique identification chunk. We use
the SHA-1 hash function to calculate the fingerprint. The fingerprint is used to identify whether the chunk
is unique. In the chunking stage of the system, as shown in (1) of Fig. 5. We propose a new CDC
algorithm, called Dynamic Asymmetric Maximum Algorithm (DAM) based on asymmetric chunking
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algorithm in Section 3.2. As for the indexing stage, as shown in (3) of Fig. 5. We use a perfect hashing
algorithm. This optimization increases index-lookup performance on disk.

0x671256433778
F5AC1F6E8F5E
2A3DF2A2D35F 1/0 Path
6C8A7B4F2B7D
1 G4 File 3
& %%
SN %
S
O Q\Q
67 FF 4B FingerPrint index
A4 A4 3A
Duplicates Ad 3A FF 67 4B Index &
Storing
FF 3A 67
2 Unique Data Chunk 3

Orignal Data Chunk

Figure 5: The architecture of our system

3.2 Dynamic Asymmetric Maximum Algorithm

In this section, we analyze the low-entropy string pattern proposed in Section 2.2. For the first pattern of
low-entropy string, we think that the maximum and minimum values in a region are the same. So, we can
define a threshold for the expected chunk size. When the algorithm processes the byte of the local byte
stream, it will check whether the maximum value and the minimum value are equal. If they are equal,
the string is considered to be a low-entropy string. As a cutting point, otherwise continue to search for
the cutting point backward. The pseudocode shown in Algorithm 1.

For the second pattern of low-entropy strings, which is composed of the same substring. Divide the
original string into multiple substrings, and then determine whether these strings are all equal. The time
complexity of this comparison is O(len * subsum), where len is the length of the string, and subsum is
the number of factors of len. If using this method to find low-entropy strings, it will affect the efficiency
of deduplication. Therefore, we propose an optimization algorithm for dynamic jump windows, only
detect the local strings when they reach a predefined condition. The pseudocode is shown in Algorithm 2.

3.3 Perfect Hashing Algorithm

To optimize the overall throughput of the deduplication system and improve the efficiency of repeated
lookups, we propose a perfect hash function algorithm. The perfect hash function does not need to keep the
index mark in the main memory, it can accurately locate the object on the disk and find it quickly [38].
The perfect hash algorithm structure diagram is shown in Fig. 6.
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Algorithm 1: Algorithm of DAM Chunking for first low-entropy string pattern

Input: input string stream, St; the length of the string, L
Output: the chunk boundary, i

1: Predefined value: window size, w; threshold, Cp

2: function DAMChunking(Str, L)

3: i1

4- max .value «— 0

5- min .value < 1e7

6 while i < L do

7 if max .value > Str[i].value and min .value < Str[i].value then
8: if max .value = min .value and i = Cp then
9: return i

10: end if

11: else if Str[i].value > max .value then

12: if i > w then

13: return i

14: else

15: max .value = Str[i].value
16: end if

17: else if Str[i].value < min .value then

18: min .value = Strli].value

19: end if

20: i—i+1

21: end while

22: return L

23: end function

The algorithm is divided into two stages: (1) The key set of length n is divided into N buckets using a
hash function. (2) Use the perfect hash function to calculate the offset of each bucket to calculate the storage
range, and offset offSet[i] stores the number of keys in bucket(i]. For the constructor of the key-value x as
formula (3). The pseudocode is shown in Algorithm 3.

PHF (x) = PHF;(x) + offset[i] 3)
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Algorithm 2: Algorithm of DAM-1 Chunking for second low-entropy string pattern

Input: highly redundant string, Str; the length of the string, L
Output: Whether is low-entropy string

1: function DAM-1Chunking(Str, L)

2 i—1

3: J—-1

4: while i < L do

5 while j > 0 and Str[i] =Str]j + 1] do
6: J — next[j]

7 end while

8: if Str[i] =Str[j + 1] then

9: j—Jj+1

10: return i

11: end if

12: nextli] « j

13: end while

14: if L — 1 —next]L —1]! = landL%(L — 1 — next[L — 1]) = 0 then
15: return True

16: end if

17: end while

18: return False

19: end function

Algorithm 3: Perfect Hashing Algorithm

Split Key Set s into buckets B; = {x € s|h(x) =i},0 <i< w

Using the radix algorithm that takes ¢(x), x € s; as a sorting key from Buckets
Compute the function f; for each bucket

Obtain M;(the maximum value of £; on buckets B; ) and offet|i]

Compute offet[i + 1] = offet[i] + M;

Write offet|i], fi] to disk.

AN AN o > e
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Figure 6: The architecture of perfect hash algorithm

4 Experiment

In this section, we are implementing the entire system process. To show the advantages of DAM, we
have implemented the AE, Rabin and LMC algorithms in the system to compare their performance.

The server is configured with a 4-core 8-thread Intel i7 4700 2.7 GHZ, 8 GB DDR4, 2133 MHz and a
500GB HDD hard disk. We use the SHA-1 hash function to generate a fingerprint for each data chunk, which
is used to detect unique data chunks and use the perfect hash algorithm for index lookups. AE used different
version numbers of different Linux distributions as data sets for deduplication verify. Therefore, we selected
seven different versions of the Linux operating system image. The total size of this dataset is 8.7 GB. The
operating system images have similar content in different locations and have low-entropy strings.

The average block size is directly related to deduplication efficiency. To simulate the network
transmission environment of wireless sensors, we will set the average block size to a length like the TCP
packet size. If the average block size is too small, it will directly affect the efficiency of duplicate data
detection, and if it is too large, it will cause network transmission packet loss. For the sake of fairness,
we first use the Rabin algorithm to get the expected block size and then adjust the average block size of
other algorithms according to the actual situation. We define the deduplication rate (DER) as the ratio of
the data input size to the size of data needs to be stored. Therefore, the higher DER, the smaller the
actual storage data size.

Fig. 7 shows the results of comparing the four algorithms on the datasets, namely Rabin, LMC, AE,
DAM. The DAM algorithm is close to the AE algorithm at the beginning. But as the chunk size
increment, the DAM performance is better than AE because it can capture more low-entropy strings and
achieve a better deduplication rate. This can be seen in the 13% improvement in duplicates found for
DAM over LMC.

In Fig. 8, it represents the chunk distribution of the four algorithms. We can see that the chunk
distribution of the DAM algorithm is like the AE algorithm, but it is more concentrated because the
DAM algorithm can effectively detect low-entropy strings and reduce the impact on the chunk boundary.
The distribution of Rabin and LMC algorithm is more dispersed than others.

Now, we evaluate the DAM’s detection efficiency for low-entropy strings. We mainly focus on the first
pattern of low-entropy strings. The low-entropy string in the second pattern is challenging to detect, so the
threshold is set according to the block size only in a specific scene. The Rabin and LMC algorithm cannot
detect low-entropy strings. However, when the data stream is long enough, the Rabin algorithm can set the
maximum threshold to detect some low-entropy strings. Rabin_0.25 sets a quarter of the expected block



TASC, 2021, vol.30, no.2 491

length as a threshold, which detects low-entropy strings. Tab. 2 shows the low-entropy string detection rate of
the expected block size on the experimental dataset. AE and DAM can detect more strings than Rabin and
LMC in the datasets. DAM detects low-entropy strings up to 10.6 x more than Rabin_0.25 and 1.98 x more
than AE.
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Figure 7: Comparison of the deduplication efficient between different algorithms. Different colors represent
different approaches
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Figure 8: The result of the experiment to explore the effects of chunk distribution. Different colors represent
different approaches
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Table 2: The low-entropy string detection rate of the expected block size

Algorithm 2KB 4KB 8KB 16KB
Rabin 0 0 0 0
Rabin_0.25 0.98% 0.47% 0.14% 0.08%
LMC 0 0 0 0
AE 4.82% 1.74% 1.38% 1.02%
DAM 7.52% 5.17% 3.44% 1.62%

5 Conclusion

In intelligent transportation systems, resource-constrained IoT devices have limited computing and
storage capabilities. Therefore, sensor clouds are used for data collection, processing, and visualization.
With the explosive growth of the number of wireless sensors, there is a lot of duplicate data in massive
data. These duplicate data occupy storage space and a large amount of communication bandwidth, so it is
necessary to use duplicate data technology for data deletion. The content-defined chunking approaches in
the deduplication system require many system resources. To alleviate the high computational overhead
bottleneck of the CDC approaches in data deduplication systems. In this paper, we compared the
difference between FSC and CDC approaches and have discussed the importance of CDC approaches in
deduplication system. We propose a Dynamic Asymmetric Maximum algorithm, which can effectively
identify low-entropy strings by predetermined thresholds, eliminate redundant data, and optimize chunk
indexes. We conducted an experimental comparison in the Linux open-source version image. The
experimental results show that, compared with other duplicate data schemes, DAM can eliminate the
impact of low-entropy strings on deduplication, improve the throughput rate in the fingerprint search
phase, significantly improve the performance of deduplication, and save space for cloud storage.
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