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Abstract: Precipitation nowcasting has become an essential technology underly-
ing various public services ranging from weather advisories to citywide rainfall
alerts. The main challenge facing many algorithms is the high non-linearity and
temporal-spatial complexity of the radar image. Convolutional Long Short-Term
Memory (ConvLSTM) is appropriate for modeling spatiotemporal variations as it
integrates the convolution operator into recurrent state transition functions. How-
ever, the technical characteristic of encoding the input sequence into a fixed-size
vector cannot guarantee that ConvLSTM maintains adequate sequence represen-
tations in the information flow, which affects the performance of the task. In this
paper, we propose Attention ConvLSTM Encoder-Forecaster(AttEF) which
allows the encoder to encode all spatiotemporal information in a sequence of vec-
tors. We design the attention module by exploring the ability of ConvLSTM to
mergespace-time features and draw spatial attention. Specifically, several variants
of ConvLSTM are evaluated: (a) embedding global-channel attention block
(GCA-block) in ConvLSTM Encoder-Decoder, (b) embedding GCA-block in
FconvLSTM Encoder-Decoder, (c) embedding global-channel-spatial attention
block (GCSA-block) in ConvLSTM Encoder-Decoder. The results of the evalua-
tion indicate that GCA-ConvLSTM produces the best performance of all three
variants. Based on this, a new frame work which integrates the global-channel
attention into the ConvLSTM encoder-forecaster is derived to model the compli-
cated variations. Experimental results show that the main reason for the blurring
of visual performance is the loss of crucial spatiotemporal information. Integrat-
ing the attention module can resolve this problem significantly.
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1 Introduction

Precipitation nowcasting involves providing accurate and timely forecasts of precipitation intensity in a
local region. Radar echo extrapolation technology is the backbone of precipitation nowcasting. Extrapolation
predicts future radar maps of fixed length, which strongly depend on the previously observed radar
echo sequence. Lately, considerable progress has been made on the deep learning approach of radar echo
extrapolation. Since the deep learning algorithm for radar echo extrapolation does not get any clues to
understand the content of the input sequence, the biggest obstacle to accurately modelling the evolution
process in this unsupervised situation is the way to learn the complex spatiotemporal correlations. As a
result, establishing an effective precipitation forecasting model is always challenging.

The ongoing success of the sequence-to-sequence framework [1,2] has attracted widespread interest
among researchers. However, it is not trivial to transfer this ability to precipitation nowcasting. On the
one hand, the traditional encoder-decoder approach has to compress all the spatiotemporal information
into a fixed-length vector. This may make it difficult for the network to address long-term spatiotemporal
correlations [3]. On the other hand, it is unreasonable to assign the same weight to all inputs without
discrimination. Motivated by these two deficiencies, we design AttEF for short- and long-term
spatiotemporal modelling. The attention module in AttEF decides which parts of the input sequence to
pay attention to depending on the preceding output of the decoder. By embedding the attention module in
the forecaster, we relieve the encoder from the burden of having to encode all information in the input
sequence into a vector of fixed length vector [3] and allow AttEF to focus on essential information. The
attention moduleis obtained by exploring the ability for time-space feature fusion and the function of
spatial attention of the convolution operators in ConvLSTM.

We carry out our work based on the previous studies [4,5]. The former research has pointed out that
the convolution operators in the three gates of ConvLSTM scarcely contribute to the fusion of space-time
feature. And extra spatial attention has no contribution to improving performance. With only
the convolution operator of input-to-state transition, a new LSTM variant (FconvLSTM) is obtained. We
integrate the global-channel attention in FconvLSTM encoder-decoder to buildvariant (b). Moreover, the
viewpoint proposed by Woo et al. [5] indicates that the combination of channel attention and spatial
attention can focus on the target object with more accuracy. Therefore, we integrate global-channel-spatial
attention into the ConvLSTM encoder-decoder to construct variant (c).

Finally, we integrated global-channel attention into ConvLSTM encoder-decoder to build variant (a).
In a nutshell, we have proposed and analyzed three structures. The overall design is shown in Fig. 1.
The difference between the three variants is the choice of Att-block and LSTM block. Experiments between
variant (a) and variant (b) demonstrate that convolution operators in the three gates of ConvLSTM have the
ability to mergespace-time features. And experiments between variant (a) and variant (c) show that
convolution operators have the function of spatial attention. By analyzing the experimental results in
Section 4, we develop an AttEF structure based on the optimal variant GCA-ConvLSTM.

2 Related Work

Spatiotemporal sequence forecasting Precipitation nowcasting is an intrinsically spatiotemporal
sequence forecasting problem. Spatiotemporal modelling has widely used in precipitation nowcasting
[6,7], video prediction [8–18], robotics [19,20], and traffic flow prediction [21,22]. Lately, there is a
tendency to replace the simple LSTM method [9] by the combination of CNN (convolution neural
network) and LSTM networks [6,11,20,21,23] to model the spatiotemporal relationship. And this
ConvLSTM type structure derives a variety of frameworks such asPredRNN [24], PredRNN++ [25],
Memory in Memory [26], and EIDETIC 3D LSTM [27]. In addition, Fang et al. [28] proposed an LSTM
and DCGAN based network. Brabandere et al. [29] designed a convolution kernel which changes with
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the input. Alahi et al. [30] proposed SocialLSTM to forecast the trajectory of pedestrians in the scene. Jain
et al. [31] proposed a Structural-RNN to combine spatiotemporal graphs with RNN. Furthermore, the
sequence-to-sequence model has been increasingly used in spatiotemporal modeling [7,9,32,33], which
follows a paradigm: reconstruct future images from the internal state of the model. However, since the
sequence-to-sequence model has to squash all the spatiotemporal information into a vector of fixed
length, the predicted images are often blurry. Therefore, in this paper, we propose to design an attention
module to assign different weights to different parts of the input sequence in order to focus only on the
specific context vectors relevant to the generation of the next target image. Thereby our model can reduce
the loss of important information and improve the clarity of the generated image.

Attention in encoder-decoder Some recent approaches [2,3] have sought to incorporate the attention
mechanism into the sequence-to-sequence model. Mnih et al. [34] proposed a RAM that uses reinforcement
learning to organize the perception location and scope. Ba et al. [35] further proposed DRAM for the
identification of multiple targets in the images. Xu et al. [36] introduced the attention mechanism into the
image captions and proposed soft attention and hard attention based on reinforcement learning. Luong et al.
[37] proposed both local attention and global attention concepts. Yang et al. [38] proposed two levels of
attention for document classification. Gehring et al. [39] proposed a sequence-to-sequence network entirely
based on CNN and adopted a multilayer attention mechanism to obtain the relation between the encoder
and the decoder. Fu et al. [40] proposed RA-CNN to solve the problem of fine-grained image classification.
Chen et al. [41] proposed SCA-CNN that uses channel-wise attention and spatial attention to do image
caption. Hu et al. [42] proposed SEnet to learn the correlation between the various channels. Woo et al. [5]
applied the channel and spatial attention modules to learn what to pay attention to and where to pay
attention to. Li et al. [43] proposed SKNet based on SENet to learn the importance of convolution kernels.
The analysis in the study [4] showed that the convolution operators in the three gates of ConvLSTM barely
contribute to the fusion of space-time feature, and ConvLSTM has no spatial attention function. In this
paper, we integrate the global-channel attention into FconvLSTM encoder-decoder and ConvLSTM
encoder-decoder and global-channel-spatial attention into ConvLSTM encoder-decoder to explore the
importance of the convolution operator in ConvLSTM in the field of spatiotemporal sequence forecasting.

3 Exploring Model Structure for Precipitation Nowcasting

3.1 The Variants of ConvLSTM Encoder-Decoder

ConvLSTM, proposed by Shi et al. [7], uses convolution to perform four various transform operations
on the input Xt and the hidden state Ht�1, shown as Fig. 3A. And the main formulas are given as follows:

Figure 1: The overall architecture of the three variants
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it ¼ r Wxi � Xt þWhi � Ht�1 þWci � Ct�1 þ bið Þ (1)

ft ¼ r Wxf � Xt þWhf � Ht�1 þWcf � Ct�1 þ bf
� �

(2)

ot ¼ r Wxo � Xt þWho � Ht�1 þWco � Ct�1 þ boð Þ (3)

~Ct ¼ tanhðWxc � Xt þWhc � Ht�1 þWcc � Ct�1 þ bcÞ (4)

Ct ¼ ft � Ct�1 þ it � ~Ct (5)

Ht ¼ ot � tanhðCtÞ (6)

where r is the sigmoid function, “*” and “�” represent convolution operator and Hadamard product
respectively. The parameter W is 2D convolution kernels. The input Xt, the cell state Ct, the hidden state
Ht�1, the candidate memory ~Ct, and the gates it, ft, ot are all 3D tensors. We build three variants of
ConvLSTM, and the overall model architecture is presented in Fig. 1.

Figure 2: Global-channel attention block(GCA-block). First, we apply an alignment process to the
encoder’s hidden state �hj and decoder’s hidden state ht�1 and obtain the output etj. Second, etj is entered
into the softmax function to get the probabilities output at. Third, the weight vector at is multiplied by
�hj j 2 0; . . . ;Tð Þ to obtain the context vector ct. Finally, ct and ht�1 are input into Catnet-block to get
GCA-block output. The convolution kernels of conv1, conv2, and conv3 are 1 � 1, and the convolution
kernel in Catnet-block is 3 � 3

Figure 3: FconvLSTM applies the global average pooling operation to the input data Xt and Ht�1, so the
convolution operation is reduced to a fully connected operator
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(a) Embedding global-channel attention block (GCA-block) in ConvLSTMEncoder-Decoder
(GCA-ConvLSTM)

In this variant, the global-channel attention module (GCA-block)is embedded into ConvLSTM encoder-
decoder, and we call the variant GCA-ConvLSTM. The structure first encodes the input sequence into N
layers of encoder states:�hj;Hlayer ¼ Encoder Xt�Jþ1; � � �;Xtð Þ;where �hj j 2 0; . . . ; Jð Þ is the set of N-th
hidden state for each input, Hlayer layer 2 0; . . . ;Nð Þ is the output of the N-layer encoder. As shown in
Fig. 1, N = 3, J = 4 can be expressed as �h0; �h1; �h2; �h3;H0;H1;H2 ¼ Encoder Xt�Jþ1; � � �;Xtð Þ. Then the
decoder uses another N-layer ConvLSTM and GCA-block to generate predictions based on the encoder
output: ht ¼ Decoder ~ht;Hlayer

� �
. At each time step of the decoder, �hj j 2 0; . . . ; Jð Þ and the hidden state

ht�1 are input into the GCA-block to obtain the input of the decoder at the current time step:
~ht ¼ GCA� block �hj; ht�1

� �
, h0 ¼ H2. The main formulas of GCA-block are given as follows:

etj ¼
conv3 conv1ðht�1ð Þ � conv2 �hj

� �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim � h � wp ;where j 2 0; . . . ; J (7)

atj ¼ expðetjÞPT
k¼1 expðetkÞ

(8)

ct ¼
XJ

j¼1
atj�hj (9)

~ht ¼ catnet ct; ht�1ð Þ (10)

Formula (7) shows the alignment process we build. It measures the fit of the inputs around position j and
the output at position t by multiplying �hj and ht. And then divide by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim � h � w

p
to decrease the saturation

effect caused by excessive dimensions and sizes and divert attention. Then the weight atj of each hidden state
of the encoder �hj is calculated by the softmax function as in formula (8). Finally, the context vector ct is
computed, as in formula (9). As objects moving in the spatiotemporal sequence may undergo sudden
changes and entanglements. This requires that the model learn short-term sequence dynamics and recall
previous contexts before occlusion occurs. Therefore, both short- and long-term information is equally
important. Thus, we design a Catnet-block for merging ct and ht�1, which performs the fusion of short-
and long-term information. The formula of the Catnet-block can be presented as follows:

~ht ¼ r conv ctð Þð Þ � ct þ ht (11)

Among them, r is the sigmoid function. Formulas (7)–(11) jointly represent the GCA-block we
constructed. The whole algorithm of GCA-block can be represented by formula (12). And the architecture
of the GCA-block is shown in Fig. 2A.

~ht ¼ GCA� block �ht; ht
� �

(12)

(b) Embedding GCA-block in FconvLSTM Encoder-Decoder (GCA-FconvLSTM)

To verify the ability to merge the space-time features of the convolution operators in the three gates of
ConvLSTM, we construct variant (b). The FconvLSTM removes the convolution operators of the gates in
ConvLSTM as Fig. 3B. The main formulas of FconvLSTM are given as follows:

�Xt ¼ GlobalAveragePooling Xtð Þ (13)

�Ht�1 ¼ GlobalAveragePooling Ht�1ð Þ (14)
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it ¼ r Wxi � �X t þWhi � �Ht�1 þ bið Þ (15)

ft ¼ r Wxf � �X t þWhf � �Ht�1 þ bf
� �

(16)

ot ¼ r Wxo � �X t þWho � �Ht�1 þ boð Þ (17)

~Ct ¼ tanhðWxc � Xt þWhc � Ht�1 þ bcÞ (18)

Ct ¼ ft � Ct�1 þ it � ~Ct (19)

Ht ¼ ot � tanhðCtÞ (20)

In this variant, the convolution operations of the three gates it, ft, and ot are transformed into fully
connected operations, and only the convolution of the input-to-state transition is retained. he cell state Ct,
the hidden state Ht and the candidate memory ~Ct are still 3D tensors. The pooled input �Xt, the pooled
hidden state �Ht�1, and the gates it, ft, ot are reduced to 1D tensors. Then, we build the GCA-FconvLSTM
model that integrates GCA-block into FconvLSTM encoder-decoder.

(c) Embedding global-channel-spatial attention block (GCSA-block) in ConvLSTM Encoder-
Decoder (GCSA-ConvLSTM)

To further verify the convolution operators in the gates of ConvLSTM play the role of spatial attention,
we build variant (c). The difference compared to variant (a) is the alignment process. We combine global
attention with channel attention and spatial attention to build a GCSA-block, which can be formulated as
(21),where spatio_conv is a 3 � 3 convolution.

etj ¼ spatio conv
conv3 conv1ðhtð Þ � conv2 �hj

� �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim � h � wp

� �
(21)

3.2 Encoder-Forecaster Structure

In the previous section, we explored three variants of ConvLSTM encoder-decoder to design an attention
module to capture short- and long-term spatiotemporal correlation. Experiments on Moving MNIST show that
GCA-ConvLSTM outperforms other variants. The experimental results are shown in Section 4.

In this section, we build the encoder-forecaster structure based on the GCA-ConvLSTM explored above.
There are two differences compared to the traditional encoder-decoder: Firstly, we insert downsampling and
upsampling layers between the ConvLSTM, which are implemented by convolution and deconvolution with
a stride; secondly, we reverse the link of the decoder network. This architecture is similar toTrajGRU [8], but
the difference is the way we obtain information. AttEF would be able to select a subset of spatiotemporal
information in an adaptive manner from all input and the generated images. The AttEF model integrates
the GCA-block into the forecaster so that the forecaster input changes from void to GCA-block output.
This enables our model to copewith sudden changes and model tangled movements by analyzing short-
and long-term information. The model structure is presented in Fig. 4.

4 Experiments

In this section, we present experiments on two spatiotemporal datasets. First, we evaluate the
performance of the three variants and the AttEF model on the Moving MNIST dataset. Then, we use
another radar reflectivity dataset to further evaluate the performance of the AttEF model in the field of
precipitation nowcasting. We train all models with PyTorch and optimize them using the ADAM
optimizer with a starting learning rate of 10E−3. We define the loss function as L1 + L2 loss to
simultaneously enhance the sharpness and the smoothness of the generated image.
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4.1 Moving MNIST Dataset

The Moving MNIST dataset is a synthetic dataset, and each frame contains two hand-written digits that
bouncing within a 64 � 64 patch. These hand-written numbers are randomly selected from the MNIST
training set, and the start position and velocity direction are also randomly selected. A rebound occurs
when a digit touches a border or another digit [10]. The random factors of these attributes increase the
difficulty of the model prediction. This function serves to sample an unlimited size dataset. Each
sequence has 20 images, and the model uses the first ten images to predict the next ten images. To
evaluate the generalization and migration capabilities of the model, we also test on another Moving
MNIST dataset with three digits.

Firstly, experimental comparisons are made on the three variants proposed in Section 3.1. GCA-
ConvLSTM is superior to GCA-FconvLSTM and GCSA-ConvLSTM as shown in Fig. 5. The prediction
examples selected in Fig. 5a have entangled digits in the input. The three variants can effectively separate
the entangled targets, showing that the model can extract long-term information before the entanglement
as a predictive reference. However, the predictive results of GCA-FconvLSTM and GCSA-ConvLSTM
gradually deviate from the actual shape. The shape of the digit “5” in the GCSA-ConvLSTM prediction
result in Fig. 5a has been gradually predicted to the incorrect shape of the digit “6”.

To evaluate the generalization ability of the model, we test the model trained on the two-digit dataset on
the three-digit dataset. The test results of the three models are presented in Fig. 5b. As we can see, the last
image in the outputs of GCA-ConvLSTM still has obvious digital shapes, while the outputs of other variants
are blurry. Fig. 6 illustrates the frame-wise MSE results on the test set, and the lower curves indicate higher
predictive accuracy.

Based on the above experiments, we have concluded that the convolution operators in ConvLSTM play
an essential role in dealing with spatiotemporal sequence problems. In the same condition for integrating the
GCA-block, the performance of GCA-FconvLSTM is significantly lower than that of GCA-ConvLSTM. The

Figure 4: GCA-ConvLSTM Encoder-Forecaster (AttEF). The figure shows the prediction for the next three
images X̂3; X̂4; X̂5 based on the first three images X0; X1; X2. The symbol ] indicates the hidden states of the
encoder is stacked out in one dimension
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reason is that it is difficult to capture the spatiotemporal motion pattern without the convolution operator. And
the operation of global average pooling results in a large amount of loss of spatial information. The reason
why GCA-ConvLSTM outperforms GCSA-ConvLSTM is that the convolution operator itself within
ConvLSTM has the spatial attention function. As a result, the extra spatial attention not only does not
contribute to the improvements of performance, but also further pares down he effective information,
resulting in a distortion of the GCSA-ConvLSTM prediction.

we then carry out experimental comparisons between AttEF and other models. Fig. 7a provides a more
specific frame-wise comparison. Both ConvLSTM and TrajGRU prediction is blurry. Although the
predictive result of PredRNN is relatively clear, it gradually deviates from the correct shape of the digit
“8” to the incorrect shape of the digit “2”. Such a phenomenon results from these three benchmark
models which do not have a robust structure for adaptively updating an effective information flow. As
well, we evaluate the generalization ability of the model in MNIST-3. As shown in Fig. 7b, AttEF
achieves the best generalization results. And Fig. 8 illustrates the frame-wise MSE results.

Figure 5: Prediction examples on the Moving MNIST-2 and Moving MNIST-3 test set (a) the Moving
MNIST-2 test set (b) the Moving MNIST-3 test set

Figure 6: Frame-wise MSE comparisons of three variances on the MovingMNIST test sets (a) MNIST-2 (b)
MNIST-3
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Figure 7: Prediction examples on the Moving MNIST-2 and Moving MNIST-3 test set (a) the Moving
MNIST-2 test set (b) the Moving MNIST-3 test set

Figure 8: Frame-wise MSE comparisons of different models on the Moving MNIST test sets (a) MNIST-2
(b) MNIST-3

4.2 Radar Echo Grid Dataset

The radar echo dataset used in this paper is a continuous sequence of mosaicked ground radar. And the
single data is presented as 1000 � 1000 gridded data covering the Shaanxi Province. Each grid covers 0:01�

of longitude and latitude corresponding to approximately 1 km2. And the value in the gridded data represents
the radar reflectivity. The temporal resolution is 6 minutes. For pre-processing, we first set the negative
values in the original data to zero. And then, we conduct a data normalization operation. Finally, the
1000 � 1000 radar grid data is stored in NumPy array format and resized to 500 � 500. We use a
20-frame-wide sliding window with a stride of 5 to extract samples (10 for the input and 10 for the
prediction), and divide them into disjoint subsets of training, verification, and testing.

We set the patch size to 2 � 2 so that each 500 × 500 frame is represented by a 250 � 250 � 4 tensor.
Also, we use precipitation nowcasting metrics to evaluate the results of the experiment. These indicators are:
mean squared error (MSE), critical success index (CSI), probability of detection (POD), and false alarm rate
(FAR). When calculating CSI, POD and FAR, we first convert the prediction and ground truth to a 0/1 matrix
using a fixed threshold of radar reflectivity value and then calculate the hits (prediction = 1, truth = 1), misses
(prediction = 0, The value of truth = 1) and false alarms (prediction = 1, truth = 0), these three skill scores are
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defined as CSI ¼ hits

hitsþ missesþ falsealarms
, POD ¼ hits

hitsþ misses
, FAR ¼ falsealarms

hitsþ falsealarms
. We

choose two radar reflectivity values of 15 dBZ and 20 dBZ as the corresponding thresholds for binarization.

We take into account three benchmark models in this radar echo extrapolation experiment. ConvLSTM
and TrajGRU are both proposed to address the precipitation nowcasting problem, but their predictions are
blurry. AttEF performs the best, especially the short-term forecasts, and achieves the lowest MSE loss, as
shown in Fig. 10. It is obvious from Fig. 9 that while all models tend to blur with the increase of
forecasting steps, AttEF is more similar in shape to ground truth, with sharper edges and more details. Figs.
11 and 12 show the performance of the four models with thresholds of 15 dBZ and 20 dBZ on three skill
scores. Tabs 1 and 2 evaluate the precipitation forecaste quality. Because filtering more information than
15 dBZ, the effect of 20 dBZ will naturally diminish. By analyzing the performance of the four models on
the four evaluation indicators, we find that AttEF achieves the lowest FAR, and has the best performance
on POD and CSI, especially the first few frames. Due to the inherent uncertainty of the future, AttEF
generates increasingly blurry images from the first to the last time step. The reason why ConvLSTM
performs well on POD and CSI is that the number of radar reflectivity values exceeding the threshold is
relatively high. Therefore, ConvLSTM presents the worst performance on FAR and the lowest accuracy.

Figure 9: Visualize the result of callback extrapolation

Figure 10: The changing trends of the four models on MSE
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Figure 11: Reflectance >= 20dBZ index value model three skill scores change trends

Table 1: Reflectance >= 15dBZ index value, POD, CSI, FAR and MSE are the average results of ten frames

Algorithm POD CSI FAR MSE (106)

AttEF 0.725 0.624 0.123 8.187

ConvLSTM [6] 0.725 0.635 0.222 9.667

PredRNN [24] 0.720 0.627 0.195 8.912

TrajGRU [7] 0.695 0.547 0.179 9.267

Table 2: Reflectance >= 20dBZ index value, POD, CSI, FAR and MSE are the average results of ten frames

Algorithm POD CSI FAR MSE (106)

AttEF 0.382 0.373 0.169 8.187

ConvLSTM [6] 0.365 0.365 0.294 9.667

PredRNN [24] 0.335 0.285 0.239 8.912

TrajGRU [7] 0.274 0.228 0.264 9.267
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5 Conclusion

In this paper, we have provided a new AttEF model with the ability to learn short- and long-term
spatiotemporal correlations by intergrating a novel attention module in the forecaster. We design the
attention model by exploring three variants of the ConvLSTM encoder-decoder. And these three variants
confirm that the ConvLSTM convolution operators have the ability to merge spatio-temporal features and
the spatial attention function. According to the exploration performances above on the Moving MNIST
dataset, we have obtained the GCA-block attention module for the ConvLSTM encoder-decoder. Then
the encoder-decoder is optimized to encoder-forecaster. And integrate the GCA-block into the forecaster
to get our AttEF model. Finally, we carry out a comparative experiment with three mainstream algorithms
using two spatiotemporal datasets. Experimental results show that the AttEF model can learn short- and
long-term spatiotemporal dependencies adaptively and achieve the best performance on both datasets.
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Figure 12: Reflectance >= 15dBZ index value model three skill scores change trends
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