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Abstract: As networked control systems continue to be widely used in large-scale
industrial productions, industrial cyber-attacks have become an inevitable pro-
blem that can cause serious damage to critical infrastructures. In practice, indus-
trial intrusion detection has been widely acknowledged to detect abnormal
communication behaviors. However, unlike traditional IT systems, networked
control systems have their own communication characteristics due to specific
industrial communication protocols. Thus, simple cyber-attack modeling is inade-
quate and impractical for high-efficiency intrusion detection because the charac-
teristics of network control systems are less considered. Based on the status
information and transmission connection in industrial communication data pay-
loads, which can properly express the characteristics of industrial control logic,
this paper associates industrial communication features with transmission connec-
tion payload and status payload. Furthermore, transmission connection features
include device address, context, time, and packet length, while status features cov-
er measurement, input, distributed state, control state, and more. After designing a
convolutional neural network (CNN) and a long short-term memory network
(LSTM) to extract status features and transmission connection features from
industrial communication data, this paper proposes a hierarchical deep learning
anomaly detection approach, which can integrate the advantages of CNN and
LSTM to achieve high-efficiency detection. The experimental results clearly show
that the proposed approach, having the advantages of strong detection capability
and low false alarm rate, is a superior means of anomaly detection when com-
pared to its peers.
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1 Introduction

With the rapid development of information and communication technologies, networked control systems
have been widely used in various large-scale industrial productions, such as chemical synthesis, machinery
manufacturing, and electric power generation. Automation and intelligence have been realized in control
processes [1,2]. However, they still suffer from security issues, which mainly come from traditional IT
systems. For example, a malicious hacker may steal or tamper with the process plan to damage the
industrial control logic. As a result, severe economic losses and social consequences will be incurred [3,4].
Anomaly detection systems often stand on the opposite side of cyberattacks in offensive and defensive
games, and they can prevent attackers from achieving their goals [5]. However, the intrusion detection
system not only needs to detect the various cyberattacks of malicious attackers but also needs to protect the
correct control logic, which is a crucial component in industrial productions. Therefore, anomaly detection
systems for networked control systems should pay much more attention to the logic status information of
communication data and the time or connection of the communication payload [6,7].

Compared with traditional IT systems, the characteristics of communication in networked control
systems can be mainly classified into two aspects: the transmission connection characteristic and the
status characteristic. To be more precise, industrial communication data must be preprocessed according
to these two characteristics in order to design an outstanding and feasible anomaly detection approach in
networked control systems. To better elucidate the relationship between transmission connection and
status information, a novel analytical concept of deep learning to extract the feature from an industrial
communication payload is introduced first. In this concept, long short-term memory (LSTM) can better
analyze the transmission connection relationship [8], and a convolutional neural network (CNN) can
better analyze the status information relationship from the communication payload. After that, a
hierarchical deep learning anomaly detection approach is proposed, which integrates the advantages of
CNN and LSTM. Finally, the efficiency and effectiveness analysis shows that our proposed method has a
better performance in comparison to other models.

The rest of this paper is organized as follows: Section 2 provides an overview on related work. Section
3 describes the proposed deep learning anomaly detection approach, including dataset description, data
preprocessing, and model designing. Section 4 presents the experimental results and discussions. Finally,
Section 5 gives a conclusion of this paper.

2 Related Work
2.1 Anomaly Detection Techniques

Anomaly detection, an important part of network security protection architecture, identifies various
malicious attack behaviors by analyzing the network traffic or key node data [9]. The main idea of
anomaly detection techniques in networked control systems is to build a normal model of hierarchical
data payload features and identify abnormal behaviors by comparing them with similar features of the
industrial communication payload [10]. The networked control system is established with an industrial
protocol that connects programmable logic controller (PLC), remote terminal unit (RTU), and human-
machine-interface (HMI). One outstanding challenge in the field is how to completely and appropriately
summarize industrial communication behaviors according to the specific communication characteristics.

According to the work in Wan et al. [11], existing anomaly detection approaches on transaction payload
features mainly include three categories: statistical-based cases, knowledge-based cases, and machine
learning-based cases. Specifically, the statistical-based and knowledge-based anomaly detection
approaches mainly identify some unknown attacks by building the regular network traffic profile and
utilizing a knowledge-based expert system [12]. However, it is difficult to define a high-quality model
without deeply investigating the deep industrial transaction behaviors or transmission connection features.
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Alternatively, the machine learning approach can be regarded as an efficient and effective measure since it
can build an excellent model, which can reflect the transmission connection features and status features of the
transaction payload. Furthermore, deep learning techniques have become a better choice to learn the inherent
regular pattern and representation level of sample data, and they have achieved remarkable results in the
fields of traditional network anomaly detection.

2.2 Deep Learning Techniques

At present, deep learning techniques are widely used in the industry: in the medical, industrial
production, operation, and maintenance environments. Furthermore, deep learning techniques are used in
academia: in the image, timing, and interpretable modeling environments. There are many methods, and
each has its own advantages. In particular, CNNs and recurrent neural networks (RNNs), which can learn
temporal and spatial features effectively, are the most commonly used models in deep learning techniques.

In common neural networks, the sum of each node in the first layer is weighted on the common neural
network, and the initial value of the last layer can be regarded as a representation or function to learn the
neural network from the input data [13]. In practice, a CNN has the ability of representation learning by
improving the architecture of the common neural network. It can classify the input information according
to hierarchical structure, and the input layer of a CNN can process multi-dimensional data. CNNs are able
to learn spatial features and have achieved impressive results in many machine learning tasks [14,15].
Furthermore, CNNs have a good analysis effect on the status information of the communication payload,
and many recent research results demonstrate its great potential. Reference Benkhelifa et al. [16] proposes
a deep learning method based on Hybrid MLP/CNN (Multi-layer Perceptron/Chaotic Neural Network)
neural network for anomaly intrusion detection. This method offers a better detection rate and a lower
false alarm rate when detecting novel attacks. Reference Ponomarev et al. [17] generates Denial-of-
Service (DoS) attack traffic with normal traffic that cannot be distinguished by some ordinary detection
algorithms, and proposes DoS attack detection based on a CNN synthesizing the attack traces payload to
improve the attack detection accuracy.

RNN is a fine algorithm that can process sequences of different lengths by using self-feedback, and it can
be devoted to process time or connection series samples. Moreover, each layer in an RNN not only connects
to the next layer but also outputs a hidden state for the current layer when processing next samples [18]. In
practice, LSTM is used to solve the problem of the explosion and disappearance of the RNN gradient [19].
LSTM is a predictive operation model, which can carry transmission features and can use a recursive method
based on a time-series back propagation predictive operation model. Additionally, it can combine real data
for convergence to improve detection accuracy and detect delaying attacks. Reference Khan et al. [20]
proposes that many known signatures from the attack traffic remain unidentifiable, and designs a scalable
hybrid IDS (intrusion detection system) based on the convolutional-LSTM network to identify network
misuses. Reference Amar et al. [21] proposes a weighted long short-term memory (WLSTM) algorithm
to solve malicious behaviors in cloud computing database under high-dimensional and high-speed
analysis requirements. More specifically, WLSTM realizes the attack detection of contextual malicious
behaviors by considering past events, and minimizes the vanishing gradient.

In brief, CNNs can directly and comprehensively identify various state features in networked control
systems and learn the existing features of each state to utilize corresponding disposal methods for
different abnormal states. LSTM can effectively learn connection features from a long sequence and
predict the operating state of each variable at a future time. By using the special structural features of
LSTM network, it is possible to mine the data association degree between different features in networked
control systems.
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This paper combines the advantages of CNN and LSTM in their respective fields and constructs a deep
learning anomaly detection model for the abnormal behavior, abnormal state, and abnormal transmission
mode of network control systems. We propose an anomaly detection method based on deep learning
technology. The effectiveness of the method is verified by training and testing the actual data set.

3 Hierarchical Deep Learning Anomaly Detection Solution

In the production control process of networked control systems, network attacks may not only cause
abnormal network traffic but also cause abnormal control logics. Based on those abnormalities, we
propose a deep learning anomaly detection model, which integrates the advantages of CNN and LSTM
by using hierarchical status-connection features of industrial communication data. Furthermore, this
model specifically includes data preprocessing, extraction of status features by CNN, extraction of
transmission connection features by LSTM, and the fully-connected LSTM to realize deep learning
anomaly detection in networked control systems. The main framework of the proposed model is shown in
Fig. 1. The detailed process can be described as follows.
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Figure 1: Main framework of hierarchical deep learning anomaly detection model

1) Data preprocessing stage: Guarantees that the training data format meets the standard format
requirements of CNN and LSTM. Ensures that a deep learning model can be properly trained.

2) Status feature extraction stage: Further extracts and processes the status features from the
communication payload data by creating a CNN neural network.

3) Connection feature extraction stage: Further extracts and processes the connection features from the
communication data by generating a LSTM recurrent neural network [22]. This network can learn from the
feature representation and models the time dependence automatically.

4) Concatenation & Classify: Classifies various communication behaviors in networked control systems
by using a SoftMax layer, which takes the outputs of CNN and LSTM as inputs.

3.1 Data Preprocessing

The analyzed datasets are standard industrial control intrusion detection datasets established by the MSU
Infrastructure Protection Center in 2014 [23]. Moreover, the original datasets are collected from the internal
SCADA laboratory of Mississippi State University, using the MODBUS application layer protocol to
achieve industrial control communication. Additionally, these datasets are generated by attacks on the
natural gas pipeline system, which uses the MODBUS protocol for industrial control communication.
Compared with the datasets used in IT intrusion detection, such as KDD-99 and NSL-KDD [24,25], these
datasets mainly have two types of characteristics: connection payload characteristics and status payload
characteristics. The connection payload characteristics describe the communication mode in the SCADA
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system and can be used to extract transmission patterns for malicious industrial activity detection. The status
payload characteristics describe the business status in the SCADA system, and they can be utilized to detect
network attacks, which cause abnormal behaviors of some critical devices, such as programmable logic
controllers and motion controllers.

In the data preprocessing step, we convert each piece of network payload into a matrix and encode
all labels with one-hot encoding. First, in order to generate a suitable matrix, which can be processed by
CNN and LSTM from the original data, we can expand each data line in the datasets with a random
value following a random normal distribution. Consequently, the feature vector can be converted into an
appropriate two-dimensional matrix. The main algorithm for converting data into a two-dimensional
matrix is shown in Algorithm 1.

Algorithm 1: Matrix generation

Input: The original data set D, the number of rows m, and the number of column #;
Output: The target matrix D';

1: function GenMatrix(D, m, n)

2: Generate a zero padding matrix D' of m x n
3:forixn+j<|D|do

4: ifi x n+j < |D| then

5: D'[i,j] < D[i X n+]]
6
7
8

else
D'[i,j] < x, where x belongs to the random normal distribution
: End if
9: End for
10: Return D

End function

Second, for the eight categories of behaviors in the datasets, we can apply one-hot encoding to
process each behavior. One-hot encoding has a low computational cost since the independent value of
each category of behavior is not too much. Tab. 1 shows the processed results for the datasets after
applying one-hot encoding.

Table 1: Results of one-hot code

No. Label name One-hot code
1 Normal 00000001
2 NMRI 00000010
3 CMRI 00000100
4 MSCI 00001000
5 MPCI 00010000
6 MEFCI 00100000
7 Dos 01000000
8 Reconnaissance 10000000
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3.2 Status Feature Extraction

In the next stage of our approach, we use a CNN to learn and extract data features from the two-
dimensional matrix, which has been generated in the data preprocessing stage, since the sparse
connection between the convolutional layer and the pooling layer in a CNN can hide some unimportant
information, reduce network training time, and accelerate network convergence.

To be specific, the proposed CNN in this paper consists of one input layer, three convolution layers
of different sizes, two pooling layers, and one global pooling layer. Given the two-dimensional matrix
generated by the data preprocessing step, the convolution layer extracts regional information of payload
features by use of a sliding window and expresses the information abstractly. Next, the pooling operation
will reduce the dimension of features, and the output of global pooling will represent all data vector
information and transmit them to the connection layer. The main framework of the proposed CNN in this
paper is shown in Fig. 2.

Input Feature maps Feature maps  Feature maps Feature maps Feature maps Layer

28x28 32@28x28 32@14x14 64@8x8 64@2x2 128@4x4 128

Convolutions MaxPooling Convolutions MaxPooling Convolutions  Global MaxPooling

Figure 2: Main Framework of status feature extraction

Convolution calculation: set the convolution kernel weight as w and bias as b, extract the feature map of
input data in the form of sliding window, and generate new feature m; by activating the feature map with
nonlinear activation function as follows:

m; = f(w - item; sy + b), (1)
where f denotes the activation function, and item;,; | represents the data in the sliding window.

Pooling operation: the maximum over time polling operation is used to reduce the feature dimension of
the generated features, and the maximum value m’ is selected as the final data feature to compress the number
of parameters and reduce over-fitting.

m' = Max(m;)

Activation Function: we use ReLU function as the activation function, which can help us make the
model converge faster and keep it continuously stable. A general ReLLU function is described as Eq. (3).

f(x) = max(0,x) 3)

The specific steps involved in the extraction of status features via CNN are as follows; some methods or
layers refer to Algorithm 2.
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Algorithm 2: Deep learning anomaly detection model

Input: The data matrix D',
Output: Target model for Status-Connection Features of payload;
Step 1. Create CNN model:
Reshape input
for i in range (2) do
Create convolution layer named conv_i
Set filter ¢; of size s;
Set activation as ReLUs
Add maxpooling layer of size p;
End for
Create a dropout layer with rate = 0.25
Create convolution layer named conv_3 with activation ReLU
Add global maxpooling layer, the output of which is a temp vector V;
Step 2. Create LSTM model:
Create LSTM layer with /; units, with dropout d,
Create a Dense layer with activation ReLU and dropout d3, the output of Which is a temp vector V>
Step 3. Concatenate two model:
V3 = np.concatenate (V1,V3)
Create a full connection Dense layer with activation ReLU and dropout d;
Step 4. Compile and validate model:
Set optimizer as Adam
Set loss as categorical crossentropy
Step 5. Evaluate model:
Summary target model and Test it by evaluate data sets
Return model

Step 1: We input the 28 x 28 matrix into the first convolution layer, which contains the ¢, filters. Here,
the size of filter is s X s, and the activation function is set to ReLU.

Step 2: The convolution layer can output the characteristic matrix whose size is 32 x 28 x 28, and we
input this matrix into a two-dimensional maxpooling layer whose size is p; X p;.

Step 3: The first maxpooling layer can output 32 matrices whose sizes are 14 x 14 each, and we use
zero-padding to extend these matrices, whose final size is 16 x 16.

Step 4: We input these 32 matrices into the second convolution layers containing ¢, filters. Here, the size
of filter is s, X s5, and the activation function is set to ReLU.

Step 5: By using the leaky ReLU method, we get 64 matrices whose sizes are 8 x 8 each, and input them
into the second two-dimensional maxpooling layer whose size is p, X p;.

Step 6: Through the computation in the second maxpooling layer, we input 64 matrices whose size is 2 x
2 into the dropout layer.

Step 7: The dropout layer outputs 64 matrices whose size is 2 X 2; we use zero-padding to extend these
matrices whose final sizes are 4 x 4 each.

Step 8: We input these 64 matrices into the third volume cumulant layer containing c; filters. Here, the
size of each filter is 55 X s3, and the activation function is set to ReL.U.



344 TASC, 2021, vol.30, no.1

Step 9: By using the leaky ReLU method, we get 128 matrices whose sizes are 4 x 4 each, and input
them into the two-dimensional global maxpooling layer whose size is p3 X ps.

Step 10: The status feature vector ¥ is the output of the global maxpooling layer, whose length is 128.

3.3 Connection Feature Extraction

In this step, we use LSTM to extract the transmission connection features from industrial
communication data in networked control systems, since it can help us resolve the problems of gradient
disappearance and gradient explosion effectively. LSTM introduces the concept of cell status, which
determines the reserved and forgotten statuses using the forgetting gate, the input gate, and the output
gate in the RNN training process.

The corresponding pseudo-code is shown in Algorithm 2, and the specific steps of the algorithm are
listed as follows:

Step 1: We first input the 28 x 28 matrix into an LSTM layer containing /; cells.

Step 2: A vector of length 50 can be computed by the LSTM layer, and we can input this vector into the
dropout d; layer.

Step 3: A vector of length 50 can be computed by the dropout d; layer, and we can input this vector into
the dense layer, which also represents the full connection layer.

Step 4: A vector of length 1024 can be computed by the dense layer, and we can input this vector into the
dropout d, layer. After that, we can get one new vector whose length is 1024, and this vector can be regarded
as the connection feature vector V5.

3.4 Concatenation and Classification

By connecting the status-connection features in the target datasets, which are extracted by CNN and
LSTM, we can improve the feature accuracy in the dropout layer setting from the last step. We use
SoftMax as the classifier in the final output layer to calculate the possibility of each network payload
category. After that, we can further classify different industrial communication behaviors. The main
framework integrating CNN and LSTM is shown in Fig. 3, and the detailed steps to realize the
integration of CNN and LSTM and the classification of industrial communication behaviors are
described below:

_________ Output
@ Predictions
o Congat o O - (O Normal
Py o I ©g © NMRI
| 2 - 5 ® CRMI
LSTM © i
O @ Reconnaissance

Figure 3: Main framework integrating CNN and LSTM

Step 1: We can get the vector V3 by connecting the status features V| extracted by CNN and the
connection features ¥, extracted by LSTM, where V3 = V; || V>.

Step 2: We can get the vector V4 by inputting the vector V3 into the full dense connection layer.

Step 3: We perform the classification by inputting the vector V4 into the activation function SoftMax, and
output the classifications of different behaviors.
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4 Evaluation and Analysis

To evaluate our deep learning anomaly detection approach, we use the standard intrusion detection
datasets and extract the hierarchical status-connection features by analyzing the transmission and payload
contents in these datasets. Furthermore, we not only give the performance discussion on the optimal
evaluation results but also compare our approach with other existing detection approaches.

4.1 Experimental Environment

We designed a Python program to perform all experiments with our deep learning anomaly detection
approach. The basic framework was built by using Keras 2.0 and Tensorflow 2.0. Additionally, all
procedures were run on the same PC with 64 GB RAM, Intel Xeon ¢5-2620v4 2.10 GHz CPU, Nvidia
Geforce RTX2080S GPU, and Windows Server 2016 OS.

4.2 Evaluation Indicator

The main purpose of the proposed approach is to accurately detect various abnormal
industrial communication behaviors in networked control systems. To this end, we use the authoritative
evaluation indicators: AC (accuracy), DR (detection rate), and FAR (false alarm rate) [26]. To be more
specific, AC refers to the ratio of all correctly classified samples, which may be normal samples or
malware. The DR is used to evaluate the system’s performance with respect to its malware traffic
detection. The FAR is used to evaluate the misclassifications of normal traffic. The main calculation
formulas are listed as follows.

TP + TN
C— + “4)
TP + TN + FP + FN
TP
DR=—— (5)
TP + FN
FP
FAR = ——
TN + FP (6)

Here, the true positive (TP) represents the number of attack samples, which are classified into the attack
category. The true negative (TN) represents the number of normal samples, which are classified into the
normal class. The false positive (FP) represents the number of normal samples, which are classified into
the attack category, and the number of attack samples, which are classified into the normal category. The
false negative (FN) is the number of samples that are failed to be classified into target category.

4.3 Experimental Parameter Setting

To construct an optimal model, we created different structures of convolution layer and LSTM layer.
Based on the two-dimensional matrix generated in the preprocessing process, we performed the
experimental tests. Specifically, when the maximum number of training times was set to be 20, the model
had stabilized. The accuracy and loss comparison of different structures in the training are shown in Fig. 4.

Through the debugging of multiple experiments, we produced the most effective model, which contains
three convolution layers, two pooling layers, one global pooling layer, one LSTM layer, and two full
connection layers. Additionally, the SoftMax layer is considered as the final classification function.
The settings of all parameters are shown in Tab. 2.

4.4 Comparison and Analysis

Based on the experimental parameter setting in Tab. 2, we were able to obtain an optimal
anomaly detection model. When the training epoch was set to 30, the detection accuracy in the training
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process was basically stable at 99.50%. The change of loss and detection accuracy in the training process is

depicted in Fig. 5.
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Figure 4: Change of loss and detection accuracy of different structures
Table 2: Experimental parameter setting
Layer Type Filters/Neurons Stride
1 convolution layer 32 1
2 pooling layer 2 2
3 convolution layer 64 2,2)
4 pooling layer 2 (3.,3)
5 convolution layer 128 (1,1)
6 global pooling layer 1 Default
7 LSTM 28 Default
8 full connection 1024 -
9 full connection 1024 -
10 SoftMax — -

After we obtained the optimal anomaly detection model, we used the test datasets to evaluate the actual
detection performance. The confusion matrix diagram is shown in Fig. 6, which shows the classification of
the data sets by our model during the evaluation process.

From the confusion matrix, it can be seen that our proposed model has a high anomaly detection
efficiency. Additionally, Tab. 3 shows the evaluation results for each behavior, including Normal, NMRI,
CMRI, MSCI, MPCI, MFCI, Dos, and Reconn. AC, DR, and FAR can reach 99.8%, 98.9%, and 0.082%,

respectively.
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Figure 5: Change of loss and detection accuracy in the training process
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Figure 6: The classification of data sets

To further explain the superiority of our approach, we compare the detection performance with some
existing anomaly detection approaches under the same test datasets. Furthermore, in order to better
evaluate the superiority of the algorithm, we compare the overall evaluation index of the proposed
algorithm with other published algorithms in unified datasets. As shown in Fig. 6, we can see that the
classification efficiency of deep learning algorithms such as CNN and LSTM is higher than machine
learning methods such as SVM.

Additionally, we construct a two-layer CNN model and apply it to the same datasets, and the accuracy
can reach 98.5% [16,27]. Moreover, we also compare with other algorithms: the work in Yu et al. [28] uses
the LSTM algorithm to detect the anomaly behavior, and the accuracy can be improved to 96.5%; the work in
Liu et al. [29] improves the SVM algorithm to those same datasets, and the accuracy can be improved to
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91.81%; the work [30] improves the C4.5 algorithm, and the accuracy can be improved to 91.30%. The
accuracy of the different schemes is shown in Fig. 7. Therefore, our proposed approach has a better
performance.

Table 3: The results of evaluation experiments

Data type AC DR FAR
Normal 0.995 0.995 0.004
NMRI 0.999 0.996 0.003
CMRI 0.999 0.998 0.0012
MSCI 0.999 0.966 0.0337
MPCI 0.997 0.985 0.014
MEFCI 0.997 1 0

Dos 0.998 0.973 0.026
Reconnaissance 1 1 0

Total 0.998 0.989 0.082

Classification accuracy of various algorithms
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Figure 7: The accuracy of different schemes

5 Conclusion and Future Work

To detect industrial cyberattacks in networked control systems, we propose a deep learning anomaly
detection approach based on hierarchical status-connection features. In the view of industrial control logic,
the proposed approach generalizes industrial communication data into two types of features: transmission
connection features and status features. According to the characteristics of CNN and LSTM, we use a CNN
to extract status features and LSTM to extract transmission connection features from industrial
communication data in networked control systems. Furthermore, the proposed approach integrates the
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advantages of CNN and LSTM to achieve the high-efficiency anomaly detection. Based on the actual datasets,
all experimental results show that the proposed approach, which has the advantages of strong detection
capability and low false alarm rate, is a more feasible means of anomaly detection by comparing with other
anomaly detection algorithms.

In future work, we will not only perform a comprehensive feature extraction from other fields of industrial
communication data but also optimize and improve its detection efficiency to realize large-scale applications.
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