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Abstract: Online banking is an ideal method for conducting financial transactions
such as e-commerce, e-banking, and e-payments. The growing popularity of
online payment services and payroll systems, however, has opened new pathways
for hackers to steal consumers’ information and money, a risk which poses signif-
icant danger to the users of e-commerce and e-banking websites. This study uses
the selection method of the entire e-commerce and e-banking website dataset
(Chi-Squared, Gini index, and main learning algorithm). The results of the analy-
sis suggest the identification and comparison of machine learning and deep learn-
ing algorithm performance on binary category labels (legal, fraudulent) between
similar datasets, and understanding which function plays a vital role in predicting
safe e-banking and e-commerce website datasets. The e-commerce and e-banking
website dataset was compiled from the UCI machine learning library. We obtained
11,056 entries based on 30 unique website attributes. We used the machine learning
algorithms support vector machine (SVM), k-nearest neighbors, random forest
(RF), decision tree (DT), and the multilayer perceptron (MLP) deep learning algo-
rithm to analyze the datasets of e-commerce and e-banking websites and found the
best algorithms based on accuracy, precision, recall, and F1-measure. MLP had the
highest precision at 97%. With this procedure we can now accurately test websites
to assist in the early prediction of secure e-banking e-commerce transactions.

Keywords: Malicious; attack; secure; e-banking and e-commerce website;
phishing; trust; privacy; machine and deep learning

1 Introduction

Malware websites are designed to look the same as the legitimate sites they intend to mimic. These fake
websites have noticeable hyperlinks used to scam their victims, and they link to sites that appear similar to
legitimate sites to fool users into trusting the site. Researchers have identified a rapid escalation in the number
of malicious phishing websites in the past year, which lead victims to fake pages that request confidential
information such as bank statements, credit card numbers, and passwords. These cyber threats are a broad-
based social engineering attack that has caused serious problems in today’s e-commerce and e-banking
business [1].
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Malicious actors involved in phishing—its name derived from catching fish—invite users, for example,
via message or email, to take advantage of an opportunity, which is a scam [2]. Phishing scams have cost
businesses tens of billions of dollars and can damage brand image and consumer trust as well [3].

Abdelhamid et al. [4] explained phishing detection approaches using different classification and data
mining techniques; phishing approaches impact the performance of websites, which has a direct impact
on customers and their reviews. Through text mining, authors can gain essential information from the
dataset. Researchers could use this data mining method in several fields, such as retail business, consumer
research, and decision-making analysis. The objective is to verify the possible usage of advanced data
mining tools to identify complicated problems or malicious scams. Classification methods for such cases
of online fraud include spelling mistakes, long URL suffixes, prefixes, and customization. These
attributes can be obtained from different sites as well as smartphone apps.

Decision trees are beneficial for data analysis and machine learning because they decompose complex
data into more manageable parts. They are commonly used in predictive analysis, data classification, and
regression [5]. Each tree produces a category estimate in the random forest, and the most polled category
is our model prediction; the trees guard each other against mistakes. Whereas individual trees can be
incorrect, some are correct, and trees might migrate to the right track. K-nearest neighbors (KNN)
algorithm is for nonparametric and lazy learning. The distribution of the analytical effects has no
perception. In other words, the configuration of a model is specified by a dataset. This can be helpful as
most real-world databases do not conform to statistical assumptions [6]. A support vector machine (SVM)
is a supervised machine learning algorithm used for classification or regression. However, it is mainly
used for classification problems [7].

This study compares the output of various machine learning and deep learning algorithms on binary
class labels (valid, malfeasance) from the same datasets and identifies features that play a vital role in
predicting secure e-commerce and e-banking websites. We used SVM, KNN, RF, DT machine learning
algorithms, and a deep learning algorithm, multilayer perceptron (MLP). For this study, we used the
selection method of the entire e-commerce and e-banking website dataset (Chi-Squared, Gini index, and
main learning algorithm). We analyzed an e-banking and e-commerce website dataset based on these
parameters, selecting the optimal algorithm based on precision, accuracy, recall, and Fl-score. Our
experimental results were used to evaluate the best accuracy of the MLP, which was 97%.

We now turn to our evaluation of the websites in the early phase to enable early forecasts for secure
e-commerce and e-banking transactions.

The remainder of the article is structured as follows: Section 2 discusses related work and Section 3
outlines the methodology and data collection. Predictive methods are discussed in Section 4. Section 5
presents results and discussion and Section 6 is a final discussion of the article. Conclusions are
addressed in Section 7.

2 Literature Review

The use of malicious software, or malware, is an illegal attempt to breach secure digital ecosystems to
access personal information such as names, passwords, and bank account numbers. The e-banking and
e-commerce sectors are more concerned with identity fraud than any other industry. Using software for
phishing website analysis will help customers determine the reputation of a service they wish to use. A
research tool accumulates and evaluates website parameters using different algorithms [8].

The banking industry uses the latest networking mechanisms, and it faces data security and privacy
issues. Jain et al. [9] present a detailed analysis of e-banking activities, including e-banking issues and
challenges, privacy, and other security threats, and their possible mitigation approaches.
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E-commerce has also come to play a crucial role in fulfilling customer demand. With operating system
(OS) support, e-commerce applications cannot function on the internet. Online business managers are usually
careless and know nothing about possible cyber threats due to a lack of security knowledge [10].

Malicious websites are designed to perform illegal activities such as a number of different types of
cyber-attacks. Latif et al. [11] describe various features of legal, suspect, and phishing attacks. Features
input to WEKA built-in data mining techniques are used to compute and verify the proposed algorithm’s
performance. The proposed methodology in Latif et al. [11] can be used to evaluate a website’s
trustworthiness while making payments.

The fundamental forms of banking fraud from the digital world are identified. The authors suggest a
scientific model that explains the mechanism of electronic banking crime. The proposed model was
established on the classic Lotka-Volterra logistic growth model and the Holling-Tanner dynamic model.
Unfortunately, it is impossible to investigate this problem based on real facts while cyber challenges are
locked [12].

The study explores the consequences of electronic banking services on electronic trust using an
electronic safety system. Findings show that an electronic bank service has an overall effect on the e-trust
mechanism. This study aimed to develop an e-banking model from a security perspective [13].

While the volume of payments being made over the internet is increasing at a furious pace, cyber-attack
techniques are likewise proliferating. A survey report analyzed the digital e-payment system and its
prospects. It briefly addresses fraudulent transaction rates that will become benchmarks for implementing
a reliable e-payment system [14].

This article discusses the implementation of electronic banking in Colombia. The empirical study, based
on the UTAUT2 model, gathered data from around the world, assuming that the factors that build confidence
in e-banking are essential [15].

Sarkar et al. [16] discusses the use of encryption key privacy preservation watermarking to protect
e-banking records, citing a method in which a picture was split into eight fragments for the embedding of
sensitive information. Eight characters are required for eight consecutive lines to form the block key [16].

Alghazo et al. [17] presents a theoretical framework based on e-banking surveys in Saudi Arabia, India,
and Pakistan. In this study the evaluation was focused on customer behaviors. Based on 1,045 credit card
operators and 91 online payment sites, the findings of this analysis indicated the difference between bank
preferences and user feedback.

Privacy and accessibility are also essential issues in e-banking. Companies have invested extensively in
the security and user interface of their websites. Alarifi et al. [ 18] suggests a formal evaluation model for a
comprehensive examination of the accessibility and protection of internal and external e-banking properties.
The author uses the proposed model to test five central banks to show the inadequacy of current models. The
assessment shows several flaws in the identification of missing and incorrectly configured security and
privacy functions. The purpose is to allow other researchers to build on their observations and extend
their work.

Generally, these methods are based on multiple characteristics derived from many sites. These same
functions can distinguish malicious attacks from real attacks. If the website algorithm’s architecture is
compatible with clearly specified rules, the website is declared a malware scam. This article provides a
detailed study of security attacks, manipulation, and the latest machine learning methods for detecting
malicious attacks [19].

From the perspective of individual consumers over the past two decades, the main goal has been to
classify Russia’s best e-banking platforms. Banks use digital IT technology to build strategic advantages
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and use some solutions to leverage banking services to benefit customers. The groups listed are categorized
into three groups: financial, technological, and anti-crisis [20].

Trust has never been a critical factor in e-commerce research. To maintain an understanding of the
application of e-banking, in this study, the author addresses incorporating trust into total addressable
marketing (TAM). Directly and indirectly, the two essential factors of legitimacy and reputation of trust
affect the attitude toward the internet banking industry’s applications and behavioral motives [21]. This
research distinguishes from the same datasets between performance comparisons of several machine
learning and deep learning algorithms on binary target classes (valid, malfeasance) and to understand
which feature plays an essential role in predicting secure websites for e-commerce and e-banking.

Kok et al. [22] proposes that malware will prevent access to the target service before paying for it. For
encrypted ransomware identification before any encryption, in this article, the author recommends using the
drug detection algorithm (PEDA) [22].

Saeed et al. [23] shed light on the fact that malware may encrypt all data to prevent users from accessing
sensitive data and information. The smart phones with the least resources requires additional processing
power and resources, and conventional protection measures are no longer allowed. Author analyzed the
effect of malware on the internet of things (IoT).

Smart cities use ICTs to improve their residents’ quality of life by paving the way for urban infrastructure
to strengthen, upgrade the transportation sector, and manage transport. The report has established and
predictable multiple security and data protection threats related to different computer security issues,
challenges, and recommendations, including potential guidance. It identifies cyber-threats based on new
research [24].

The study of data defense to promote cyber-technologies has grown immensely. The purpose of this
analysis is presented in Humayun et al. [25] to recognize and examine common errors in cybersecurity.
Researchers have found primary errors such as rejection of service, phishing, and malware. According to
previous work by Humayun et al. [25] primary errors, targeted/victimized applications, mitigation
strategies, and infrastructures need to be established.

3 Methodology and Data Collection

The fundamental purpose of this analysis is to classify features that separate legitimate and malicious
websites. Some analysis may also be conducted using different Python algorithms to classify certain
features to discover more variations in the website’s groups. Fig. 1 displays our research methods. The
dataset of e-banking and e-commerce websites was obtained from the UCI machine learning library. We
collected 11,056 entries based on 30 attributes, as shown in Fig. 2. We then used SVM, KNN, RF,
Decision Tree, and Multilayer Perceptron MLP.

4 Predictive Methods
4.1 Decision Tree Classifier

A decision tree (DT) can be customized for classification and estimation. The expansion of a decision
tree works with conditions such as “if,” “this,” and “then” strokes. Decision Tree is simple to understand, and
accessible to a large dataset. DT also provides an optimum solution to each step without agreeing on an
optimum solution at the final stage. Decision Tree classifier is a tree-based algorithm. The root has the
highest nodes, decision procedures represent classes, and leaf nodes display the results. The tree is
recursively split.
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Figure 1: Process diagram for stable e-commerce and e-banking sites
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Figure 2: Screenshot of the sample dataset of e-commerce and e-banking websites

4.2 Random Forest Classifier

Random forests are a robust machine learning algorithm that can be used for various tasks, including
regression and classification. This is an ensemble method, which means that the random forest model
consists of many small decision trees, called deciders, each of which produces its own predictions. The
random forest model combines estimator predictions to produce more accurate predictions. As long as
they do not move the same way, the trees protect each other from producing errors. While individual
decision trees may produce errors, the majority of the group will be correct, thus moving the overall
outcome in the right direction.

4.3 K-Neighbors Classifier

KNN is a nonparametric, lazy algorithm; that is to say, no assumptions are made about the fundamental
distribution of data. The dataset specifies the configuration of the model. It helps ensure that all datasets in the
real world are inconsistent with statistics and empirical assumptions. A lazy algorithm requires no training
datasets. However, while preparation for KNN is relatively fast, testing is slow and expensive and can require
much data storage.
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4.4 Support Vector Machine (SVM)

SVMs are also supervised learning models with similar machine learning algorithms that estimate the
knowledge used for regression and describes machine learning. The algorithm constructs a model of
training examples consisting of a sequence of courses, each categorized with a paired group and allowing
for an anti-contingent classification model. The model portrays examples as space points, determined to
guarantee that only a certain distance separates class examples. Previously, instances were traced at the
same location and calculated as belonging to a time-based division. The algorithm aims to locate a
hyperplane with a distinct category of datasets in an N-dimensional region (i.e., N features).

4.5 Multilayer Perceptron (MLP)

An MLP is a backpropagation CNN. It has more than one layer; the sensor input nodes and sensor output
layer decide the signal. For these two layers, the junk in each hidden layer is the MLP computing system.
MLP is a linear classifier algorithm to partition straight-line data into two sections. When MLP has such
a nonlinear vector activation in each hidden layer, graph theory implies that any layer may be lower than
the activation function of two layers. Fig. 3 demonstrates the MLP structure, where the activation
function contains 36 features and three invisible layers. The product is binary, indicating that a website is
either safe or not. MLP depends on learning techniques with backpropagation. Errors on the output node
z with such an instance point are computed as:

e:(x) = b:(x) — y:(x), (1)

where b is an expectation and y is the estimated value.

Hidden Layers

Output Layer

Figure 3: MLP architecture of a neural network used to protect e-banking and e-commerce websites

The backpropagation weight is changed to reduce performance layer error when there is an absolute
simultaneous error,

() =33 ). @
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The gated recurrent unit (rectified linear) is a feature of activation. ReLU is computed as

y=n* = max(0,n), 3)

where x appears to be the input of the perceptron.

The hyperbolic tangent and logistic equation both use a kernel function, but ReL U is significantly better,
so high-profit margin x does not lack regression problems. Once these optimization algorithms are adjusted
to hyperparameters, ReLU can be obtained. Both parameters for which this model is designed are
accumulated utilizing hyperparameter tuning. “Epoch” is a commonly used term in computer programs.

5 Results and Discussion

We conducted a review focused on the security issues of e-commerce and e-banking webpages with
the combination of the various machine learning algorithms discussed above. We estimated recall,
precision, accuracy, and F-score for computing different algorithm performance to determine an algorithm
for secure analysis.

5.1 Calculated Results of Machine Learning Algorithms

The DT algorithm was 91% accurate. The macro average and weighted average ratios for recall,
precision, and F-score were the same, at 91%. The decision tree representation of the classifier of the
decision tree can be seen in Fig. 4.

SSLfinal_State <= 0.5
gini = 0.49417
samples = 7406
value = [3303, 4103]
class =-1

Links_in_tags <=-0.5
gini = 0.42531
samples = 1141
value = [791, 350]
class =1

gini=0.5
samples = 555

value =[278, 277]
class=1

Figure 4: The decision tree visualization of the decision tree algorithm

The RF algorithm was 93% accurate. Precision, recall, and F-score were 93%, 92%, and 91%,
respectively. The precision weighted ratio for F1 was 93%.

KNN was 94% accurate. The macro average ratios for precision, recall, and F-score were 93%, 94%, and
94%, respectively, and the corresponding ratios of the weighted average were the same, at 94%.

SVM was 95% accurate. The ratios of the macro average for precision, recall, and F-score were all 95%,
as were the weighted average ratios.
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MLP was the most accurate of all algorithms tested, at 97%. The macro average ratios for precision,
recall, and F-score were 97%, 96%, and 97%, respectively, and the corresponding ratios of the weighted
average were the same, at 97%.

MLP had the highest accuracy, 97%, because it was the most accurate to scrutinize secure e-commerce
and e-banking websites, as shown in Tab. 1.

Table 1: The statistical evaluated the different ML and DL algorithms

Decision Tree

(Precision) (Recall) (F1-Score)
-1 (0.89) (0.91) (0.90)
+1 0.93 (0.91) (0.92)
Accuracy (0.91)
Macro average (0.91) (0.91) (0.91)
Weighted average (0.91) (0.91) (0.91)
Random Forest

Precision Recall F1-Score
-1 (0.95) (0.88) 0.91)
+1 (0.91) (0.96) (0.94)
Accuracy (0.86)
Macro average (0.93) (0.92) (0.92)
Weighted average (0.93) (0.93) (0.93)
K-Neighbor Algorithm

Precision Recall F1-Score
-1 (0.90) (0.96) (0.93)
+1 0.97) (0.92) (0.94)
Accuracy 0.94
Macro average (0.93) (0.94) (0.94)
Weighted average (0.94) 0.94 (0.94)
Support Vector Machine (SVM)

Precision Recall F1-Score
-1 (0.96) (0.92) (0.94)
+1 (0.94) (0.97) (0.96)
Accuracy (0.95)
Macro average (0.95) (0.95) (0.95)

Weighted average (0.95) (0.95) (0.95)
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Table 1 (continued).

Decision Tree

Multilayer Perceptron (MLP)

Precision Recall F1-Score
-1 (0.97) (0.95) (0.96)
+1 (0.96) (0.98) 0.97)
Accuracy 0.97)
Macro average (0.97) (0.96) 0.97)
Weighted average (0.97) (0.97) 0.97)

5.2 Precision-Recall Curve

Precision-recall is a strong indicator of prediction performance when classes are significantly different.
Accuracy measures the importance of results in processing details; therefore, recall measures whether the
results are correct. The precision-recall curve suggests a balance between accuracy and the recall of
numerous thresholds. A large area under the arc provides high precision and a high level of recall. High
accuracy leads to a low rate of false positives and high recall at a low false-negative rate. Accuracy
results indicate that the classifier produces the correct results (good performance) and produces positive
results (high recall). Fig. 5 shows a graphical representation of the high-precision curves of various
machine learning methods. We evaluated that MLP had the highest precision-recall graph, and average
precision equaled 0.95. However, the accuracy of the decision tree algorithm was low.

Fig. 6 displays the confusion matrix for the design process of SVM, KNN, RF, and DT.

6 Discussion

We compared machine learning algorithms and one deep learning algorithm on a dataset of e-commerce
and e-banking websites with different attributes and two classes. We concluded from this comparison that, if
we developed a webpage in a real-time environment to detect the websites, we could use the deep learning
algorithm as back-end support. Our analysis also showed that the MLP belonging to the deep learning family
has the highest accuracy related to deep learning algorithms.
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Figure 6: The graphical representation of the confusion matrix of the different ML and DL algorithm
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7 Conclusion

Online service in the Pakistani banking sector gives access to a plan for the use of digital technologies to
advance organizational performance and service superiority to attract and engage customers. Using ATMs in
Pakistani banking networks provides banks with opportunities to gain customers’ overall enthusiasm to
implement a more profitable service. This research enables bankers to perform efficient tracking. Banks
should focus on essential features of trust, time, and effective handling of ATMs and other services. They
can extend their ATM commitment to craft a lasting relationship with regular customers. We compared
various machine learning and deep learning methods on binary-type labels (legitimate, scam) on the same
dataset. We evaluated e-banking and e-commerce websites’ datasets based on all these methodologies and
discovered the optimum solution based on accuracy, precision, recall, and Fl-measure and found that
MLP had the best accuracy, at 97%, this helps pre scanning of the web to provide security against fraud.

8 Future Work

In the future, we will build a website or network on which we can deploy this idea for secure
e-commerce and e-banking websites. We can do more practice on data set features in deep learning
methods, preferably more accurate than machine learning methods.

Funding Statement: The work was supported in part by the National Natural Science Foundation of China
under Grant Nos. 71771118, 72071104 and 71471083, by the Ministry of Education Humanities and Social
Sciences Foundation of China under Grant No.18YJCZH146, and by the Key Project of Jiangsu Social
Science Foundation under Grant No. 20GLA007.

Conflict of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1T D.R. Ibrahim and A. H. Hadi, “Phishing websites prediction using classification techniques,” in Proc. 2017 Int.
Conf. on New Trends in Computing Sciences (ICTCS), Amman, Jordan: IEEE, pp. 133137, 2017.

[2] M. Kayatan and D. Hanbay, “Effective classification of phishing web pages based on new rules by using extreme
learning machines,” Bilgisayar Bilimleri, vol. 2, no. 1, pp. 15-36, 2017.

[3] W. Ali, “Phishing website detection based on supervised machine learning with wrapper features selection,”
International Journal of Advanced Computer Science and Applications, vol. 8, no. 9, pp. 72-78, 2017.

[4] N. Abdelhamid, A. Ayesh and F. Thabtah, “Phishing detection based associative classification data mining,”
Expert Systems with Applications, vol. 41, no. 13, pp. 5948-5959, 2014.

[5] D.S. Campo, G. L. Xia, Z. Dimitrova, Y. Lin, J. C. Forbi et al., “Accurate genetic detection of hepatitis C virus
transmissions in outbreak settings,” Journal of Infectious Diseases, vol. 213, no. 6, pp. 957-965, 2016.

[6] M. Ali, A. Yopp, P. Gopal, M. S. Beg, H. Zhu et al., “A variant in PNPLA3 associated with fibrosis progression
but not hepatocellular carcinoma in patients with hepatitis C virus infection,” Clinical Gastroenterology and
Hepatology, vol. 14, no. 2, pp. 295-300, 2016.

[71 V. V. Chirikov, F. T. Shaya, E. Onukwugha, C. D. Mullins, S. Dosreis et al., “Tree-based claims algorithm for
measuring pretreatment quality of care in Medicare disabled hepatitis C patients,” Medical Care, vol. 55,
no. 12, pp. 104-112, 2017.

[8] S.J.Pai, R. Gokuldas, R. Kakkadan, S. Hegde and M. S. Suvarna, “Phishing website analyzer to secure e-banking
and e-commerce websites,” International Research Journal of Modernization in Engineering Technology and
Science, vol. 2, no. 5, pp. 510-520, 2020.

[91 A. Jain and A. Sarupria, “Security and privacy model for analyzing the consumer awareness with regards to

electronic banking services in Udaipur city,” International Journal of New Technology and Research (IJNTR),
vol. 6, no. 6, pp. 34—44, 2020.



IASC, 2021, vol.30, no.l1 199

[10] R. I. Royel, M. H. Sharif, R. Risha, T. Bhuiyan, M. M. Hassan et al., “A risk based analysis on linux hosted
E-commerce sites in Bangladesh,” in Proc. 2020 Int. Conf. on Cyber Security and Computer Science, Dhaka,
Bangladesh: Springer, pp. 140-151, 2020.

[11] R. M. A. Latif, M. Umer, T. Tarig, M. Farhan, O. Rizwan et al, “A smart methodology for analyzing secure
e-banking and e-commerce websites,” in Proc. 2019 16th Int. Bhurban Conf. on Applied Sciences and
Technology (IBCAST), Islamabad, Pakistan: IEEE, pp. 589-596, 2019.

[12] O. Syniavska, N. Dekhtyar, O. Deyneka, T. Zhukova and O. Syniavska, “Security of e-banking systems:
Modelling the process of counteracting e-banking fraud,” in SHS Web of Conf., Odessa, Ukraine: EDP
Sciences, vol. 65, pp. 03004-03009, 2016.

[13] M. N. Esfahani, “E-bank services: Analyzing the effect of e-bank service on e-trust with e-security approach,”
European Research Studies Journal, vol. 22, no. 1, pp. 158-166, 2019.

[14] J. Yomas and C. Kiran, “Critical analysis on the evolution in the e-payment system, security risk, threats and
vulnerability,” Communications on Applied Electronics, vol. 7, no. 23, pp. 21-29, 2018.

[15] J. A. Sanchez-Torres, A. V. Sandoval and J. A. S. Alzate, “E-banking in Colombia: Factors favouring its
acceptance, online trust and government support,” International Journal of Bank Marketing, vol. 36, no. 1,
pp. 170-183, 2018.

[16] A. Sarkar and S. Karforma, “Image steganography using password based encryption technique to secure
e-banking data,” International Journal of Applied Engineering Research, vol. 13, no. 22, pp. 15477-15483, 2018.

[17] J. M. Alghazo, Z. Kazmi and G. Latif, “Cyber security analysis of internet banking in emerging countries: User
and bank perspectives,” in Proc. 2017 4th IEEE Int. Conf. on Engineering Technologies and Applied Sciences
(ICETAS), Salmabad, Bahrain: IEEE, pp. 1-6, 2017.

[18] A. Alarifi, M. Alsaleh and N. Alomar, “A model for evaluating the security and usability of e-banking platforms,”
Computing, vol. 99, no. 5, pp. 519-535, 2017.

[19] A. K. Jain and B. Gupta, “Comparative analysis of features based machine learning approaches for phishing
detection,” in Proc. 2016 3rd Int. Conf.- on Computing for Sustainable Global Development (INDIACom),
New Delhi, India: IEEE, pp. 2125-2130, 2016.

[20] W. Chmielarz and M. Zborowski, “Comparative analysis of electronic banking websites in Poland in 2014 and
2015,” in Information Technology for Management, 1% ed., vol. 243. Lodz, Poland: Springer, pp. 147-161, 2016.

[21] K. B. Mansour, “An analysis of business’ acceptance of internet banking: An integration of e-trust to the TAM,”
Journal of Business and Industrial Marketing, vol. 31, no. 8, pp. 982-994, 2016.

[22] S. Kok, A. Azween and N. Jhanjhi, “Evaluation metric for crypto-ransomware detection using machine learning,”
Journal of Information Security and Applications, vol. 55, no. 2, pp. 102646—102660, 2020.

[23] S. Saeed, N. Jhanjhi, M. Naqvi, M. Humayun and S. Ahmed, “Ransomware: A framework for security challenges
in internet of things,” in Proc. 2020 2nd Int. Conf. on Computer and Information Sciences (ICCIS), Sakaka, Saudi
Arabia: IEEE, pp. 1-6, 2020.

[24] B. Hamid, N. Jhanjhi, M. Humayun, A. Khan and A. Alsayat, “Cyber security issues and challenges for smart
cities: A survey,” in Proc. 2019 13th Int. Conf. on Mathematics, Actuarial Science, Karachi, Pakistan:
Computer Science and Statistics (MACS), pp. 1-7, 2019.

[25] M. Humayun, M. Niazi, N. Jhanjhi, M. Alshayeb and S. Mahmood, “Cyber security threats and vulnerabilities: A
systematic mapping study,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp. 3171-3189, 2020.



	A Smart Comparative Analysis for Secure Electronic Websites
	Introduction
	Literature Review
	Methodology and Data Collection
	Predictive Methods
	Results and Discussion
	Discussion
	Conclusion
	Future Work
	References


