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Abstract: Researches have shown that Deep neural networks (DNNs) are vulner-
able to adversarial examples. In this paper, we propose a generative model to
explore how to produce adversarial examples that can deceive multiple deep
learning models simultaneously. Unlike most of popular adversarial attack algo-
rithms, the one proposed in this paper is based on the Generative Adversarial
Networks (GAN). It can quickly produce adversarial examples and perform
black-box attacks on multi-model. To enhance the transferability of the samples
generated by our approach, we use multiple neural networks in the training
process. Experimental results on MNIST showed that our method can efficiently
generate adversarial examples. Moreover, it can successfully attack various
classes of deep neural networks at the same time, such as fully connected neural
networks (FCNN), convolutional neural networks (CNN) and recurrent neural
networks (RNN). We performed a black-box attack on VGG16 and the experi-
mental results showed that when the test data classes are ten (0–9), the attack
success rate is 97.68%, and when the test data classes are seven (0–6), the attack
success rate is up to 98.25%.

Keywords: Black-box attack; adversarial examples; GAN; multi-model; deep
neural networks

1 Introduction

Deep neural networks have achieved great success in various computer vision tasks, such as image
recognition [1,2], object detection [3] and semantic segmentation [4], etc. However, recent research has
shown that deep neural networks are vulnerable to adversarial examples [5], a modification of the clean
image by adding well-designed perturbations in a way that the changes are imperceptible to the human
eye. Since adversarial examples were introduced, adversarial has attacks have attracted a lot of attention
[6,7]. Most of current attack algorithms are gradient-based white-box attacks [8] which have the complete
knowledge of the targeted model including its parameter values, architecture and calculate the gradient of
the model to generate the adversarial examples with neural networks, but these adversarial examples have
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poor transferability and can attack specific deep learning models only. In fact, it is undeniable that in some
instances, the adversary has a limited knowledge of the model, which in turn leads to unsuccessful attacks.
Therefore, it is of great importance to study black-box attacks which can make up for the deficiency of the
white box attacks.

Fig. 1 shows clean images in the front row and their corresponding adversarial images in the bottom row.
These adversarial images are still recognizable to the human eye, but can fool the deep learning models.
Since white-box attacks have their deficiency mentioned above, to address this issue, we propose a black-
box attack algorithm to produce adversarial examples that can fool DNNs even with limited knowledge
of the model by using multiple classification (MC) models and distilling useful models to train the
generator and discriminator.

2 Related Work

2.1 Adversarial Examples

Adversarial examples were introduced in 2013 by Szegedy et al. and their researches have demonstrated
that deep neural networks, CNNs included are vulnerable to adversarial examples. Meanwhile, there are
many other researches dedicated to adversarial attacks. The majority of them are based on optimization
by minimizing the distance between the adversarial images and the clean images so as to cause the model
to make wrong classification prediction. Some attack strategies require access to the gradients or
parameters of the model, yet these strategies are limited to gradient-based models only. (e.g., neural
networks). Others only need have access to the output of the model.

Fig. 2 is the generation process of adversarial examples. The attack algorithm firstly computes the
perturbations by calling the deep learning model and then creates the adversarial examples by adding the
perturbations to the clean images to fool the model.

2.2 Attack Methods

There are two common types of adversarial attacks: white-box attacks and black-box attacks. The
adversarial attacks are called white-box attacks when the complete information of the targeted model is
fully known to the adversary. Alternatively, when the adversary has limited knowledge of the targeted
model and creates adversarial examples by having access to the input and output of the model, they are
called black-box attacks. Among the existing attacks, the white-box attack algorithm predominates.

Figure 1: Comparison of clean images and adversarial images

Figure 2: Generating adversarial example
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2.2.1 White-box Attacks
In white-box attacks, L-BFGS [9] is one of white-box attacks to generate adversarial examples for deep

learning model. However, there are imperfections in this attack algorithm. For example, it is very slow to
generate the adversarial examples and these examples can be well-defended by reducing their quality.
Goodfellow et al. [10] proposed Fast Gradient Sign Method (FGSM), which generates adversarial
examples by incrementing the gradient direction of the model loss. Due to the high computational cost of
L-BFGS and the low attack success rate of FGSM, the Basic Iterative Method, also called I-FGSM, was
proposed by Kurakin et al. [11]. BIM can reduce the computational costs with iterative optimization and
increase the attack success rate, so highly-aggressive adversarial examples can be created after a small
number of iterations. Projected Gradient Descend (PGD) in Madry et al. [12] which can produce
adversarial examples via randomly initializing the search in a certain azimuth class of the clean images
and then iterating several times and as a result, it became the most powerful first-order adversarial attack.
That is, if the defense method can successfully defend the attack of PGD algorithm, then it can defend
other first-order attack algorithms as well. Carlini et al. [13] attack (C&W) designed a loss function and a
search for adversarial examples by minimizing the loss function and they applied Adam [14], which
projects the results onto box constraints at each step to achieve the strongest L2 attack, so as to solve the
optimization problem and handled box constraints.

2.2.2 Black-box Attacks
Black-box attacks have two categories: those with probing and those without probing. As for the former,

the adversary knows little or nothing about the model but can have access to the model’s output through the
input, while the latter implies that the adversary has limited knowledge of the model. Some studies [15,16]
pointed out that adversarial examples generated by black-box attacks can fool more than one model.

2.3 Generative Adversarial Networks

The generative adversarial networks proposed by Goodfellow et al. [17] is an unsupervised learning
algorithm inspired by the two-person zero-sum games in game theory. Its unique adversarial training idea
can generate high quality examples, so it has more powerful feature learning and representation
capabilities than traditional machine learning algorithms. GAN consists of a generator and a
discriminator, each of which updates its own parameters to minimize the loss during the training process
of the model, and finally reaches a Nash equilibrium state through continuous iterative optimization.
However, there is no way to control the model because the process is too free in generating lager images.
To overcome the limitations of GAN, Conditional GAN (CGAN) was proposed by Mirza et al. [18] and
they added constraints to the original GAN to direct the sample generation process. After that, many
advancements in designing and training GAN models have been made, most significantly the Deep
Convolutional GAN (DCGAN) proposed by Radford et al. [19], which is a combination of CNN and
GAN and has substantially improved the quality and diversity of the generated images. Fig. 3 is a
schematic diagram of the structure of GAN.

Random vector z Generator G

Discriminator D

Fake data G(z) 

Real data x

Output 0 or 1

Figure 3: Generative adversarial networks [17]
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3 Methodology

3.1 Problem Definition

Suppose I is a clean image, Ia is an adversarial image, G is a generator, D is a discriminator, and
CMA; CMB; CMC; CMD are four classification models, where CMA is a CNN, CMB is a FCNN, CMC is a
RNN, and CMD is a CNN with a more complex structure. We choose CMA as a local model and distill
model [20] CMD0from CMD. We expect to train the generator and discriminator by calling
CMA; CMB; CMC and CMD0 . As a result, the adversarial examples generated by this trained model are able
to attack CMD with a high attack success rate (ASR). I and Ia can be expressed by the following equation:

Ia ¼ I þ G Ið Þ (1)

3.2 Network Architecture

The model proposed in the paper consists of a generator and a discriminator of GAN. The generator is
similar to the way the encoding network in VAE [21], where examples are input to generate perturbations,
and then these perturbations are added to the original input to get the adversarial examples. While the
discriminator is a simply a classifier and it is used to distinguish the clean images from the adversarial
images created by the generator. The model is shown in Fig. 4.

Tab. 1 is the structure of the generator.

The network architecture of discriminator is similar to that in DCGAN. The clean and generated images
are respectively fed into the discriminator and then passes three convolutional layers, one fully connected
layer and a sigmoid activation function. The discriminator D is to make the prediction of the clean
images as close to 1 as possible and the generated images approximate 0. The network architecture of
discriminator is presented in Tab. 2.

CMD’ CMC CMB CMA

Multiple classification models

0 or 1

Generator Discriminator

Clean image I G(I)

D

D(G(I))

CMD
Distillation

...

+

g

perturb

adv

Figure 4: Structure of our method. The clean image I is passed into the generator to obtain G(I).
CMA; CMB; CMC and CMD are four classification models which are FCNN, CNN, LSTM and
VGG16 [22]. CMD0 is the distillation model of CMD. G(I) is input into the four classification models in
the figure, and the output of the model (probability) and the generator loss can be obtained. Then G(I) is
input into the discriminator and discriminator loss can be calculated
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3.3 The Algorithm for Generating Adversarial Examples

The algorithm for generating adversarial examples is as follows. The inputs are clean image I and four
pre-trained models, the output is the adversarial images. The whole process starts with obtaining the
distillation model CMD0 and then the model is trained according to Eqs. (2) and (5) to minimize the loss
so that the model output the adversarial images successfully.

3.4 Loss Function

The loss function of the generative model contains that of the discriminator and generator. The loss
function of the discriminator can be described as follows:

Table 1: Generator structure

Layer type Output dimension Activation

Convolutional layer (7,7,32) ReLU

Residual block (7,7,32) ReLU

Deconvolutional layer (28,28,1) ReLU

Table 2: Discriminator structure

Layer type Output dimension Activation

Convolutional layer (2,2,32) LeakyReLU

Instance Normalization 128 None

Fully connected layer 1 Sigmoid

Algorithm 1: Training generative model to generated adversarial images

Input: Clean images I , pretrained models CMA; CMB; CMC and CMD

Output: Adversarial images Ia

1. G ← Generator ();

2. D ← Discriminator ();

3. CMD0 ← Distill model CMD; //CMA as a local model

4. for each I in train set do

5. x ← G(I);

6. Ia ← I + x;

7. CM Iað Þ; //Get the probability of CMA; CMB; CMC and CMD0

8. Minimize the loss of discriminator with Eq. (2);

9. Minimize the loss of generator with Eq. (5);

10. end for

11. return Ia;
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LD ¼ Lfake þLreal (2)

To make the discriminator converge, we choose the mean square error (MSE) [23] as the loss function of
the discriminator. From Eq. (2), it can be seen that the loss function is made up of the real and the fake loss.
Where the real loss can be described as:

Lreal ¼ MSE D Ið Þ; 1ð Þ (3)

I refers to the clean image, and D Ið Þ is the output. Since training the discriminator is to make the clean
image approach to 1, D Ið Þ is combined with the all-1 vector to compute the MSE. Meanwhile, we expect the
generated image to become near 0, so the generated examples loss can be expressed as follows:

Lfake ¼ MSE D G Ið Þð Þ þ I ; 0ð Þ (4)

The loss function of the generator consists of three parts, as shown in Eq. (5), on the premise of
a ¼ b ¼ c ¼ 1, the generated adversarial examples are best.

LG ¼ aLg þ bLperturb þ cLadv (5)

The first part is to make the generated image as close to the real image, so the first part is MSE, as shown
in Eq. (6).

Lg ¼ MSE G Ið Þ þ I ; 1ð Þ (6)

The goal of the second part is making the output G Ið Þ of the generator as close as to 0, so we add the
hinge loss to the L2 norm. e is a hyperparameter used to stabilize the training of generator.

Lperturb ¼ max 0; G Ið Þj jj j2 � e
� �

(7)

The third part is to enable the generated examples to deceive the classification model, so the loss
function can be defined by:

Ladv ¼ f C G Ið Þ þ Ið Þ; yð Þ (8)

In Eq. (8), C represents the multiple models, including CMA; CMB;CMC and the distillation model
CMD0 , f stands for the loss function and y symbolizes the one-hot vector transformed from the real label.
As a result, its probability value can be obtained by adding the output of the generator and the clean
image as the input of the multiple models, and then the loss can be calculated by using label y.

4 Experiment

4.1 Environment and Dataset

For the experimental environment, TensorFlow was applied as the deep learning framework, and the
graphics card was NVIDIA GeForce GTX1080Ti. CUDA and cuDNN were configured for graphics card
acceleration training.

The data set in the experiment was the MNIST handwritten digits data set, which consists of 60,000 train
set images and 10,000 test set images. These images have been pre-processed with a uniform size of 28*28,
which reduces the complex operations of data collection and pre-processing, and allow us to utilize them with
only some normalization.

4.2 Threat Model

CMA is used as a local model to get the distillation model CMD0 from CMD, and our goal is training the
generative model by calling the multi-model (excluding model CMD). The generated adversarial examples
can not only attack multi-model for auxiliary training but also the model CMD, i.e., VGG16.
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4.3 Results and Analysis

White-box attacks are the most commonly used in adversarial attacks and they have their deficiency
mentioned above. To prove that our method is effective, we generated 10,000 adversarial examples
with an assumption of the test data set of MNIST, as shown in Fig. 5, and then classified them with
CMA; CMB; CMC and CMD respectively. Tab. 3 shows the black-box attack algorithm proposed by
Xiao et al. [24].

CMA as a local model, CM
0
as the distillation model get by CMA distilling CMB; CMC and CMD

respectively. They are used as the target models for training the generative models. Accuracy is calculated
on models CMA; CMB; CMC and CMD after obtaining the adversarial examples.

As we can see in Tab. 4, we have adopted multi-model to train the generative model, and the ASR of
CMD has been improved for both static and dynamic distillation. We also experiment on MNIST with
7 classes (0–6) further improved by ASR, and the experimental results are shown in Tab. 5.

As shown in the table above, the ASR of VGG16 has increased from 97.39% to 98.25%, which proves
that our method can effectively perform black-box attack on VGG16.

Figure 5: A comparison of clean images and adversarial images. The first two rows are clean images
sampled from the MNIST data set, and the last two rows are their corresponding adversarial images
produced by our method, which are able to force CMD to make wrong classification prediction with
limited knowledge of the model CMD

Table 3: Accuracy (%) on MNIST-10 of different models for pristine data and adversarial examples

Model CMA CMB CMC CMD

Accuracy (p) 99.27 99.88 98.38 99.98

CM
0

0.98 33.42 61.27 65.78

ASR (b-S) Null 48.80 54.32 38.42

ASR (b-D) Null 98.12 98.54 97.39

p: pristine test data; CM
0
: distillation model of classification model; b-S: black-box attack with static distillation strategies; b-D: black-box attack

with dynamic distillation strategies; Null: CMA as a local model.
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5 Conclusion

In this paper, we proposed a black-box attack algorithm based on the GAN network architecture.
Compared with other adversarial attack algorithms, this method generates adversarial examples with
better transferability and higher ASR for the model. We use various classes of neural networks to assist in
the training of the model, and experiments conducted on MNIST have validated the effectiveness and
efficiency of our method.
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