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Abstract: With the rapid development of network media, the short text has
become the main cover of information dissemination by quickly disseminating
relevant entity information. However, the lack of context in the short text can
easily lead to ambiguity, which will greatly reduce the efficiency of obtaining
information and seriously affect the user’s experience, especially in the financial
field. This paper proposed an entity disambiguation algorithm based on multi-
word vector ensemble and decision to eliminate the ambiguity of entities and pur-
ify text information in information processing. First of all, we integrate a variety
of unsupervised pre-trained word vector models as vector embeddings according
to different word vector models’ characteristics. Moreover, we use the classic
architecture of long short-term memory (LSTM) combined with the convolutional
neural network (CNN) to fine-tune pre-trained Chinese word vectors such as BERT
to integrate the output of entity recognition results. Then build the knowledge base
and introduce the focal loss function on the basis of CNN and binary classification
to improve the effect of entity disambiguation. Experimental results show that the
algorithm performs better than the traditional entity disambiguation algorithm based
on the single word vector. This method can accurately locate the entity to be dis-
ambiguated and has a good performance in disambiguation accuracy.

Keywords: Named entity recognition; named entity disambiguation; BERT; focal loss

1 Introduction

Driven by the rapid development of informatization, the Internet has entered an era of data explosion, in
which text data represented by Chinese short text plays an important role. However, the ubiquitous
ambiguous words bring great confusion to natural language processing (NLP).

To solve the ambiguity problem in the entities with the same name, the method named entity
disambiguation is proposed. It is a process that the ambiguous entities in natural language texts point to
the corresponding entities in the knowledge base accurately [1]. The traditional methods mainly use the
similarity measurement based on the bag-of-words model or the natural language processing technology
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based on syntax analysis to judge whether two target entity words have the same meaning. However, there
have been no major breakthrough results on the whole. Therefore, it has been a hot spot in natural language
processing in recent years how to quickly and accurately locate the named entities of the required company
names and their actual meanings from the massive Chinese short text data.

Recently, as deep learning has made significant progress in the field of image processing [2—4] and
steganography technology [5—7], it has also received widespread attention in natural language processing
technology [8,9]. The vigorous development of word embedding and neural networks provides a new
solution to the named entity disambiguation task. The entity disambiguation method based on artificial
intelligence mainly starts from three aspects: entity knowledge base construction, named entity
recognition, and named entity linking. In terms of entity knowledge base construction, Du et al. [10] used
Chinese Wikipedia as world knowledge. They used the word sense options contained in the Wikipedia
named entity’s disambiguation page to be disambiguated as the candidate named entity to disambiguate
the Chinese named entity. However, this work mainly focused on the named entity of the general domain,
but not considering the entity knowledge of other non-universal domains. Chen et al. [11] proposed a
subdivided domain entity-relationship discovery scheme combining domain metaknowledge and word
embedding vector analogy, which can achieve a good performance on the entity-relationship recognition
with only a small amount of domain knowledge extracted from the encyclopedia.

In terms of named entity recognition, Peng [12] used the general field text content and part of financial
field data as annotated data sets to train the named entity recognition model based on the bidirectional
LSTM neural network and conditional random fields (CRF). Experiments showed that this method helped
to improve the accuracy of named entities in the financial field. In terms of named entity linking,
Fang et al. [13] used deep learning methods to study text semantics. Xue et al. [14] proposed the Recurrent
Random Walk based EL (RRWEL) model, which uses CNN to learn the semantic representation of local
context, mention, entity, and type information. This model also used the random walk network to learn
document information and combined local information with global information to get the correct entity
corresponding to each document’s reference. Francis-Landau et al. [15] used CNN to learn the text’s
representation and then obtained the cosine similarity score and text vector of candidate entity vector.

However, many existing works on named entity disambiguation are oriented only towards long text in
the common domains. Since the long text has complete context information, the entity’s true meaning can be
judged based on the entity context clues and the existing prior knowledge background, which is helpful to
entity recognition and entity disambiguation to a certain extent. From the current situation, the existing
methods of entity disambiguation have only achieved good results in limited fields and limited entity
types, but these technologies cannot be well migrated to other specific fields [16]. Compared with the
existing entity disambiguation methods, the Chinese short text disambiguation context is not rich,
contains more polysemous words, and the syntactic structure is more complex, making it more difficult to
understand the knowledge base and semantics. This situation puts forward a higher requirement for the
disambiguation algorithm.

On the one hand, the traditional single word vector-based entity disambiguation algorithm is difficult to
deal with the short text. On the other hand, the named entity disambiguation technology has limitations in the
short text entity of the financial field. In this case, this paper proposes a financial entity disambiguation
algorithm based on multi-word vector ensemble and decision.

The main contributions of this paper are as follows:

1) Build a financial entity knowledge base based on big data. We use crawler technology to capture the
relevant entity description data on the network and obtain entity terms. Simultaneously, we splice the text
description of data set and expand definition for auxiliary construction, making full use of the annotated
data to ensure the knowledge base’s integrity.
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2) Integrate several pre-trained word vector representation models to improve the accuracy of entity
recognition. Different models have their own characteristics, and this method can give full play to each
model’s advantages.

3) Introduce the focal loss function to improve the accuracy of disambiguation. By analyzing the
characteristics of Chinese short texts, we combine LSTM and CNN for feature extraction, introduce the
focal loss function, and reduce the weight of easy-to-classify samples so that the model focuses more on
difficult-to-classify samples during training.

4) Improve the efficiency of financial entity disambiguation models under the premise of high accuracy.
In this paper, we transform the entity disambiguation into a binary classification problem, use the fast-
training CNN to extract local features and replace Word2vec with BERT to ensure the training speed further.

The organization of the remaining part is given as follows. We describe the related work in Section 2 and
detailly introduces the proposed method in Section 3. Section 4 gives extensive experimental evaluations.
Finally, Section 5 concludes this paper.

2 Related Work

The text entity disambiguation based on deep learning can be divided into three steps. The first step is to
transform words into digital vectors in the dimension or use a pre-trained vocabulary (Word Embeddings), a
vector representation of words for generating their contexts [17], to represent vector sets. The second step is
to pass the word vectors to the neural network for training and learning. The third step is to adjust the network
parameters according to the loss function. This section introduces several pre-trained word embedding
methods first and then introduces the feature extraction method of LSTM + CNN and the used focal loss.

2.1 Pre-Trained Word Vector Representation

In 2013, Mikolov et al. [ 18] proposed the concept of word vectors and invented Word2vec, a software tool
for training word vectors. It can infer the meaning of a word from its context according to the assumptions of the
two language models: Skip-gram and CBOW. The Skip-gram model predicts words in their context by target
words while CBOW predicts target words in their contexts by words. However, there are many parameters in
the word vector training model, and so a larger data set is needed to train these parameters for avoiding
overfitting, which requires a high cost to obtain large-scale annotated data sets. By contrast, the unlabeled
corpus was easier to build [19]. In this case, pre-training was first proposed as an effective regularization
method by Dai in 2015 [20]. The weight of the pre-trainied model trained on the large dataset was used as
the initial weight and then trained on the small datasets to update the weights [21]. This method reduced the
risk of model overfitting and accelerated the convergence rate of the model.

In 2018, Devlin et al. [22] of Google Al team released a deep bidirectional pre-trained word vector
representation model Bidirectional Encoder Representations from Transformers (BERT) model, which has
been the most breakthrough development in natural language processing. BERT adopts two pre-training
methods to obtain the features of expression words and sentences: Masked Language Model (Masked
LM) with trained two-way characteristics and Next Sentence Prediction (NSP) linked to capturing a
sentence. To improve the accuracy of the traditional word segmentation method based on BERT in
Chinese recognition, in 2019, Cui et al. [23] of Harbin Institute of technology and iFLYTEK jointly
proposed BERT’s improved model, namely BERT-wwm, to mask the whole word. In BERT-wwm, if the
parts of a complete word are covered, other parts of the same word will also be covered. Besides, this
laboratory combined Chinese Whole Word Masking technology and the RoBERTa model to publish the
Chinese Roberta-wwm-ext pre-trained model, which intensified the input data’s randomness.
Simultaneously, the NSP task is canceled, and more Chinese semantic information is added to the
knowledge map to improve the model’s learning ability. In the same year, researchers from Tsinghua
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University and Huawei proposed Enhanced Representation from knowledge Integration (ERNIE) [24] and the
amounts of data. This model was pre-trained by masked semantic units such as word and entity concepts. It
maked full use of vocabulary, syntax, and knowledge information to learn the semantic representation of
complete concepts, making the representation of semantic knowledge units of models more realistic.

The three pre-trained word vector models above improved BERT’s training sample generation strategy,
dynamic coverage mechanism, and the ability of general semantic representation in the pre-training stage.
They all achieved better results than the BERT model on several Chinese NLP tasks.

2.2 LSTM + CNN

The ability of local feature extraction of the pre-trained word vector model of deep learning and its
ability to deal with long-term dependent timeliness problems cannot be compared with that of the
machine learning model. This paper combines the machine learning model with the deep learning model.
The previous studies have shown that training models such as CNN and LSTM are more effective.
Convolutional neural network (CNN) [25] is a deep learning algorithm based on traditional neural
networks, which has advantages in focusing on its fast-training speed, constantly correcting the weights
of each layer during training and extracting sequence features and sentence encoding [26]. For sequence
modeling problems, LSTM [27] is an improved method for classifying samples using time series data. It
introduces the forgetting gate to solve the gradient disappearing problem, and thus has a strong ability to
extract long sequence features. Each prediction result of the LSTM neural unit will be combined with the
latter word as a feature and continue to predict, realizing the effective extraction and integration of the
context information and ensuring the prediction result’s accuracy.

In our algorithm, we introduce the LSTM layer as a feature extraction tool. After the LSTM layer
encodes the word vectors input, we transform the rich encoded information into a NER annotation
sequence and train it. The probability of features being labeled can be obtained by learning the mapping
of features to label resulting.

The combination of CNN and LSTM can simultaneously use CNN’s ability to identify local features and
LSTM’s ability to extract features. Sosa [28] found that the performance of the LSTM + CNN model was
8.5% higher than the CNN model alone and 2.7% higher than the LSTM model alone. Inspired by this
work, this paper selects to use the LSTM + CNN model to process the previously obtained word vector.
We use LSTM to extract comprehensive text features and input them into the CNN network model to
mine local associations in text, improving name entity recognition accuracy.

2.3 Loss Function

In general, the cross-entropy loss function is used in binary classification, measuring the degree of
difference between two different probability distributions in the same random variable. In machine
learning, it is expressed as the difference between the true probability distribution and the predicted
probability distribution. The smaller the value of cross-entropy, the better the prediction effect of the
model. The cross-entropy loss function of the binary classification task is expressed as:

—log ¥/ =1
L= ylog s = (1-piog(t —) = { T2 0

where )/ is the output between 0 and 1 after the activation function.

There will always be such a problem for classification models: the optimization target is inconsistent
with the assessment index. Generally, when used as a loss function, cross-entropy’s source is the
maximum likelihood estimation. However, the final evaluation goal is not to focus on how small the
cross-entropy is, but to focus on the model’s accuracy. In general, the accuracy rate will be high when the
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cross-entropy is small, but this relationship is not inevitable. So how to improve the correlation between them
is particularly important. To solve this problem, Lin et al. [29] proposed the focal loss function, which
measured the contribution of hard-to-classify and easy-to-classify samples to the total loss. This paper
chooses to use the focal loss function to make the model pay more attention to the difficult samples to
classify and misclassify.

3 The Proposed Disambiguation Algorithm

In this section, we will elaborate on the proposed disambiguation algorithm. It is mainly divided into
three parts: knowledge base construction, named entity recognition, and entity disambiguation. Among
them, named entity recognition is the premise of the entity disambiguation step, and the other parts
together constitute a disambiguation system. The built knowledge base will be used for subsequent entity
recognition and entity disambiguation.

3.1 The Framework

In this paper, the named entity recognition adopts the fine-tuning model of pre-trained “BERT + LSTM
+ CNN”, and entity disambiguation uses the method of “pre-trained Chinese word vector embedding + CNN
+ binary classifier”. Aiming at the problem that entity recognition and entity disambiguation cannot reach the
optimal level simultaneously in the actual training, we design to train entity recognition first, then load the
weight of the optimal entity recognition model to train the disambiguation model, and finally get the
disambiguation result. Fig. 1 shows the overall structure of the financial entity disambiguation model.
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Figure 1: The overall structure of the financial entity disambiguation model
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3.2 Knowledge Base Construction

Before recognizing and disambiguating the financial entities, it is necessary to construct the required
financial entity knowledge base. Since this paper is mainly aimed at identifying the financial entity in the
short text, the text quantity of the short text is small, making it difficulty to understand the context.
Therefore, we use the distributed crawler technology to crawl the valuable entity description text from the
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network text to expand the entity knowledge base. Simultaneously, the text description of all text items
corresponding to the entity to be disambiguated is spliced by using multiple text descriptions of the same
entity as supplementary descriptions to form a long text description of the knowledge base.

The specific steps are as follows: traversing the complete name set of entity words, first obtain the entity
word set to be identified, and then use the distributed crawler to crawl the description information of
corresponding entity words from Baidu baike. If there is no description of the entity words in Baidu
baike, find all the texts containing the entity word and its kb_id is not —1 in the training set train. json,
kb_id is the number of the disambiguation result corresponding to the entity table and splice them into a
text as the entity word’s knowledge base sample. In order to facilitate subsequent processing, the
dimension of the merged text is controlled within 512 dimensions. If there is no description of the target
entity word in Baidu baike and of the word in the training samples, the definition of “full name of xx
company is XXX is directly used as the description text. The process of constructing the knowledge
base is shown in Algorithm 1.

Algorithm 1: The knowledge base construction

Input: Entity name and kb_id of the financial company to be disambiguated

Output: D //D is the knowledge base of text description

1: for kb_id = 0 to max (kb_id) do

2:if CR==-1 //CR is the result of crawling the entity text description of the financial company to be
disambiguated through Baidu baike, and -1 means no result

3:  then if the entity has disambiguation text whose kb_id! = —1 in train.json

4 then D « splice all the disambiguated texts of the entity as description text //limit the dimension to 512

5 else use “The full name of xx company is XXX to define the description text

6: endif

7: end for

8: return D

This algorithm uses crawler technology to capture the related entity description data on the network for
entity nouns starting from the disambiguation training task. The data can be separated from the description in
the training set to the greatest extent. Besides, the text description method and extended definition of splicing
data set are used for auxiliary construction, ensuring the knowledge base’s integrity while making full use of
the annotated data.

3.3 Named Entity Recognition Based on Multi-Word Vector Integration

The entity disambiguation task’s premise is to identify entity reference items in the text. The accuracy of
entity disambiguation will directly affect the accuracy of the subsequent disambiguation. In this paper, BERT
improves the model training corpus with three kinds of unsupervised learning. At the same time, it is fine-
tuned with LSTM + CNN to construct the entity recognition model. The model is composed of BERT’s
output splicing classification task and convolution feature extraction. The model structure is shown in Fig. 2.

The main process of entity recognition. Firstly, we obtain the vector representation of disambiguation
text embedding by pre-trained BERT layer coding. (Along with the model training, BERT also conducts
some training on the parameters and modifies the BERT model’s parameters and the full connection layer
during the fine-tuning phase). After that, the 768 dimensions word vector is input into the LSTM layer to
extract features used as CNN’s input. After a convolution layer, convld is used for further feature
extraction and the classification of full connection layer. Finally, the sigmoid activation function is used
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to limit all positions’ output to a real number between 0 and 1(where 1 indicates yes and 0 indicates no),
which indicates the probability that the word is the beginning or the end of the entity. In this paper, the
threshold value is set to 0.5 to judge each prediction. If it is greater than 0.5, it can be regarded as the
entity’s head or the tail position. The pseudo-code is shown in Algorithm 2.

Output: [ Entity name }
Head of entity | 1 0 0 0
Tail of entity 0 1 e oo O 0
o O O o
\ Linear

feature vector é

Description of entity to be disambiguated

Figure 2: The structure of the named entity recognition model

Algorithm 2: Named entity recognition

Input: text = {t;, t,, ..., t;} //text is the text to be disambiguated

Output: Hand T //H and T represent the head and tail position of the entity respectively
1: for i = 1 to length (text) do

2:  vector «— BERT (text)

3 FL+— LSTM (vector) /lextract LSTM feature
4. FC+—CNN(FL) /lextract CNN feature
5:  result« Classify (FC) //classify

6:  number « Sigmoid (result)

7 if number > 0.5

8 then output entity head position H

9: else output entity tail position 7'

10:  end if

11: end for

12: return Hand T
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In the whole training process of the model, the Bert model will also do some training on the parameters
of some layers along with the training process of the task, and modify the parameters of the Bert model and
the full connection layer in the fine-tuning stage. Using the model fine-tuning and the pre-trained words
embedded vector to initialize the input parameters, it can achieve faster convergence and better fitting
effect and become more suitable for the current task, so that the whole model’s results reach the optimal.
By fine-tuning the BERT model of Chinese pre-training, this task is transformed into a problem of
sentence-relation judgment, which is more in line with the BERT pre-training process.

Voting integration mechanism. In this paper, we use three improved pre-trained BERT word vector
models-BERT-wwm, RoBERTa-wwm-ext, and ERNIE in entity recognition. Since the same statement
often contains multiple different entities in the text, the three models will output different entity
recognition results for the same text after the named entity recognition models such as LSTM and CNN.
Here we need to put these results to the vote. The model voting follows the principle of “the minority is
subordinate to the majority”. When there is a disagreement, we adopt the principle of “ERNIE model is
the main one and WWM model is the auxiliary one”, which means that the output result of most models
shall prevail, but when there is a disagreement, the output result of ERNIE model shall prevail, and the
other two results shall serve as the reference to output the final entity recognition result. In this way, all
named entities in the sentence can be identified to solve multiple named entities’ problems.

In this model, the input is word embedding, and the output is the probability of words as the head and
end of the recognition answer mention, that is, by using “0/1 annotation” to separate the beginning and end
positions of the entity. At the same time, LSTM embeds word features and learns parameter features through
many networks. The recognition results output by the model will be used in the next part of the
disambiguation task.

3.4 Named Entity Disambiguation Based on Word Vector Embedding and CNN Decision

The entity disambiguation of this algorithm is essentially a binary classification problem. In this paper,
the disambiguation method is based on the combination of pre-trained word vector embedding and
convolution neural network, loading the word vector pre-trained by word2vec as the embedding layer,
training CNN network, and predicting and outputting the results through binary classification. In the
entity disambiguation phase, the recognition results used in the entity recognition module’s model output
are loaded. The structure of the entity disambiguation model is shown in Fig. 3.
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Figure 3: The structure of the entity disambiguation model
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The main process of entity disambiguation. First, load the results identified by the named entity
recognition model and extract the corresponding description text from the constructed knowledge base.
Embed it with the input query text through the pre-trained 300-dimension Word2vec to respectively get
the Text seq and kb _seq word vector, and then take them as the input of the CNN layer. After twice
convolution convld and modified linear unit ReLLU, their local features are extracted, and then the text to
be disambiguated and the entity corresponding KB description text is paired. After twice fully connected
linear and ReL.U activation functions, the dimension is reduced to 1. In the case of multiple named
entities, the model will decide whether each entity is to be disambiguated while accurately
disambiguating. The named entity disambiguation algorithm is shown in Algorithm 3.

Algorithm 3: Named entity disambiguation

Input: Text= {t;, t,, ..., t;}, kb-text //Text is the description of entity to be disambiguated and kb-text is the
corresponding entity description text in knowledge base
Output: kb _id
1: for i = 1 to length (7ext) do
2:  Text seq— Word2vec (Text)
kb_seq— Word2vec (kb-text)
3:  FClText < CNN (Text seq) //extract CNN fearure
FCkb-text < CNN (kb_seq) //extract CNN fearure
4:  FC<« Concat (FClext, FCkb-text)
5: result— Classify (FC) // classify
6:  number— Sigmoid(resulf)
7. if number > 0.5
8 output kb _id

9: else output kb_id = -1
10:  end if
11: end for

12: return kb_id

The link probability of the output is a real number between 0 and 1. The output represents the matching
degree between the entity description to be disambiguated and the entity description of the knowledge base.
If the probability value is greater than 0.5, it will be considered that the link to the knowledge base is
successful and output specific kb_id. Otherwise, it is regarded as unsuccessful and output kb_id = —1.

3.5 Focal Loss Function

The normal cross-entropy loss function for a positive sample has such a principle that the greater the
output probability, the smaller the loss. For negative samples, the smaller the output probability, the
smaller the loss. The loss function is relatively slow in the iterative process of many simple samples and
may not be optimized to the best. In this case, we use the focal loss function in this paper. It is modified
on the basis of the standard cross-entropy loss, and its formula is expressed as:

L —{—Of(l —y) logy/, y=1

] = N

g —(1 —a)ylog(1 =), y=0
The factors o and y are added to the standard cross-entropy loss function. The « balances the uneven

ratio of positive and negative samples, and y adjusts the rate of the weight of simple samples decreases.

@
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Among them, y > 0 reduces the loss of easy-to-classify samples, and increases the calculation of difficult-
to-classify samples.

The focal loss function can solve the problems of imbalance in classification and differences in
classification difficulty. It reduces the weight of easy-to-classify samples and makes the model focus more
on difficult-to-classify samples during training.

4 Experimental Results and Analysis

In this section, we test and report the evaluation results of our approach. On this basis, we also analyze
and discuss the influence of essential factors on the proposed method.

4.1 Experimental Setting and Dataset

The experiments of this paper are implemented in the following configuration: Intel(R) Core (TM) i7-
7800X CPU @ 3.50GHz, 64.00 GB RAM, and two Nvidia GeForce GTX 1080 Ti GPUs. To evaluate the
performance of the named entity recognition and named entity disambiguation model proposed in this paper,
we use the data set provided by the Hang Seng Electronics Group. Tab. 1 is a description of the structure of
the data set.

Table 1: Dataset composition

Name

Content

Remarks

company 2 code sub.
txt

company 2 code full.
txt

train.json
dev.json
test_texts.txt

raw_texts.txt

Corresponding table of entities to be
disambiguated

Correspondence table of financial sector
corporate entity

Training set
Validation set
Test data set

Unlabeled data set (including the set of
sentences in the list of entities to be
disambiguated)

kb_id: Entity number
stock_name: Company
abbreviation

stock_full name: Full name of the
company

stock_code: Company code
Company abbreviation, full name
of the company, company code

It can be used to expand and
enhance the annotation data

4.2 Experimental Performance Evaluation Indicators

Three evaluation indicators of accuracy, recall rate, and F1 score are used to evaluate the entity
recognition part’s performance. Given the text input (expressed by Query), the N entity mentions in 0,
positions, and their links to the entity id of the knowledge base are manually annotated as
follows: MEg = {(mi,l1,e1),...,(mg, Ik, er)}. Accordingly, the output of the model is: ME, =
{(my,11,e1),...,(mg, Ik, er)}. The calculation formulas of accuracy P, recall rate R and FI score are
shown in Egs. 35 respectively.
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In terms of entity recognition, in order to fully verify the recognition effect of the model, use the given
dev and the data randomly selected in the raw_texts.txt (20% of the whole training set, excluding the data that
has been extracted to the training set) as the verification set, named dev_raw. During the training process, the
FI value of each round in training is shown in Fig. 4. The entity recognition experimental results of the three
pre-trained BERT models and their integrated models are shown in Tab. 2.

—01—F1 value

0.995
0.99 0.9865
0.985 0.982
0.98 0.9777 0.9783
0.975 0.9729
0.97 0.9669
0.965
0.96
0.955
0.95

1 2 3 4 5 6 7 8
Training round

.9899
0.9889 _0.9868

0.9929 0.9902
0.9902

10 11

0.992
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Figure 4: F] score of named entity recognition in each round of training

Table 2: Comparison of three pre-training BERT models and their integrated entity recognition effect (%)

Model dev dev_raw
Precision Recall F1 Precision Recall F1
BERT-wwm+LSTM+CNN 98.96 99.20 99.08 99.31 98.26 98.78
ERNIE+LSTM+CNN 99.26 99.33 99.29 99.27 98.84 99.05
RoBERTa-wwm-ext+LSTM+CNN 99.57 98.47 99.01 99.17 98.47 98.68
Model fuse 99.39 99.69 99.54 — — —
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We can see that the named entity recognition models can show excellent performance through the
experimental results when using a single word vector representation embedding. When the £/ value is all
above 99%, the accuracy of the named entity recognition algorithm based on multi-word vector
integration can still be improved by 0.25%, which fully demonstrates the method’s effectiveness.

4.4 Financial Entity Disambiguation Experiment Results

The result of our entity disambiguation example is shown in Fig. 5. The system can accurately identify
the entity name mention, the start position offset in the sentence, the kb _id number of the disambiguation
results in the entity table, and the confidence score.

QRS2 AR TE P RN, AR U UR R YR Y JLRAS ), MG BUR A M A

nce":0.9495363831520081

Figure 5: Example display of entity disambiguation results

In terms of entity disambiguation experiments, this paper compares and verifies the improvement of
Focal Loss function on the model and the accuracy of the three BERT improved models. The
experimental results are shown in Tabs. 3 and 4. In the training process, the FI value in each training
round of the named entity disambiguation algorithm is shown in Fig. 6. The verification set used in the
experiments in Tab. 4 is dev.json.

Table 3: Comparison of entity disambiguation effect under two loss functions under ERNIE model (%)

Loss Function Precision Recall F1
BCEWithLogitsLoss 90.42 90.71 90.57
Focal Loss 91.38 91.72 91.13

Table 4: Comparison of three pre-trained BERT models and their integrated entity disambiguation effect (%)

Model Loss Function dev

Precision Recall FI

BERT-wwm 90.44 89.94 90.19
ERNIE BCEWithLogitsLoss  90.42 90.71 90.57
RoBERTa-wwm-ext 90.05 90.49 90.27
Model Fuse Focal Loss 91.38 91.66 91.52

Tab. 3 is the comparison table of the ERNIE model’s disambiguation accuracy data under these two loss
functions of BCE With Logits Loss and Focal Loss. It can be clearly seen that the £/ value of the single word
vector model with the loss function of Focal Loss rises from 90.57% to 91.13%, indicating that adding the
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loss function can make the model pay more attention to difficult and misclassified samples, and effectively
improve the efficiency of classification.

—e—F1 value
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Figure 6: FI score of named entity disambiguation in each round of training

Here, we compare the single word vector disambiguation model whose loss function is BCE With Logits
Loss with our model proposed in this paper: the disambiguation result of the multi-word vector integrated
decision disambiguation model whose loss function is Focal Loss. It can be seen intuitively from Tab. 4
that the F'I value of our model is 0.95% higher than the highest F'/ value of the above three single word
vector models. This result further verifies the effectiveness of our algorithm.

5 Conclusion

In view of the polysemy problem of Chinese short text in the financial field, we propose a financial short
text entity disambiguation algorithm based on multi-word vector integrated decision-making, which integrates
a variety of unsupervised pre-trained word vectors and combines feature extraction of LSTM and CNN,
improving the accuracy of named entity recognition in Chinese short texts. We transform the entity
disambiguation into a binary classification problem and use the fast-training CNN network and replace
BERT with Word2vec to ensure the training speed. At the same time, we introduce the focal loss function
for the inconsistency of training loss and indicators to improve training efficiency. On the data set provided
by the Hundsun Electronics Group, the entity recognition accuracy rate of our algorithm reaches 99.54%,
the disambiguation accuracy rate is 91.52%. Experiments show that our algorithm can quickly and
accurately locate named entities in financial short texts so as to realize fast and accurate disambiguation.

Considering that the network model that is easy to train and fine-tune is becoming mainstream, we will
further explore and design an algorithm to reduce the size of the model under the premise of the accuracy of
the model in our future work.
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